用户名: 密码: 验证码:
聚酰胺多胺环氧氯丙烷接枝功能性单体的合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,以三乙烯四胺、四乙烯五胺及多乙烯多胺三种与其他原料合成聚酰胺多胺环氧氯丙烷(PAE)。然后,通过微波辐射的的方法在PAE上成功接枝含氟丙烯酸酯单体(FA),制备出聚酰胺多胺氟代丙烯酸环氧氯丙烷(PAE-PFA),并对PAE制备工艺与微波接枝工艺进行探索,得到如下结论。
     (1)以三乙烯四胺、四乙烯五胺及多乙烯多胺三种原料与己二酸合成聚酰胺多胺,结果表明:三种多乙烯多胺原料与己二酸的摩尔配比为1:1,维持反应体系在130~135℃温度下30min,之后,以采用冷凝回流法收集馏出液,缓慢加热升温至规定温度保温2h,此条件下缩聚反应程度可达到95%以上。在上述反应条件下的聚酰胺多胺中间体在固含率为50%左右时,粘度为600-800cP能很好地满足下步反应制备聚酰胺多胺环氧氯丙烷树脂。
     (2)PAE合成单因素试验结果表明:PPC与EPI摩尔比低于1.2时,产品的稳定性差;而比值大于1.8后,产品的增湿强效果不佳,出现减弱趋势。在试验中当EPI与PPC的比值不断增大时,PAE的湿强效果呈较大幅度下降趋势,EPI:PPC=1.3时可得到较好的湿强度。PAE合成正交试验结果表明:影响产品粘度和最终湿强度最显著因素为保温温度,其次为保温时间,而反应的原料配比和升温速率的影响均较小。通过分析PAE湿强度对其稳定性的影响,可知,环氧化合适的反应条件为:EPI/PPC=1.3,反应体系升温速率0.5℃/min,保温温度为50℃,保温时间为40min。所得产品的粘度范围在40-46cp之间,其固含量约为20%。
     (3)使用微波辐射乳液聚合的方法,成功合成聚酰胺多胺氟代丙烯酸环氧氯丙烷的含氟乳液纸张施胶剂,试验结果表明:①选择乳化剂用量3%,能保持较高的产率并降低乳化剂用量;微波辐射功率为50W时,反应过程较易控制,微波时间4.5min产率就能达到90%以上;含氟乳液的产率在含氟单体用量为15%时已出现最高峰值,之后趋于稳定。②乳化剂用量的增加,乳液平均粒径逐渐减小,同时其粒径分布(PDI)逐渐上升;随着含氟单体用量的增多,乳胶粒的粒径逐渐上升;乳胶粒粒径随着功率的增加先增加,在大于200W处出现转折。③乳胶膜接触角的测定。当乳化剂用量为4%时,含氟单体用量超过10%,微波功率为50W时,微波时间达到4.5min,接触角达到最大值。
     对于微波法合成PAE-PFA的动力学进行研究。通过单因素分析的方法,考察了乳化剂用量、含氟单体用量以及引发剂用量对微波法合成聚酰胺多胺氟代丙烯酸环氧氯丙烷乳液聚合反应速率的影响,并讨论了微波法合成聚酰胺多胺氟代丙烯酸环氧氯丙烷乳液聚合反应的反应机理。运用线性回归的方法拟合直线,推导出乳化剂用量[E]、含氟单体用量[F]以及引发剂用量[I]与聚合反应速率Rp之间的关系,得Rp∝[E]0.5525[I]0.4559[F]0.505,说明微波含氟乳液聚合反应符合Smith-Ewart理论的反应机理。
     运用ATRP法对于PAE进行接枝,合成PAE-PFA。合成的过程中,首先合成PAE,然后通过PAE和2-氯丙酰氯反应制备大分子引发剂PAE-Cl,然后将大分子引发剂PAE-Cl、甲基丙烯酸六氟丁酯单体、配体PMEDTA和溶剂甲苯进行ATRP法反应,制备出聚酰胺多胺氟代丙烯酸环氧氯丙烷。
     运用红外、核磁检测手段进行检查,表征聚酰胺多胺氟代丙烯酸环氧氯丙烷的官能团、分子结构,证明聚酰胺多胺氟代丙烯酸环氧氯丙烷合成成功。运用凝胶渗透色谱GPC对聚酰胺多胺氟代丙烯酸环氧氯丙烷进行分子量及其分布的表征,当转化率达到97.1%时,分子量达到48550,PDI分布为1.36。同时,通过In([M]0/[M])对t作图,并进行拟合,拟合得到线性的曲线,证明ATRP反应过程可控性较好。通过DSC对于聚酰胺多胺氟代丙烯酸环氧氯丙烷共聚物进行玻璃化转变温度的测定,结果证明存在一个玻璃化转变温度,产物较纯。
     由于硅材料也具有良好的拒油、拒水及防污性能,将硅单体、氟单体与PAE反应,可以制备出新型的含硅氟防油增湿强剂。该研究的主要内容如下。
     1、本实验以OP-10非离子型乳化剂、离子型乳化剂SDS、含氟乳化剂S200作为复配乳化剂,以偶氮二异庚腈作为引发剂,以甲基丙烯酸十二氟庚酯(G04)为含氟单体,以有机硅大分子作为含硅单体合成新型含硅氟防油增湿强剂。较优合成工艺为复配乳化剂的用量为PAE质量的3%,引发剂偶氮二异庚腈用量为PAE质量的1%,PAE质量与含氟单体质量混合比例为1.5,PAE质量与有机硅大分子质量比为2,反应时间6h,反应温度50℃,合成得到的新型含硅氟防油增湿强剂的湿强度为20%,防油等级为8。
     2、合成得到的湿强度为20%,防油等级为8的新型含硅氟防油增湿强剂用于纸张涂布,在以增强纸张强度的前提下,采用120℃干燥温度进行干燥处理20min。当新型含硅氟防油增湿强剂的涂布量为2.86g/m2~6.29g/m2时,便可达到食品包装中的防油要求。
Firstly, triethylenetetramine, tetraethylenepentamine or the polyethylene polyamine was used as the raw material to prepare the polyamide polyamine epichlorohydrin (PAE), and then, the fluorinated acrylate monomer was grafted onto PAE initiated by microwave radiation. By this way, the PAE-PFA was obtained. In this paper, the synthesis process for PAE and PAE-PFA, and the results were shown as followings,
     (1) The optimum conditions for preparing polyamide polyamine by adipate reacting with triethylenetetramine, tetraethylenepentamine or the polyethylene polyamine to was discussed. The results shows that the mole ratio of polyethylene polyamine and adipate was1:1at130-135℃for30min, and then it was moved to Condensate backflow at design temperature for2h. The extent for condensation polymerization could reach95%. The condensation polymerization was used as intermediate reacted at optimum condition, the viscidity was600-800cP, which is the good for polyamide polyamine epichlorohydrin resin.
     (2) The results for preparation of PAE was indicaded that the stability of the products was unstable at the mole rate of PPC and EPI below1.2, and the it could achieve the ideal effect at1.8. The experiments showed that the wet strength would decreased with the rate value of EPI and PPC increasing, and the rate value of EPI and PPC was1:3to be the optimum. The orthogonal analysis suggested that the temperature was the most influential condition; the reaction time was less, and rate for reactant and temperature rising were the least ones. Considering the stable and wet strength of PAE, the condition is EPI/PPC=1.3, the rate of temperature rising0.5℃/min, reaction temperature50℃, reaction time40min, and the viscidity of the products was40-46cP with solid content20%.
     (3) Via method of microwave radiation emulsion polymerization, the sizing agent, PAE-PFA, was obtained. The results shows:(a) it could be obtained the high yield at3%emulsifier; the yield of products could achieve90%at the power50W reacting4.5min; the15%of functional monomer was the optimal dosage.(b) the PDI would increase with the more emulsifier used and the increase of power of microwave radiation, but it decreased at200W.(c) the wrapping angle will be the maximum at4%emulsifier,10%functional monomer and50W for4.5min.
     The kinetic study on the synthesis of PAE-PFA by microwave was discussed. By univariate analysis, dosages of emulsifier, fluorine monomer and initiator were investigated, and the synthesis mechanism of PAE-PFA was studied. It was shown that the relation beyond reaction rate, emulsifier, fluorine monomer and initiator was follows the equation Rp∝[E]0.5525[I]0.4559[F]0.505, which indicaded the reaction conform to Smith-Ewart theory.
     FTIR and NMR were used, and it proved the functional group and structure of the product. The molecular weight and molecular weight distribution was analyzed by GPC. The molecular weight was48550and molecular weight distribution reached1.36, when conversion percent was97.1%. The linearity between In([M]0/[M]) and t showed that the ATRP reaction process is better controlled. glass transition temperature suggested the product was pure.
     The silicon material also has good oil-repellent, water-repellent and antifouling properties, so a novel silicon-containing fluorine anti-oil moisturizing strength agent could be prepared by the silicon and fluorine monomer reacted with PAE. The contant was as followings.
     (1) In this experiment, the new fluorine anti-oil containing humidifier strength agent was prepared by using the non-ionic emulsifier OP-10, ionic emulsifiers SDS, fluorinated emulsifier S200as the complex emulsifier, and the azobis isoheptyloxy nitrile as an initiator, methacrylic dodecafluoroheptanoyl ester (G04) as the fluorine-containing monomer, silicone macromolecules as silicon-containing monomers. The optimal process was3%PAE,1%azobis isoheptyloxy nitrile, fluorine-containing monomers/PAE1.5, and silicon-containing monomers/PAE2reacting6h at50℃. The wet strength of the product could reach to, and oil rating could be8.
     (2) The product, which wet strength and oil rating could reach20%and8, was used for coating paper. The coating paper, preparing at120℃for20min, with2.86g/m2~6.29g/m2of the product could meet the requirements of food packaging for anti-oil.
引文
[1]颜录科,寇开昌,王志超,等.(均聚)新型含氟聚合物的研究与应用[J].中国胶粘剂,2008,17(1).
    [2]R. Bongiovanni, G. Malucelli, M. Sangermano.Properties of UV-curable coatings containing fluorinated acrylic structures Original Research Article Progress in Organic Coatings, Volume 36, Issues 1-2, June 1999, Pages 70-78.
    [3]D.K. Chattopadhyay, K.V.S.N. Raju.Structural engineering of polyurethane coatings for high performance applications Review Article. Progress in Polymer Science, Volume 32, Issue 3, March 2007, Pages 352-418.
    [4]Sarita Kango, Susheel Kalia, Annamaria Celli.Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review.Progress in Polymer Science, In Press, Corrected Proof, Available online 7 March 2013.
    [5]Yogesh Patil, Bruno Ameduri.Advances in the (co)polymerization of alkyl 2-trifluoromethacrylates and 2-(trifluoromethyl)acrylic acid.Progress in Polymer Science, Volume 38, Issue 5, May 2013, Pages 703-739.
    [6]Veronic Landry, Pierre Blanchet.Weathering resistance of opaque PVDF-acrylic coatings applied on wood substrates Original. Progress in Organic Coatings, Volume 75, Issue 4, December 2012, Pages 494-501.
    [7]Nihal Sarier, Emel Onder.Organic phase change materials and their textile applications: An overview.Thermochimica Acta, Volume 540,20 July 2012, Pages 7-60
    [8]杨秦欢,张廷有,李正军.含氟丙烯酸酯聚合物乳液研究新进展(Ⅰ)——合成技术和含氟单体的安全性[J].中国皮革,2009,38(9):52-57.
    [9]朱红祥,王双飞,杨崎峰.全氟烷基共聚物在纸张防油中的研究[J].涂料技术与文摘,2003,4
    [10]万小芳,周雪松,杨静仪.含氟丙烯酸酯乳液用于纸张湿强剂的研究[J].中国造纸,2009,2
    [11]顾子旭,梁成锋,史元元.一种含氟拒水拒油剂及其制备方法[P].中国专利:CN102493193A,2012-06-13
    [12]金吉山,栗原智,S·毛利,佐藤胜之.拒水拒油剂[P].中国专利:CN102409536A,2012-04-11.
    [13]Nuttaporn Pimpha, Saowaluk Chaleawlert-umpon, Panya Sunintaboon.Core/shell polymethyl methacrylate/polyethyleneimine particles incorporating large amounts of iron oxide nanoparticles prepared by emulsifier-free emulsion polymerization Original.Polymer, Volume 53, Issue 10,25 April 2012, Pages 2015-2022.
    [14]Jianhua Zhou, Lin Zhang, Jianzhong Ma.Fluorinated polyacrylate emulsifier-free emulsion mediated by poly(acrylic acid)-b-poly(hexafluorobutyl acrylate) trithiocarbonate via ab initio RAFT emulsion polymerization Original.Chemical Engineering Journal, Volume 223, 1 May 2013, Pages 8-17
    [15]刘锦红,陈萍,黄毅萍.核-壳型含氟丙烯酸酯共聚物乳液的合成与表征[J].安徽大学学报(自然科学版),2010,34(3)
    [16]Jose M. Asua.Miniemulsion polymerization.Progress in Polymer Science, Volume 27, Issue 7, September 2002, Pages 1283-1346.
    [17]Shengdong Xiong, Xiaoli Guo, Ling Li.Preparation and characterization of fluorinated acrylate copolymer latexes by miniemulsion polymerization under microwave irradiation Original. Journal of Fluorine Chemistry, Volume 131, Issue 3, March 2010, Pages 417-425.
    [18]Yenny Meliana, Lilik Suprianti, Yi Chia Huang.Effect of mixed costabilizers on Ostwald ripening of monomer miniemulsions Original.Colloids and Surfaces A:Physicochemical and Engineering Aspects, Volume 389, Issues 1-3,20 September 2011, Pages 76-81
    [19]姚宁宁.含氟丙烯酸酯共聚物的细乳液聚合研究[D].宁夏大学,2010.
    [20]Junyan Liang, Ling He, Xia Dong. Surface self-segregation, wettability, and adsorption behavior of core-shell and pentablock fluorosilicone acrylate copolymers Original Journal of Colloid and Interface Science, Volume 369, Issue 1,1 March 2012, Pages 435-441
    [21]杨秦欢,张廷有,李正军.含氟丙烯酸酯聚合物乳液研究新进展(Ⅰ)——合成技术和含氟单体的安全性[J].中国皮革,2009,38(9):52-57.
    [22]Xiaohua Lv, Weiqiang Song, Yongzhou Ti.Gamma radiation-induced grafting of acrylamide and dimethyl diallyl ammonium chloride onto starch Original.Carbohydrate Polymers, Volume 92, Issue 1,30 January 2013, Pages 388-393
    [23]Jose Ramos, Jacqueline Forcada.The role of cationic monomers in emulsion polymerization Original.European Polymer Journal, Volume 46, Issue 5, May 2010, Pages 1106-1110
    [24]Ru Qiao, Weiqun Zhu. Evaluation of modified cationic starch for impeding polymer channeling and in-depth profile control after polymer flooding Original.Journal of Industrial and Engineering Chemistry, Volume 16, Issue 2,25 March 2010, Pages 278-282
    [25]O. Glaied, M. Dube, B. Chabot, C. Daneault.Synthesis of cationic polymer-grafted cellulose by aqueous ATRP Original.Journal of Colloid and Interface Science, Volume 333, Issue 1,1 May 2009, Pages 145-151
    [26]Nan Zhang, Jiahui Li, Wenfeng Jiang.Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles Original.International Journal of Pharmaceutics, Volume 393, Issues 1-2,30 June 2010, Pages 213-219
    [27]张玉平,温守东,刘云鹤.微波技术在高分子合成中的应用[J].化工进展,2007,26(6):834-840.
    [28]Gedye R N,Smith F E,Westaway K C,etal. The use of microwave for rapid organic synthesis [J].Tetrahedron,1986,27(3):279-282.
    [29]黄艳,彭强,谢明贵.微波在高分子中的应用[J].化学研究与应用,2002,14(1):84-89.
    [30]冯芳,田丰,赵斌元,等.微波合成技术应用于壳聚糖功能材料研究的进展[J].功能高分子学报,2002,16(3):412-416.
    [31]编写组.化工产品手册-合成树脂与塑料[M].北京:化学工业出版社,1985.
    [32]徐衡,沈良骏,徐文.微波辐射合成酚醛树脂[J].石油化工,2002,31(3):191-193.
    [33]CaddikS. Microwave assisted organic reactions[J]. Tetrahedron,1995,51(38):10403-10432.
    [34]Gedye R N,Wei J B. Rate enhancement of organic reactions by microwaves at atmospheric pressure[J]. Can. J. Chem.,1998,76(5):525-532.
    [35]Shengdong Xiong, Xiaoli Guo, Ling Li,etal.Preparation and characterization of fluorinated acrylate copolymer latexes by miniemulsion polymerization under microwave irradiation Original[J]. Journal of Fluorine Chemistry, Volume 131, Issue 3, March 2010, Pages 417-425
    [36]Lidsrron Pelle,Tierney Jason,Wathey Bernard,etal. Microwave assisted organic synthesis-a review [J]. Tetrahedron,2002,57:9225-9283.
    [37]包建军,张爱民.微波聚合制备单分散、超细聚甲基丙烯酸甲酯微球[J].功能高分子学报,2003,3(16):59-64.
    [38]来水利,李秋菊,杜经武.微波辐射下阴离子有机硅皮革滑爽剂的制备[J].中国皮革,2010,7
    [39]Correa R,Gonzalez G,Dougar V. Emulsion polymerization in a microwave reactor [J]. Polymer,1998,39:1471-1474.
    [40]翟慕衡,张文敏.微波合成均分散高分子微球及其机理[J].物理化学学报,1999, 15(8):747
    [41]黄梅芳,刘朋生.N-马来酰基-氨基丙酸丁酯微乳液的微波聚合[J].弹性体,2003,13(1):6-8.
    [42]王岚,华伟,包建军.苯乙烯微波超浓乳液聚合的研究[J].高分子材料科学与工程2005,4(7):125-128.
    [43]包建军,张爱民.微波聚合制备单分散、超细聚甲基丙烯酸甲酯微球[J].功能高分子学报,2003,3(16):59-64.
    [44]熊圣东,郭小丽,张凌飞,等.微波辐射分散聚合制备单分散聚甲基丙烯酸甲酯微球[J].高分子材料科学与工程,2010,2
    [45]郭小丽,熊圣东,易昌凤,等.含氟丙烯酸酯三元共聚细乳液的微波辐射合成与表征[J].应用化学,2009,26(1):86-89
    [46]王文俊,李伯耿,于在璋,等.半连续乳液聚合动力学模型[J].高分子通报,1996(1):57-62.
    [47]王燕,王吉星.有机硅表面活性剂及在柔软剂中的应用[J].日用化学品科学,2007,30(12):19-23
    [48]周述慧,白亚之.有机硅表面结性剂在个人护理品中的应用[J].日用化学品科学2008,31(1):24-27.
    [49]吕艳萍,李临生,安秋风.织物抗菌整理剂有机硅季铵盐ASQA的合成及应用[J].印染助剂,2005(1):20-23.
    [50]Westall Stephen,Barry, Wales. Siloxanequaternary ammonium salt preparation [P]. US: 4417066,1983-11-12.
    [51]王军.特种表面活性剂[M].北京:中国纺织出版社,2007:106—113.
    [52]夏纪鼎,倪永全,等.表面活性剂和洗涤剂化学与工艺学[M].北京:中国轻工业出版社,1997,440-447.
    [53]Josef Bauer, Nicola HYsing, Guido Kickelbick. Synthesis of new types of polysiloxane based surfactants, Chem. Commun.,2001,137-138.
    [54]Raoul Zanal, Jiding Xia. Gemini Surfactant:Synthesis, Interfacial and Solution-Phase Behavior, and Applications(M). New York, Marcel Dekker, Inc.2004,105-106
    [55]王学川,高富堂.有机硅表面活性剂的研究动态及其应用[J].皮革化工,2005,22(4):7-10.
    [56]冯耀平,黄亚茹,葛赞,等.有机硅表面活性剂研究进展[J].中国洗涤用品工业, 2011,1
    [57]宫巍,王海江.有机硅表面活性剂合成及其在纺织工业中的应用[J].国外丝绸,2007(1):38-40.
    [58]彭忠利,张素霞,林海葵.聚硅氧烷季铵盐微乳液在透明洗发香波中的应用研究[J].
    日用化学工业,2007(4):135-137.[59]殷萍.有机硅材料在日用化学品中的应用现状[J].日用化学品科学,2009,7(32):8-10.
    [60]Jonsson J, Karlsson O J, Hassander H, etal.Semi-continuous emulsion polymerization of styrene in the presence of poly(methyl methacrylate) seed particles. Polymerization conditions giving core-shell particles[J]. European Polymer Journal,2007,43(4):1322-1332.
    [61]Matyjaszewski K, Xia J. Atom transfer radical polymerization[J]. Chem. Rev.,2001,101: 2921-2990.
    [62]Xue Z G, Balinh N T, Noh S K, et al. Phosphorus-containing ligands for iron (O)-catalyzed atom transfer radical polymerization[J]. Angew. Chem. Int. Ed.,2008,47: 6426-6429.
    [63]ZHANG L, MIAO J, CHENG Z, et al. Iron-Mediated ICAR ATRP of Styrene and Methyl Methacrylate in the Absence of Thermal Radical Initiator[J]. Macromolecular Rapid Communications,2009,31:275-280.
    [64]FENG C, SHEN Z, LI Y J, et al. PNIPAM-b-(PEA-g-PDMAEA) Double-Hydrophilic Graft Copolymer: Synthesis and Its Application for Preparation of Gold Nanoparticles in Aqueous Media[J]. J.Polym. Sci., Part A:Polym. Chem.2009,47:1811-1824.
    [65]范保林.ATRP法在纳米Si02表面接枝聚合物及其应用研究[D].合肥:合肥工业大学,2010.
    [66]郑妍.含氟丙烯酸酯类嵌段共聚物的原子转移自由基聚合研究[D].重庆:重庆大学,2011.
    [67]熊邦虎.含氟丙烯酸酯共聚物的原子转移自由基聚合与分析[D].重庆:重庆大学,2009.
    [68]Singha N K, German A L. Pseudohalogens in atom transfer radical polymerization of methyl methacrylate [J]. J. Appl. Polym. Sci.,2007,103:3857-3864.
    [69]Mueller A H E, Zhuang R, Yan D Y, et al. Kinetic analysis of "living" polymerization processes exhibiting slow equilibria.2. Molecular weight distribution for degenerative transfer (Direct activity exchange between active and dormant species)[J]. Macromolecules, 1995,28:4326-4333.
    [70]Tsarevsky N V, Matyjaszewski K. "Green" atom transfer radical polymerization:from process design to preparation of well-defined environmentally friendly polymeric materials[J]. Chem. Rev.,2007,107: 2270-2299.
    [71]Patten T E, Matyjaszewski K. Copper(Ⅰ)-catalyzed atom transfer radical polymerization[J]. Ace. Chem. Res.,1999,32:895-903.
    [72]Tang W, Matyjaszewski K. Effects of initiator structures on activation rate constants in ATRP[J]. Macromolecules,2007,40:1858-1863.
    [73]Bengough, W. I.; Fairservice, W. H. Trans. Effects of salts of metals on vinyl polymerization. Part 6.)Polymerization of methyl methacrylate in the presence of cupric bromide[J]. Faraday Soc.1971,67:414.
    [74]Qiu, J.; Matyjaszewski, K. Metal complexes in controlled radical polymerization[J]. Acta Polymerica,1997,48:169.
    [75]Xue Z G, Balinh N T, Noh S K, et al. Phosphorus-containing ligands for iron (Ⅱ)-catalyzed atom transfer radical polymerization[J]. Angew. Chem. Int. Ed.,2008,47: 6426-6429.
    [76]Matyjaszewski K, Jakubowski W, Ke M, et al. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents[J]. PNAS,2006,103: 15309-15214.
    [77]Tang W, Matyjaszewski K. Effects of ligand structure on activation rate constants in ATRP[J]. Macromolecules,2006,39:4953-4959.
    [78]Matyjaszewski K., Davis K., Patten T.E., et al. Observation and analysis of a slow termination process in the atom transfer radical polymerization of styrene[J]. Tetrahedron, 1997,53(45):15321-15329.
    [79]Matyjaszewski K., Nakagawa Y., Jasieczek C.B. Polymerization of n-Butyl Acrylate by Atom Transfer Radical Polymerization. Remarkable Effect of Ethylene Carbonate and Other Solvents[J]. Macromolecules,1998,31(5):1535-1541.
    [80]Bianca S. Shemper, Lon J. Mathias. Syntheses and characterization of statistical andblock fluorinated copolymers with linear and star-like architectures via ATRP[J]. European Polymer Journal 40 (2004) 651-665.
    [81]Jankova K, Hvilsted S. Novel fluorinated block copolymer architectures fuelled by atom transfer radical polymerization. Journal of Fluorine Chemistry,2005,126:241-250.
    [82]Hansen N M.L, Haddleton D M, Hvilsted S. Fluorinated bio-accepted polymers via an ATRP macroinitiator approach[J]. J. Polym. Sci. Polym. Chem.,2007,45:5770-5780.
    [83]Li K, Wu P, Han Z. Preparation and surface properties of fluorine containing diblock copolymers[J]. Polymer,2002,43:4079-4086.
    [84]Radhakrishnan K, Switek K A, Hillmyer M A. Synthesis of semifluorinated block copolymers by atom transfer radical polymerization[J]. J. Polym. Sci. Polym. Chem.,2004, 42:853-861.
    [85]Xu F J, Zhao J P, Neoh K G, et al. Surface Functionalization of polyimide films via chloromethylation and surface-initiated atom transfer radical polymerization[J]. Ind. Eng. Chem. Res.2007:46,4866-4873.
    [86]Hirao A, Sugiyama K, Yokoyama H. Precise synthesis and surface structure of architectural per-and semifluorinated polymers with well-defined structures [J]. Prog. Polym. Sci.,2007,32:1393-1438.
    [87]Martin L, Claus F. Wet strength improvement of unbleached kraft pulp through laccase catalyzed oxidation[J]. Enzyme and Microbial Technology,2001(28):760-765.
    [88]David I. Wet-strength Mechanism of Polyaminoamide-epichlorohydrinResins[J]. Tappi J, 1993,76(8):121-127.
    [89]叶庆国,王晟.环境友好型高固含量聚酰胺环氧氯丙烷湿强剂的研究[J].化学反应工程与工艺,2006,22(4):367-371.
    [90]王云芳,刘静.PAE与丙烯酰胺接枝共聚改性的研究[J].合成树脂及塑料,2002,19(6):19-21.
    [91]张国运,杨秀芳,程芳玲,等.改性PAE湿强剂的合成与应用[J].中华纸业,2006,27(9):68-71.
    [92]许洪正,赵传山,秦培云.探讨湿强剂PAE的合成与应用效果的影响因素[J].湖南造纸.2006(1):16-18.
    [93]David I, Nancy S C, Stephen A F. Reducing organic chloride contaminms in polyaminoarnide-epichlorohydrin wet-strength resin[J]. Tappi J,1991,74(12):135-141.
    [94]吴佩琛.造纸用湿强剂一聚酰胺聚胺表氯醇树脂的合成研究[J].中国造纸,1988(2):28-33.
    [95]涂世俭.纸张湿强剂聚酰胺多胺环氧氯丙烷的合成与应用研究[D].湖北:湖北大学,2002.
    [96]吴翠玲,李新平等.造纸工业常用湿强剂及其发展趋势[J].纸和造纸,2005(6):35-38.
    [97]刘安平,李临生.PAE与聚丙烯酸丁酯/甲基丙烯酸甲酯核壳乳液的共混改性及其应 用研究[J].造纸化学品,2000(2):23-26.
    [98]刘军海,陈均志.改性PAE-St纸张湿强剂的合成与应用[J].中华纸业,2008(12):54-56.
    [99]唐杰斌,赵传山,于冬梅.PAE/苯乙烯接枝共聚物乳液在不同纸浆中的应用[J].造纸化学品,2009,21(1):29-31.
    [100]穆亮.含氟丙烯酸酯核壳乳液改性PAE湿强剂的研究[D].广西:广西大学,2009.
    [101]吴玉英.中国造纸助剂的应用现状及发展趋势[J].北京林业大学学报,1999,21(6):89-91.
    [102]刘健飞,肖新颜,万彩霞.核壳型含氟丙烯酸酯乳液的合成及表征[J].精细化工,2008,25(3):293-296.
    [103]俞宏明,韩卿.含氟丙烯酸酯乳液表面湿强剂的制备与应用[J].造纸化学品,2007,19(1):33-36.
    [104]万小芳,周雪松,杨静仪.含氟丙烯酸酯乳液用于纸张湿强剂的研究[J].中国造纸,2009(2):22-25.
    [1]PENG P J, ZHOU X J, MA J X. Improve the stiffness of paper and board by a new type surface sizing agent [J]. Paper Chemicals,2011,23:29-32.
    [2]LI J A, ZHU X L, ZHU J, etal. Microwave-assisted nitroxide-mediated miniemulsion polymerization of styrene[J]. Radiat. Phys. Chem.,2007,76:23-26.
    [3]蔡振良.含氟表面活性剂的分类及应用介绍[J].有机氟工业,1999(4):28-33.
    [4]Shengdong Xiong, Xiaoli Guo, Ling Li, Preparation and characterization of fluorinated acrylate copolymer latexes by miniemulsion polymerization under microwave irradiation Original Research Article. Journal of Fluorine Chemistry, Volume 131, Issue 3, March 2010, Pages 417-425
    [5]秦总根,夏正斌,沈良军等.含氟乳化剂对含氟乳液聚合及性能的影响[J].新型建筑材料,2004,08:9-11.
    [6]Kentaro Matsumiya, Wataru Takahashi, Takashi Inoue.Effects of bacteriostatic emulsifiers on stability of milk-based emulsions Original Research Article. Journal of Food Engineering, Volume 96, Issue 2, January 2010, Pages 185-191
    [7]Alireza Hosseini, Ala Eldin Bouaswaig, Sebastian Engell.Novel approaches to improve the particle size distribution prediction of a classical emulsion polymerization model Original Research Article. Chemical Engineering Science, Volume 88,25 January 2013, Pages 108-120
    [8]丁盛.含氟丙烯酸醋共聚物乳液的合成及表面性能研究[D].上海:上海交通大学,2011.
    [1]程时远,陈艳军,王康丽.含氟丙烯酸酯三元共聚物乳液的研究[J].高分子学报,2002,5:560-564.
    [2]龚彦.含氟丙烯酸酯及水性聚氨酯的合成及表征[D].陕西:西北工业大学,2007.
    [3]孙志娟,张心亚,江庆梅等.MMA/BA半连续乳液聚合的动力学特征及成核机理[J].高校化学工程学报,2007,4(21):615-620.
    [4]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997:16-79.
    [5]李丽华,张金生,代孟元.微波辐射丙烯酸酯乳液聚合动力学研究[J].辽宁石油化工大学学报,2009,29(3):30-35.
    [6]窦仁美,李晓燕,钱微等.微波辐射丙烯酸酯自由基聚合研究进展[J].上海应用技术学院学报(自然科学版),2011,11(2):144-145.
    [7]Shibata C, Kashima T, Ohuchi K. Nonthermal influence of microwave power on chemical reactions[J]. Jpn J Appl Phys,1996,35:316-319.
    [8]Karnwadee Songsing, Terdthai Vatanatham, Nanthiya Hansupalak. Kinetics and mechanism of grafting styrene onto natural rubber in emulsion polymerization using cumene hydroperoxide-tetraethylenepentamine as redox initiator [J].European Polymer Journal,2013, 49:1007-1016.
    [1]Matyjaszewski K, Spanswick J. Controlled/living radical polymerization[J]. Mater. Today,2005,3:26-33.
    [2]ZHANG L, MIAO J, CHENG Z, et al. Iron-Mediated ICAR ATRP of Styrene and Methyl Methacrylate in the Absence of Thermal Radical Initiator [J].Macromolecular Rapid Communications,2009,31:275-280.
    [3]Sawada H. Development of fluorinated polymeric functional materials using fluorinated organic peroxide as key materials [J]. Polym. J.,2007,39:637-650.
    [4]何卫东.高分子化学实验[M].合肥:中国科学技术大学出版社,2003:17-19.
    [5]李鲲,郭建华,李欣欣等.原子转移自由基聚合合成甲基丙烯酸丁酯与丙烯酸全氟烷基乙酯两嵌段共聚物及其性能的研究[J].高分子学报,2004,2:235-240.
    [6]郑妍.含氟丙烯酸酯类嵌段共聚物的原子转移自由基聚合研究[D].重庆:重庆大学,2011.
    [7]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社,2005,8-76.
    [8]董炎明.高分子分析手册[M].北京:中国石化出版社,2004,442-455.
    [9]GU L, SHEN Z, FENG C, et al. Synthesis of Double Hydrophilic Graft Copolymer Containing Poly(ethylene glycol) and Poly(methacrylic acid) Side Chains via Successive ATRP[J]. J. Polym. Sci.,Part A: Polym. Chem.2008,46:4056-4069.
    [1]Ahmad H, Hasan M K, Miah M A J, et al. Solvent effect on the emulsion copolymerization of methyl methacrylate and lauryl methacrylate in aqueous media[J]. Polymer,2011,52(18):3925-3932
    [2]Rao J P, Geckeler K E. Polymer nanoparticles:Preparation techniques and size-controlparameters[J]. Progress in Polymer Science,2011,36(7):887-913
    3] Zeaiter J, A. Romagnoli J, W. Barton G, et al. Operation of semi-batch emulsion polymerisation reactors Modelling, validation and effect of operating conditions[J].Chemical Engineering Science,2002,57(15):2955-2969
    [4]Benyahia B, Latifi M A, Fonteix C, et al. Emulsion copolymerization of styrene and butyl acrylate in the presence of a chain transfer agent.:Part 1:Modelling and experimentation of batch and fedbatch processes [J]. Chemical Engineering Science,2010,65(2):850-869

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700