瞬变电磁三维合成孔径延拓成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以实现瞬变电磁三维解释为目的。结合瞬变电磁波场变换方法,借助于合成孔径雷达的基本思想,采用相关叠加的方法进行合成孔径,由此大大提高瞬变电磁法的分辨率,引入了用克希霍夫积分法将合成孔径后的波场从地面向地下反向延拓,实现了瞬变电磁的三维延拓成像。
     瞬变电磁波场变换方程为第一类Fredholm积分方程,由扩散场到波场的反变换过程是典型的不适定问题。瞬变电磁采样时间动态范围广,使问题的病态性更加严重。针对此问题,论文引入预条件正则化共轭梯度法,实现了瞬变电磁全时域波场变换。超松弛预条件处理有效降低了方程系数矩阵的条件数,然后利用正则化共轭梯度迭代算法,实现全时域波场反变换。将反变换结果与已知波场函数对比,证明算法稳定、可靠。将结果与原来分段正则化结果对比,说明方法效果。结合反变换算法,对层状模型虚拟波场特性进行分析,由G、D两层模型,定量分析了虚拟波场对电阻率差异的敏感特性;由A、H、K、Q三层模型分析了虚拟波对薄层厚度的分辨效果;并总结了虚拟波场在有耗介质中的传播性质。
     随着瞬变电磁波场变换算法的提出,实现了由具有扩散特征的瞬变场向虚拟波场的转变,这就为实现瞬变电磁法的合成孔径成像创造了条件。瞬变电磁合成孔径成像技术是借用合成孔径雷达成像的思路,就是利用机载真实孔径发射线圈与目标的相对运动,把尺寸较小的真实天线孔径用数据处理的方法合成一较大的等效孔径的发射线圈,使其分辨能力更高、穿透能力更强。数字模拟和模型试验的结果都证明了:相邻位置上同一地质体的反射回波具有较好的相关性,因此根据不同位置信号的相关系数生成不同的权值函数,相邻各列信号在做相关叠加时以权函数进行加权,将重建的地质异常体信号加强,从而提高信噪比,达到突出弱异常的目的,进而提高分辨率,加大勘探深度。
     结合大量理论模型分析可知,在有耗的大地介质中,经变换得到的波场在传播过程中振幅衰减迅速、高频成分很快被吸收,这不利于分辨率的提高。针对变换后波场的吸收和展宽现象,引入地震勘探中常用的脉冲反褶积方法,结合最小相位滤波,实现了虚拟波场脉冲压缩算法。通过对模型子波的压缩可知,脉冲压缩有效提高了波场的垂向分辨率。
     在分析合成孔径雷达算法的基础上结合瞬变电磁信号的特点,对采样信号进行相关加权叠加形成瞬变电磁合成孔径数据体。从惠更斯原理出发,依据Kirchhoff积分公式,建立了瞬变电磁虚拟波场曲面延拓成像公式和实用算法,在算法中,采用三维边界元技术,提高了计算效率,与此同时,提出了基于等效导电平面解释方法的近似速度分析方法,实现了地表为曲面的向下延拓成像计算。
     通过对实测数据的处理,用瞬变电磁三维合成孔径延拓成像方法有效地实现了地下介质的三维成像,成像结果与钻孔资料相吻合。模型和实测数据处理,充分说明瞬变电磁虚拟波场三维延拓成像可以有效识别地下电性界面,是实现三维解释的有效方法。结合脉冲压缩和聚焦合成孔径技术将有效提高了波场的分辨率。因此波场延拓成像技术使瞬变电磁高精细成像探测成为现实。更值得一提的是,文中方法不仅适用于地面勘探方式,也适合于航空瞬变电磁方式,使得瞬变电磁法在山地、海洋等复杂区域的精细探测大有作为。
The paper is aimed at3-D interpretation of Transient Electromagneticmethod (TEM). By combining the TEM wave-field transformation andadopting the correlation superposition method for synthetic aperture process, Ihave based on the synthetic aperture radar method improved the resolution ofTEM. The3-D TEM imaging by continuation from surface to underground hasbeen realized by introducing the Kirchhoff integration.
     The TEM wave-field transformation is the first kind Fredholm integralequation, and the inverse transformation, from diffusion field to wave field, isa typical ill-posed problem. Besides, the dynamic time range of transientelectromagnetic sampling is so wide that it makes the ill-posed problem moreserious. To deal with this problem, Pre-conditioned Regularized ConjugateGradient Method (PRCG) has been proposed in this paper, so that the TEMfull-domain wave-field transformation could be executed. The over relaxationpre-conditioned process effectively reduces the condition number of thecoefficient matrix, while Regularized Conjugate Gradient Method(RCG) helpsrun the inverse transformation of wave-field in full time-domain. Thecomparison between the results of inverse transformation and the knownwave-field functions shows that the algorithm is stable and reliable. Comparison of the results with those of previously proposed sectionalizedregularization shows that the method in this paper is very effective. Combinedwith the algorithm of inverse transformation, I analyze the characteristics ofthe virtual wave-field for layered earth models and summarize its propagationproperties. The sensibility of virtual wave-field to resistivity difference isanalyzed quantitatively for G and D models, while for A,H,K,Q models, Istudy the resolution of virtual wave-field to layer thickness.
     The algorithm of TEM wave-field transformation makes it possible totransform the diffusing transient field to virtual wave-field. This creates thecondition for synthetic TEM aperture imaging. The synthetic TEM apertureimaging is based on the idea of synthetic aperture radar that utilizes therelative motion between airborne aperture transmitter and objectives, andmakes equivalent small-sized antenna apertures to a major transmitter via dataprocessing to improve the resolution and to strengthen the penetrations. Bothnumerical results and model experiments show that the reflections from thesame geological body at nearby points correlate well with each other, thusweighing functions are obtained based on the correlation coefficients ofdifferent positions. During the correlation superposition process, the signal inthe neighbor stations are weighed by weighting functions to enhance the signalof abnormal bodies. This improves the S/N ratio, strengthens weak abnormal signal, and increases the resolution and the exploration depth.
     Through numerous model analysis, it is found that the virtual wave-filedattenuates very quickly when propagating in dispersive earth. This causes thehigh-frequency signal be absorbed very quickly and is thus of little help to theimprovement of detection precision. In order to solve the problem withabsorption and broadening of virtual wave-field, the impulse deconvolutionmethod has been adopted from seismic and combined with minimum phasefiltering to realize the impulse compression of virtual wave-field. It ismanifested that the impulse compression method effectively improves thevertical precision through compressing the wavelets of the model.
     Based on the analysis of the algorithm from synthetic aperture radar andcombined with the TEM signal characteristics, the sampled signal is obtainedby correlated weighing to form the TEM synthetic aperture data. From theHuygens theory, the formula is built for surface continuation imaging andpractical algorithm of TEM virtual wave-field based on Kirchhoff integration.The3-D boundary-element method is adopted to improve the computationalefficiency. At the same time, an approximate velocity analysis based on themethod of equivalent conductive plane is assumed to carry out the downwardcontinuation over a curved surface.
     The practical use shows that the3-D TEM imaging by synthetic aperture continuation can image the3-D underground, and the resulted images matchwell with the drilling data. Both model experiments and practical use showthat3-D TEM imaging of the virtual wave-field continuation has the ability ofdistinguishing the underground resistivity distribution, and proves to be aneffective method in3-D data interpretation. The combination of impulsecompression and focusing synthetic aperture method can help improve theresolution of wave-field. This means that the imaging by wave-fieldcontinuation makes high-resolution TEM imaging possible. Moreover, themethod proposed in this paper can be used in both ground EM and airborneEM, this further implies that the TEM has the potential to explore finestructures in regions with complex surface conditions, such as in the mountainarea and over the sea.
引文
[1]侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用构造背景、时空分布和主要类型[J].中国地质,2006,33(2):340-351.
    [2]金玮.青藏高原腹地晚白垩-古近纪高原隆升的沉积响应与油气后期保存[D].成都理工大学,2007.
    [3]熊盛青,周伏洪,姚正煦,等.青藏高原中西部航磁概查[J].物探与化探,2007,31(5):404-407.
    [4]于浦生,李荣社,计文化,等.青藏高原北部成矿带划分[J].西北地质,2007,40(4):7-16.
    [5]王德发,刘英才,熊盛青,等.西藏铬铁矿接替资源航磁勘查及找矿方向探讨[J].地质通报,2007,26(4):476-482.
    [6]熊盛青.“十五”以来我国航空物探进展与展望[J].物探与化探,2007,31(6):479-484.
    [7]李慧.海洋瞬变响应理论计算及浅海瞬变电磁探测技术研究[D],吉林大学,2004.
    [8]雷栋,胡祥云,张素芳.航空电磁法的发展现状[J].地质找矿论丛,2006,21(1):40-44.
    [9] Vrbancich J, Fullagar P, Smith R. Testing the limits of AEM bathymetrywith a floating TEM system[J]. Geophysics,2010,75(4):A163-A177.
    [10]李文杰,孟庆敏,李军峰.我国频率域航空电磁法仪器系统研制回顾与展望[J].物探化探计算技术,2007,29(S1):21-24.
    [11]孟庆敏.航空物探综合测量在森林和草原区寻找铜多金属矿的试验研究[J].物探与化探.2004,28(04):337-340.
    [12]王卫平,王越胜.航空电磁法在黄河口地区寻找浅层淡水的地质效果[J].物探与化探,1999,23(2):115-121.
    [13]李永兴,强建科,汤井田.航空瞬变电磁法一维正反演研究[J].地球物理学报,2010,53(3):751-759.
    [14]罗延钟,张胜业,王卫平.时间域航空电磁法一维正演研究[J].地球物理学报,2003,46(5):719-724.
    [15]强建科,罗延钟,汤井田,等.航空瞬变电磁法的全时域视电阻率计算方法[J].地球物理学进展,2010,25(5):1657-1661.
    [16]朱凯光,林君,刘长胜,等.频率域航空电磁法一维正演与探测深度[J].地球物理学进展,2008,23(6):1943-1946.
    [17]毛立峰,王绪本,陈斌.直升机航空瞬变电磁自适应正则化一维反演方法研究[J].地球物理学进展,2011,26(1):300-305.
    [18] Cox L H, Wilson G A, Zhdanov M S.3D inversion of time-domainairborne electromagnetic data[C].the20th Workshop on ElectromagneticInduction in the Earth,Giza, Egypt,2010.
    [19] Cox L H, Zhdanov M S.Advanced computational methods of rapid andrigorous3D inversion of airborne electromagnetic data[J]. Communicationsin Computational Physics,2008,3(1):160-179.
    [20] Beamish D.Airborne EM footprints[J]. Geophysical Prospecting,2003,51(1):49-60.
    [21] Smith R.On removing the primary field from fixed-wing time-domainairborne electromagnetic data: some consequences for quantitativemodelling, estimating bird position and detecting perfect conductors[J].Geophysical Prospecting,2001,49(4):405-416.
    [22] Christiansen A V, Auken E, Viezzoli A.Quantification of modeling errorsin airborne TEM caused by inaccurate system description[J]. Geophysics,2011,76(1): F43-F52.
    [23] Viezzoli A, Christiansen A V, Auken E, et al.Quasi-3D modeling ofairborne TEM data by spatially constrained inversion[J]. Geophysics,2008,73(3):F105-F113.
    [24]牛之琏.时间域电磁法原理[M].长沙:中南大学出版社,2007.
    [25]薛国强,李貅,底青云.瞬变电磁法正反演问题研究进展[J].地球物理学进展,2008,23(4):1165-1172.
    [26]李貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002.
    [27]何继善.电法勘探的发展和展望[J].地球物理学报,1997,40(S1):308-316.
    [28] Portniaguine O, Zhdanov M S. Focusing geophysical inversion images[J].Geophysics,1999,64(3):874-887.
    [29] Portniaguine O, Zhdanov M S.3-D magnetic inversion with datacompression and image focusing[J]. Geophysics,2002,67(5):1532-1541.
    [30] Zhdanov M S, Fang S, Hurs An G A.Electromagnetic inversion usingquasi-linear approximation[J]. Geophysics,2000,65(5):1501-1513.
    [31] Zhdanov M S, Wan L, Gribenko A, et al.Large-scale3D inversion ofmarine magnetotelluric data: Case study from the Gemini prospect, Gulf ofMexico[J]. Geophysics,2011,76(1):F77-F87.
    [32]薛国强,李貅,底青云.瞬变电磁法理论与应用研究进展[J].地球物理学进展,2007,22(04):1195-1200.
    [33] Kunetz G. Processing And Interpretation Of Magnetotelluric Soundings[J].Geophysics,1972,37(6):1005-1021.
    [34]唐君辉.中心回线瞬变电磁拟地震解释成像技术研究[D].长春:吉林大学,2007.
    [35] Levv S, Oldenburg D, Wang J.Subsurface imaging using magnetotelluricdata[J]. Geophysics,1988,53(1):104-117.
    [36] Lee K H, Liu G, Morrison H F.A new approach to modeling theelectromagnetic response of conductive media[J]. Geophysics,1989,54(9):1180-1192.
    [37] Lee S, McMechan G A, Aiken C L V.Phase-field imaging: Theelectromagnetic equivalent of seismic migration[J]. Geophysics,1987,52(5):678-693.
    [38] Hoop A T.Transient electromagnetic vs. seismic prospecting-acorrespondence principle[J]. Geophysical Prospecting,1996,44(6):987-995.
    [39] Strack K. M, Vozoff K..Integrating long-offset transient electromagnetics(LOTEM) with seismics in an exploration environment[Z]. BlackwellPublishing Ltd,1996,44,997-1017.
    [40] Gershenson M.Simple interpretation of time-domain electromagneticsounding using similarities between wave and diffusion propagation[J].Geophysics,1997,62(3):763-774.
    [41] Christensen N B.A generic1-D imaging method for transientelectromagnetic data[J]. Geophysics,2002,67(2):438-447.
    [42] Zhdanov M S, Dmitriev V I, Fang S.Quasi-analytical approximations andseries in electromagnetic modeling[J]. Geophysics,2000,65(6):1746-1757.
    [43] Zhdanov M S, Portniaguine O.Time-domain electromagnetic migration inthe solution of inverse problems[J]. Geophysics,1997,13(1):293-309.
    [44] Zhdanov M S, Traynint P, Booker J R.Underground imaging byfrequency-domain electromagnetic migration[J]. Geophysics.1996,61(3):666-682.
    [45] Lee J B, Dart D L, Turner R J, et al. Airborne TEM surveying with aSQUID magnetometer sensor[J]. Geophysics,2002,67(2):468-477.
    [46]王守坦.航空物探技术[J].地学前缘,1998,5(1):223-230.
    [47] Walker S E.Should we care about negative transients in helicopter TEMdata[C]. SEG Technical Program Expanded Abstracts,2008,27(1):1103-1107.
    [48] Huang H, Rudd J.Conductivity-depth imaging of helicopter-borne TEMdata based on a pseudolayer half-space model[J]. Geophysics,2008,73(3):F115-F120.
    [49] David, Beamish.An assessment of inversion methods for AEM dataapplied to environmental studies. Journal of Applied[J] Geophysics,2002,51(2-4):75-96.
    [50] David, Beamish.3D modelling of near-surface, environmental effects onAEM data[J]. Journal of Applied Geophysics,2004,56(4):263-280.
    [51] M. Legault J, B. Witter J, Berardelli P, et al. ZTEM Airborne AFMAGEM Results over the Reese River Geothermal Test Area, central Nevada[C].ASEG Extended Abstracts,2010.
    [52]方文藻,李予国,李貅.瞬变电磁测深法原理[M].西安:西北工业大学出版社,1993.
    [53]朴化荣.电磁测深原理[M].北京:地质出版社,1990.
    [54]朴化荣,殷长春.利用G-S逆拉氏变换法计算瞬变测深正演问题[J].物化探计算技术,1987(04):295-302.
    [55]刘继东,方文藻.用线性数字滤波法计算大回线源在地下形成的瞬变电磁场[J].物探化探计算技术,1996,(03):50-56.
    [56]王华军,罗延钟.中心回线瞬变电磁法2.5维有限单元算法[J].地球物理学报,2003,46(06):855-862.
    [57]杨长福,林长佑,陈军营,等.三维瞬变电磁近似反演[J].地震学报.2000,22(04):377-384.
    [58]闫述.基于三维有限元数值模拟的电和电磁探测研究[D].西安交通大学,2003.
    [59]闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析[J].地球物理学报.2002,45(02):275-284.
    [60]闫述,陈明生,傅君眉.瞬变电磁场信号在地下的扩散及地面上的时域响应特性[J].煤田地质与勘探.2001,29(02):55-57.
    [61]肖怀宇.带地形的瞬变电磁法三维数值模拟[D].中国地质大学(北京),2006.
    [62]殷长春.瞬变电磁测深法的研究深度[J].长春地质学院学报,1992,22(01):103-107.
    [63]殷长春,李吉松.任意角度瞬变电磁测深正演问题计算方法[J].物探与化探.1994,18(04):297-303.
    [64]殷长春,刘斌.瞬变电磁法三维问题正演及激电效应特征研究[J].地球物理学报.1994,37(S2):486-492.
    [65]李建平,李桐林,张辉,等.不规则回线源层状介质瞬变电磁场正反演研究及应用[J].吉林大学学报(地球科学版).2005,35(06):112-117.
    [66]翁爱华,刘云鹤,陈玉玲,等.结合有限项多指数级数近似的点源格林函数闭式算法[J].吉林大学学报(地球科学版).2011,41(01):258-264.
    [67]翁爱华.Occam反演及其在瞬变电磁测深中的应用[J].地质与勘探.2007,42(05):74-76.
    [68]邓晓红.定回线源瞬变电磁三维异常特征反演[D].中国地质大学(北京),2006.
    [69]王家映.我国大地电磁测深研究新进展[J].地球物理学报.1997,40(S1):206-216.
    [70]王家映, DouglasOldenburg, ShlomoLevy.大地电磁测深的拟地震解释法[J].石油地球物理勘探.1985,20(01):66-79.
    [71]左海燕,王家映,方胜.关于大地电磁的平均速度问题[J].石油物探.1986,21(01):84-97.
    [72]王家映.大地电磁拟地震解释法[M].北京:石油工业出版社,1995.
    [73]陈本池,李金铭,周凤桐.瞬变电磁场拟波动方程偏移成像[J].石油地球物理勘探.1999,34(05):546-554.
    [74]陈本池,周凤桐,李金铭.瞬变电磁场的波场变换研究[J].物探与化探.1999,23(03):195-201.
    [75]刘继东.TEM拟地震解释中的反射系数确定[J].煤田地质与勘探.2004,32(06):54-57.
    [76]刘继东,林长佑,杨长福.瞬变电磁资料反演解释方法[M].兰州:兰州大学出版社,2001.
    [77]郭文波,李貅,薛国强,等.瞬变电磁快速成像解释系统研究[J].地球物理学报.2005,48(06):187-192.
    [78]李貅.瞬变电磁虚拟波场的三维曲面延拓成像研究[D].西安交通大学,2005.
    [79]李貅,郭文波,宋建平.瞬变电磁测深快速拟地震解释方法及应用效果[J].西安工程学院学报.2001,23(03):42-45.
    [80]李貅,戚志鹏,薛国强,等.瞬变电磁虚拟波场的三维曲面延拓成像[J].地球物理学报.2010,53(12):3005-3011.
    [81]薛国强,李貅,宋建平,等.回线源瞬变电磁成像的理论分析及数值计算[J].地球物理学报.2004,47(02):338-343.
    [82]郭文波.瞬变电磁拟地震解释法研究[D].西安:长安大学,2000.
    [83]杨晓弘.大地电磁测深拟地震时间剖面解释法研究[D].中南大学,2005.
    [84] Lavrent’ev M M.Ill-Posed Problems of Mathematical Physics andAnalysis[M]. American Mathematical Society,1986.
    [85]刘继军.不适定问题的正则化方法及应用[M].北京:科学出版社,2005.
    [86]王彦飞.反演问题的计算方法及其应用[M].北京:高等教育出版社,2007.
    [87]王彦飞,斯捷潘诺娃I. E.,提塔连科V. N.,等.地球物理数值反演问题[M].北京:高等教育出版社,2011.
    [88]李貅,薛国强,宋建平,等.从瞬变电磁场到波场的优化算法[J].地球物理学报.2005,48(05):1185-1190.
    [89] Nabighian M N.Electromagnetic Methods in Applied Geophysics-Theory (Volume1). Tulsa OK: Society of Exploration,1988.
    [90] Bai Z, Zhang S.a regularized conjugate gradient method for symmetricpositive definite system of linear equations[J]. Journal of ComputationalMathematics.2002,20(4):437-448.
    [91]周翠荣.改进的正则化共轭梯度法[D].电子科技大学,2010.
    [92]何小祥,刘梅林.SSOR预处理技术在二维电磁特性TDFEM分析中的应用[J].南京航空航天大学学报.2006,38(6):670-673.
    [93]韦志辉,周荣富.SSOR方法的数值稳定性[J].东南大学学报.1990,20(3):108-113.
    [94]冯康.数值计算方法[M].北京:国防工业出版社,1978.
    [95]胡家赣.线性代数方程组的迭代解法[M].北京:科学出版社,1991.
    [96]赵俊华.改进的SAOR预条件共轭梯度法[D].太原理工大学,2005.
    [97]肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社,2003.
    [98] Hansen P C.Analysis of discrete ill-posed problem by means of theL-Curve[J]. SIAM Review.1992,34(4):561-580.
    [99] Wang Y.A Restarted Conjugate Gradient Method for Ill-posedProblems[J]. Acta Mathematicae Applicatae Sinica(English Series).2003,19(1):31-40.
    [100] Zhdanov M S, Ellisz R, Mukherjee S.Three-dimensional regularizedfocusing inversion of gravity gradient tensor component data[J].Geophysics.2004,69(4):925-937.
    [101] Zhdanov M S, Tolstaya E.A novel approach to the model appraisal andresolution analysis of regularized geophysical inversion[J]. Geophysics.2006,71(6):R79-R90.
    [102]皮亦鸣,杨建宇,付毓生,等.合成孔径雷达成像原理[M].成都:电子科技大学出版社,2007.
    [103]孙宝申,张凡,沈建中.合成孔径聚焦声成像时域算法研究[J].声学学报.1997,22(1):42-49.
    [104]刘银爱.合成孔径瞬变电磁偏移成像技术研究[D].长安大学,2010.
    [105]李貅,薛国强,全红娟.多孔径瞬变电磁场物理模拟[J].地球物理学进展.2009,24(3):1088-1094.
    [106]黄绪德.反褶积与地震到反演[M].北京:石油工业出版社,1992.
    [107]李振春,张军华.地震数据处理方法[M].东营:石油大学出版社,2004.
    [108]何樵登,熊维纲.应用地球物理教程——地震勘探[M].北京:地质出版社,1986.
    [109]朱宏伟,李貅,张军,等.瞬变电磁法三维拟地震成像信息提取技术[J].地球物理学进展.2010,25(5):1648-1656.
    [110]刘喜武,刘洪.地震盲反褶积综述[J].地球物理学进展.2003,18(2):203-209.
    [111]朱振宇,刘洪,李幼铭,等.基于预条件共辘梯度法的盲反褶积方法[J].勘探地球物理进展.2004,27(3):174-176.
    [112]张文生.波动方程成像方法及其计算[M].北京:科学出版社,2009.
    [113]何樵登.地震勘探原理和方法[M].北京:地质出版社,1986.
    [114]范涛.TEM虚拟波场三维连续速度分析及其在隧道超前预报中的应用[D].长安大学,2008.
    [115] Qi Z, Li X, Zhang Y, et al.Technology of transient electromagneticsynthetic aperture method in tunnel prediction[C].81st SEG AnnualMeeting,2011,635-639.
    [116] Sun H, Li S, Su M, et al.Practice of TEM tunnel prediction in Tsingtaosubsea tunnel[C].81st SEG Annual Meeting,2011,761-765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700