环境污染物对重要农业蝗虫的生态毒性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快、工农业的发展和人口的增加,土壤受重金属污染的程度越来越严重。在重金属污染中,Cd、Cr是环境中备受关注的有毒金属。它们可通过土壤进入植物体内,改变植物的叶绿素含量、细胞质膜透性和细胞结构等特性,影响植物的正常生长发育。重金属还可通过食物链累积于动物体内,对肾、肺、肝、睾丸、脑、骨骼及血液系统产生毒副作用。
     中华稻蝗主要为害的禾本科植物有水稻、小麦、玉米、高梁、谷子等;在无禾本科植物时,也能取食甘薯、大豆、花生及各类蔬菜。东亚飞蝗威胁到的农作物主要有玉米、谷子等禾本科植物,在饥饿或被迫情况下,也能取食大豆、白菜及向日葵。中华稻蝗与东亚飞蝗是山西省重要的农业害虫。
     为研究重金属对中华稻蝗的生理生化毒副作用机理及镉在东亚飞蝗体内的累积状况,采集生长于自然环境中的中华稻蝗和东亚飞蝗:1、应用火焰原子吸收法测定不同体段的重金属含量,探讨重金属在中华稻蝗及东亚飞蝗体内的分布状况。2、分别使用氯化镉及重铬酸钾对5龄中华稻蝗进行24小时急性染毒后,利用分光光度法测定中华稻蝗胸部几种重要抗氧化酶活性,探讨中华稻蝗体内重要抗氧化酶与镉、铬毒性间的关系;3、分别使用氯化镉及重铬酸钾对5龄中华稻蝗进行LD_(50)的急性染毒24小时后,利用等位酶分析法研究镉、铬的急性作用对中华稻蝗不同等位酶基因型死亡率的影响,探讨镉、铬急性致死作用对中华稻蝗种群遗传结构的影响;4、在人工模拟土壤-农作物-昆虫生态系统中,应用氯化镉对中华稻蝗连续染毒30天后,以火焰原子吸收法测定镉、铜在中华稻蝗体内的浓度;利用分光光度法测定中华稻蝗体内的重要抗氧化酶活性和抗氧化剂浓度,探讨在人工模拟生态系统中,不同浓度的镉通过食切链在中华稻蝗体内的生物累计状况及对其重要抗氧化酶活性和抗氧化利浓度的影响。结果表明:
     1、自然种群中华稻蝗体内镉浓度雌性为腹>胸>头>后足,雄性为腹>头>胸>后足。镉在中华稻蝗腹部的浓度与在头、胸、后足的浓度差异显著,而在头、胸、后足间的浓度差异不显著;镉在不同性别中华
Over the past decade, it has been recognized that environmental pollution is far greater than was previously assumed and that contaminants can remain in the environment for a long time, eventually accumulation to levels that could harm humans. Contamination of soils, sediments and water with toxic chemicals is one of the major problems facing the industrialized world today. Furthermore there is growing public concern that a wide variety of these toxic chemicals are being introduced into the environment. Heavy metals, which can be included in the main category of pollutants, can be found in soil, water and also in toxic gasses formed in the atmosphere by photochemical reactions. Chromium (Cr) and cadmium (Cd) are toxic metals that can result in severe damage to plants and animals. Copper (Cu) is known to an essential micronutrient for plants and animals, but it can be a toxic element, at a tissue concentration only slightly higher than optimal. Copper excess induces a wide range of biochemical effects and metaboli(?) disturbances on plants and animals. They were found in the environment as a result of anthropogenic activity such as stainless steel production, corrosion inhibition, wood preservation, the non-ferrous metal industry, mining, production, use and disposal, of batteries, metal-contaminated waste and sludge disposal, application of pesticides and phosphate fertilizers.Oxya chinensis (Thunberg) (Orthopera: Acrididae), which has not migratory feature, is one of the most common and widespread insects in Japan, Korea, Vietnam, United States (Hawaii), and Australia (North) . It is commonly and abundantly found in rice paddies, sugar cane and other crop fields, especially in China, where the outbreaks are increasing in both frequency and scale. It have long been known highly harmful pest to crops and forage plants. In recent years, O. chinensis continue to be a major economic pest of breaks crops in China. The oriental migratory locust, Locusta migratoria manilensis (Meyen) (Orthoptera: Oedipodidae) is a serious agricultural pest and distributed in Thailand, Burma, Singapore,
    Vietnam, Kampuchea, KoreaC South), Japan (South), and China. In terrestrial ecosystems grasshoppers occupy a significant position in the food chain. Staying in confined of the range of land, both O. chinemis and L. m, manilensis will suffer by one way or another if this ecosystem is contaminated by toxic substances and will take those toxic substances through orally food producing a series of effects on grasshoppers.The purposes of this research is to present toxic effects of heavy metals on O. chinensis and L. m. manilensis physiology and the toxic effects of Cd +, Cr6+ and deltamethrin on antioxidant enzymes of O. chinensis. This work was essential to improve our understanding of the distribution of Cd and Cu in O. chinensis and L. m. manilensis, and deltamethrin, heavy metals-oxidative stress relationship in O. chinensis. In the present study, l.an atomic absorption spectrophotometer was used to measure Cu and Cd concentrations in various parts of O. chinensis and L. m. manilensis, collected in Taiyuan and Linyi, Shanxi Province, respectively;2. we showed the relationships between distribution of heavy metals Cd and Cu in O. chinensis and gradual changes of exposed to Cd2+ in man-made soil-plant-insect system, which were determined with an atomic absorption spectrophotometer;3. In particular, the present work attempts to make a further study on the effect of Cd2+ in man-made soil-plant-insect system on changes in chemical composition, antioxidant enzyme activities, which were determined spectrophotometrically;4. it was assessed that the antioxidant enzymes had varied in grasshopper injected with Cd2+ and Cr(VI) and deltamethrin, which were determined spectrophotometrically;5. It was also reported that the survival of O. chinensis exposed to Cd2+ and Cr(VI) among allozyme genotypes, which was demonstrated with allozyme analysis.1. In this section, it was conducted to reveal distribution of heavy metal Cd in the insect. The results indicated that when environment had been polluted by Cd, the heavy metal was steadily accumulated in the body of O. chinensis. The result from our survey showed that the concentrations of Cd were different in each part of O. chinensis body. The distribution of Cd in
    both female and male adult bodies of rice locust was 0.323 ^ 0.343 > 0.486 and 0.306 ug g"1, 0.323 ? 0.343 > 0.486 and 0.306 ug g"1, respectively. And the order of the concentrations for the pollutants was abdomen > thorax > head > hind femur and abdomen > head > thorax > hind femur of them, respectively. The concentrations of Cd were significant different between abdomen and head, abdomen and thorax, abdomen and hind femur. In addition, a significant difference for Cd was found in the abdomen between female and male. These results suggested that O. chinensis body had the capacity to hold Cd in different parts, and the capacity was different in different parts of O. chinensis. As the insect was very susceptible to Cd in soil, it may be suggested that the species be used as indicator organism pollution in soil. Therefore, it will correctly be known how the soil was polluted by Cd, providing some measures to reduce the pollution.2. When cadmium (Cd) and copper (Cu) appeared in environment, they were accumulated in the body of L. m. manilensis (Meyen). The result showed that the concentrations of Cd and Cu were different in each part of L. m. manilensis (Meyen). The distribution order of concentrations of Cd in adult bodies of L m. manilensis was testis> abdomen > alimentary canal > head > hind femur > thorax for male, and ovary > alimentary canal > abdomen > hind femur > head > thorax for female. The order of the Cu concentrations of L. m. manilensis was abdomen >testis> alimentary canal > head > hind femur > thorax for male, and abdomen > ovary > alimentary canal > head > thorax > hind femur for female. There were significant differences (p<0.001) of Cd and Cu concentration in different parts for male and female, and there were significant differences (p<0.05) in some parts and there were not any significant difference (p<0.05) in Cd and Cu contents in other parts else. Therefore, L. m. manilensis was body had the capacity to keep Cd and Cu in different parts, and the Cd and Cu concentrations were different in different parts of L. m. manilensis was.;3. Cadmium and Cu were studied for a man-made soil-plant-insect system comprising O. chinensis feeding on wheat {Triticum aestivum)
    seedlings. In the ecosystem, the Cd and Cu were found in plant. Although the concentrations of Cd in plant rose greatly with the increasing of Cd in the soil, the Cu content was not found elevated in Cd-treaded series. For famale grasshoppers, the result showed that (1). The Cu content in the head and thorax increased slightly as the level of Cd in both soil and plant increased;Cu content in the abdomen and hind femur decreased with the increasing of Cd level in soil and in plant. (2). Cd concentration of head, thorax and hind elevated firstly and then fell as the soil and plant level of Cd increased and they were all higher than that of the control;Cd in the abdomen increased with the Cd of soil and of plant increased and they were higher compared with the control;the Cd accumulation of femur increased at first six treatments and decreased at the last treatment as the increase of Cd level and all of them were higher compared to the control. There was a greatly significant difference (p<0.05) for four parts of Cu and Cd accumulation at all treatments. Though the order of Cu accumulation was abdomen>thorax > head > hind femur and the order of Cd accumulation was thorax > abdomen > head > hind femur, Cu and Cd content of each part varied as the Cd level in soil.For male grasshoppers, the result showed that (l).the accumulations of Cu in head, thorax changed slightly with the increasing content of Cd both in soil and in plant, but they were at the range of 4.37-5.68 mg kg"1 in head and 11.60-14.12 mg kg'1 in thorax. The accumulations of Cu in abdomen changed with the increasing content of Cd in both soil and plant, but they were lowei than that of the control. The accumulations of Cu in hind femur changed with the increasing content of Cd in soil and in plant, and the Cu accumulation decreased from treatment 5. (2). Cd concentration of head increased with the Cd level both in soil and in plant, but all of them were higher compared to the control;the accumulation of Cd in the thorax, abdomen and hind femur elevated firstly and then fell as the soil and plant level of Cd increased and they were all higher than that of the control. There was a greatly significant difference (p<0.05) for four parts of Cu and Cd accumulation at all
    treatments. Though the order of Cu accumulation was abdomen >thorax > head > hind femur and the order of Cd accumulation was thorax > abdomen > head > hind femur, Cu and Cd content of each part varied as the Cd level in soil. The results indicated that Cd and Cu were accumulated from the soil to grasshoppers through the plant;that is to say, it is possible that Cd and Cu in environment were transported to animal or human through food chain. It is suggested that the O. chinensis could be a biomarker in soil-plant-soil system of the heavy metal contamination.4. One of purposes in this research was to determine the toxic effects of Cd2+on antioxidant enzymes of O. chinensis. Changes in the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were detedted in O. chinensis insects injected with Cd2+. Fifth-nymphs of O. chinensis insects were injected with Cd2+ at different concentrations (0, 55, 110, 165, 220, and 275 ug g"1). An increase of SOD activity in O. chinensis was observed at 110-275 ug g'1 Cd2+. The result of the effects of Cd2+ on antioxidant enzymes of O. chinensis showed that the SOD activity was lower at 220 and 275 ug g"1 than that at 110 and 165 ug g'1. It appears that SOD had a positive protective effect at low Cd2+ concentrations, and that this effect disappeared at high Cd concentrations. CAT activity was accelerated to varying degrees at 110-275 ug g"1 for males and at 110, 220, and 275 ug g"1 for females. CAT showed a strong detoxification effect with all treatments. GPx activity decreased with increasing Cd2+ concentration with all treatments for males and at 220 and 265 ug g"1 for females. We showed that GPx activity had a weak detoxification function with all treatments for males and at high Cd2+ for females, but CAT had a strong detoxification effect, whereas SOD had a. medium and GPx had a weak detoxification effect. Among the three enzymes, CAT played an important role in the damaging mechanisms of reactive oxygen species in O. chinensis insects.5. The toxic effects of Cr (VI) on antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was
    determined in O. chinensis insects injected with Cr (VI). Fifth-nymphs of O. chinensis insects were injected with Cr (VI) with different concentrations (0, 75, 150, 225, 300, 375, 450 ug g'1 of body weight). The results showed that Cr (VI) led to the change of SOD, CAT, and GPx activities at different concentrations, which revealed that: (1) the oxidative stress of SOD increased with the increase of Cr (VI) concentration. (2). With the increase of Cr (VI) concentrations, CAT activities for females increased at lower concentrations, but decreased at higher concentration range, which indicated that antioxidant system of O. chinensis was not influenced by the presence Cr (VI). A very similar response to Cr (VI) effect for males indicated that Cr (VI) concentrations were not high enough to damage O. chinensis in terms of CAT. (3). The GPx activity for females increased in all treatments, which revealed that the damage power of Cr (VI) was increased with the increase of Cr (VI) concentrations in terms of GPx, but the effect was not so remarkable. Therci was not a consistent trend of GPx activities for males in all treatments of Cr (VI). Cr (Vl)-induced changes in antioxidant enzymes were different for SOD, CAT and GPx, of which the tendency was that activities generally changed with increase of concentrations of Cr (VI) suggesting SOD, CAT, and GPx could serve as indices of oxidative stress to some extent.6. The purpose of this research is to present toxic effects of Cd on O. chinensis physiology. SOD, CAT, and GPx are important in the metabolism of reactive oxygen species (ROS), and can be induced by environmental stresses including cadmium, a heavy metal toxic to living organisms. O. chinensis was fed with wheat seedlings exposed to CdCl2 (0, 20, 40, 60, 80, 100, 120 mg kg'1 in soil) in man-made soil-plant-insect ecosystem for 30d and the activities of SOD, CAT, and GPx and content of H2O2 were analyzed. The result indicated that Cd2+ induced oxidative stress in O. chinensis insects increases with increasing Cd2+ concentration in the thorax and varied the enzymatic activities of antioxidative system (SOD, CAT, and GPx) and H2O2 content. (l)The activity of SOD was lower than that of the control for male, which indicated that SOD was inhibited by Cd2+;SOD was induced at high
    Cd" concentration range for female. (2).With the increase of Cd' concentrations, CAT activities for both males and females decreased, which indicated that antioxidant system of O. chinensis was inhibited by the presence of Cd2+. (3). The GPx activity for both males and females increased at low Cd2+ concentration and decreased at high Cd2+ concentration, which revealed that the damage power of Cd2+ was increased with the increase of Cd2+ concentrations in terms of GPx. (4). The H2O2 content for both males and females increased with the increasing Cd2+ concentration, which suggested that the damage power of Cd2+ increased with the increasing Cd2+ concentrations in soil. There was a complex relationship between Cd2+ toxicity and defensive enzyme activity and multiple mechanisms rather than a single mechanism may be responsible for the capacity of O. chinensis insects to resist Cd2+.7. The primary object of this research was to examine the generality of asspciations of allozyme genotype with tolerance to cadmium (Cd) and chromium (Cr), we look for if the genotype of the enzymes glucose phosphate isomerase (GPI), phosphorglucomutase (PGM), malic enzyme (ME), and lactic dehydrogenase (LDH) factors affecting survival during acute Cd and Cr exposure. Allozyme horizontal starch gel electrophoresis has been used to analysis the genie structure of O. chinensis, collected from Yuanping, Shanxi and injected with 110.21 mg kg'1 of Cd (LD50) and 291.0 mgkg-'ofCr(LD5o).The results showed there were polymorphic loci at LDH, GPI, PGM and Me. The survival was not significant difference (P>0.05) for GPI loci, and was significant difference (P<0. 05) for PGM, LDH, and ME loci for O. chinensis treated with Cd. The X2 tests showed that the significant mortality differences were found among the following genotype pairs : LDH-AB vs. LDH-AA, LDH-AB vs. LDH-BB;PGM-CC vs. PGM-AA , PGM-CC vs. PGM-BB, PGM-CC vs. PGM-AB;Me-AA vs. Me-BB, Me-AA vs. Me-AC, Me-AA vs. Me-BC, Me-BB vs. Me-CC, Me-BB vs. Me-AB, Me-BB vs. Me-AC, Me-CC vs. Me-AC, Me-AB vs. Me-BC, Me-AC vs. Me-BC.
    Genotype frequencies deviated from the Hardy-Weinberg's expectations at PGM and Me, while fits Hardy-Weinberg's expectations at GPI. The excess of heterozygosis was for GPI (F<0), and the heterozygosis deficiency for LDH, PGM, ME(F>0). The data of the mean number of alleles per locus (A = 2.5), the observed mean heterozygosities (Ho=0.314-0.325) and the expected mean heterozygosities (He=0.471-0.496) of the species suggest that O. chinensis possesses sufficient genetic diversity.The survival was not significant difference (P>0.05) for GPI loci, and was significant difference (P<0. 05) for PGM, LDH, and ME loci for O. chinensis treated with Cr. The X2 tests showed that the significant mortality differences were found among the following genotype pairs : LDH-AA vs, LDH-BB, LDH-AB vs. LDH-BB;GPI-AA vs. GPI-BB, GPI-AB vs. GPI-BB;PGM-AB vs. PGM-BB, PGM-AB vs. PGM-BC;Me-AA vs. Me-BB, Me-AB vs. Me-BB, Me-AC vs. Me-BB, Me-BB vs. Me-BC, Me-BB vs. Me-CC. Genotype frequencies deviated from the Hardy-Weinberg's expectations at GPI, PGM and Me. The heterozygosis deficiency was at GPI, LDH, PGM, and ME (F>0) . The data of the mean number of alleles per locus (A = 2.5), the observed mean heterozygosities (Ho=0.276-0.324) and the expected mean heterozygosities (He=0.435-0.478) of the species suggest that O. chinensis possesses sufficient genetic diversity. In summary, it was different that lethal responses of allozyme genotypes of O. chinensis towards Cd and Cr.8. It has been documented that the pesticide deltamethrin, widely used for it low toxicity and high efficiency, causes alterations in various enzymatic systems in insects. This study examined the activities of superoxide dismutase (SOD) and glutathione peroxidasse (GPx) in O. chinensis injected with deltamethrin concentration series. The SOD activity increased in the grasshoppers exposed to deltamethrin of low concentrations. However the high concentrations of the pesticide were found inhibitive to SOD activity. Meanwhile the significant different was not found in all treatments of deltamethrin, and O. chinensis showed significant sexual difference in SOD activities then exposed to deltamethrin of 0.02 ,0.14 and 0.26 ug uL~'. The
    activities of GPx were not significant different in all treatments of deltamethrin. And similar sexual variation was also observed in GPx at concentrations of 0.02 to 0.14 ug uL"1, whose activities is enhanced by deltamethrin at lower concentrations but inhibited at high concentrations in male grasshoppers. In contrast, the female grasshoppers showed opposite response. The data suggested that O.chinensis may respond through biochemical and physiological regulations to deltamethrin of lower concentrations, beyond which the toxic effects could be non-nonreversible.
引文
[1] 尤其儆,陆温,廖皓年.我国东亚飞蝗发生及防治概况简述[J].广西植保,2003,16(1):23-25.
    [2] 仵均祥.农业昆虫学[M].北京:中国农业出版社,2002.
    [3] 李照会.农业昆虫鉴定[M].北京:中国农业出版社,2002:30-31.
    [4] 郑哲民.昆虫分类学[M].西安:陕西师范大学出版社,1993:80.
    [5] 章士美,赵泳祥.中国农林昆虫地理分布[M].北京:中国农业出版社,1996.
    [6] 张经元,贾志英,石志,王向荣.山西蝗虫[M]。太原:山西科学技术出版社,1995.
    [7] 陈发炜,邵泽华,任善国,刘学明.中华稻蝗的发生规律与防治[J].植物医生,1996,9(2):8-9.
    [8] 刘珍,高山松,张连全,娄海玉.中华稻蝗生物学特性及防治研究[J].昆虫知识,1997,34(4):195-197.
    [9] 于志宣,官宏义,谢建军,窦锋,李顺功.中华稻蝗在天津的发生规律及综合防治技术研究[J].天津农林科技,1994,3:12-13.
    [10] 吴明庆,张吉昌.中华稻蝗发生期预测探讨[J].陕西农业科学,1995,2:35.
    [11] 汪平,王旭东.中华稻蝗的发生、危害及其防治[J].安徽农业,2001,6:21.
    [12] 陈孝恩,高君川.成都中华稻蝗发生规律及防治技术[J].植物保护,1989,5:17-18.
    [13] 张巧玲,王宝明.太原地区中华稻蝗发生的研究[J].山西大学学报,自然科学版.1993,16(4):453-457.
    [14] Clausen CP. Orthoptera. Agric. Handb. Agric. Res. Serv. US., 1978: 9-18.
    [15] Mural S. On the distribution and the emergence of the rice grasshoppers in Japan[J]. J. Yamagata Agri. Fo. So., Tsuruoka, 1959, 13: 47-50.
    [16] Pemberton CE. Important Pacific insect pests of sugar cane[J]. Pacif. Sci., 1963, 17(2): 251-252.
    [17] Ngoan ND. Recent progress in rice insect research in Vietnam[J]. Trop. Agric. Res. Ser., Japan 1971, 26: 60.
    [18] Singh SR, Soenardi. Insect pests of rice in Java, Indonesia[J]. Int. Rice Commn Newsl. 1973, 22(1): 22-25.
    [19] So PY. A preliminary list of the insects of agricultural importance in Hong Kong[J]. Agric. Bull. Dep. Agric. Fish., Hong Kong 1, 1967: 39.
    [20] Grist DH. Rice. 5th ed. London: Longman (Tropical Agriculture series) [M], 1975: 601.
    [21] Lomer C J, Bateman RP, Johnson DL, Langewald J, Thomas M. Biological control of locusts and grasshoppers[J]. Annu. Rev. Entomol., 2001, 46: 667-702.
    [22] Gabriel BE Insect pests of field corn in the Philippines[M]. Tech. Bull. Coll. Agric. Univ. Philipp, 1971: 60.
    [23] 马恩波,姚爱玉.蝗虫染色体分带技术的研究[J].遗传,1999,21(3):28-30.
    [24] 郭亚平,段毅豪,白贵荣,马恩波.中华稻蝗(Oxya chinensis)种群间体型分化与染色体核型均一性研究[J].动物学报,2001,47(专刊):23-29.
    [25] 张建珍,任俐,郭亚平,马恩波.山西省及邻近地区中华稻蝗5个种群RAPD分析及其亲缘关系[J].遗传学报,2004,31(2):159-165.
    [26] 任竹梅,马恩波,郭亚平.山稻蝗及相关物种Cytb基因序列及其遗传关系[J].遗传学报,2002,29(6):507-513.
    [27] 李翠兰,段毅豪,卢芙萍,郭亚平,马恩波.敌百虫对中华稻蝗磷酸葡萄糖异构酶基因型的致死性差异研究[J].农业环境科学学报,2004,23(2):381-383.
    [28] 张菊花,吴振廷,余宏斌.中华稻蝗低龄若虫取食习性和营养效应[J].安徽农业科学,1998,26(2):145-146.
    [29] 冯祥和,杨俊德,牛泽民.中华稻蝗在水稻上危害损失及防治指标的商榷[J].昆虫知识,1994,31(4):198-200.
    [30] 赵云涛,国兴明,李利,杨柳.各龄期中华稻蝗营养成分的分析与评价[J].贵州大学学报(农业与生物科学版),2002,21(2):115-120.
    [31] 孙汝川,彭勇,董振远.中华稻蝗发生规律和综合防治技术的研究[J].昆虫知识,1991,6:330-333.
    [32] 朱恩林.中国东亚飞蝗发生与治理[M].北京:中国农业出版社,1999:4-5.
    [33] 陈永林.中国的蝗害[M].北京:中国林业出版社,1999.
    [34] 马世俊.东亚飞蝗在中国的发生动态[J].昆虫学报,1958,8(1):1-40.
    [35] 黄登宇,马恩波.东亚飞蝗Locusta migratoria manilensis(Meyen)预测预报研究进展[J].动物学报,2001,47(专刊):37-41.
    [36] 王杰臣,倪绍祥.国内外蝗虫研究发展动向初探.干旱区研究[J],2001,18(3):36-41.
    [37] 李春选,马恩波.飞蝗研究进展[J].昆虫知识,2003,40(1):24-30.
    [38] 刘新,贺艳萍,郭亚平,任竹梅,王向荣,马恩波.山西临猗东亚飞蝗普通酯酶生化特性研究[J].山西大学学报(自然科学版),2004,27(1):56-61.
    [39] 李春选,马恩波,郭亚平.中国东亚飞蝗两个种群遗传分化的研究[J].遗传学报,2003,30(1):1027-1033.
    [40] 智冬梅.东亚飞蝗的发生及防治[J].新农业,2003,9:43.
    [41] 吴微微.东亚飞蝗的发生特点及防治策略[J].杂粮作物,2003,23(6):366.
    [42] 石瑞香,刘闯,李典谟,谢宝瑜.白洋淀蝗区东亚飞蝗的分布与土壤的关系研究[J].昆虫知识,2004,40(1):29-33.
    [43] 何强,井文涌,王翊亭.环境学导论[M].北京:清华大学出版社,1998.
    [44] 章申.环境问题的由来、过程机制、我国现状和环境科学发展趋势[J].中国环境科学,1996,16(6):401-404.
    [45] 孟紫强.环境毒理学[M].北京:中国环境科学出版社,2000.
    [46] 王焕校.污染生态学[M].北京:高等教育出版社,施普林格出版社,2000.
    [47] 孟紫强.环境毒理学基础[M].北京:高等教育出版社,2003.
    [48] 牛文元.我国生态环境能力建设任重道远[J].生态环境与保护,2003,1:10-13.
    [49] 彭全民,耿殿华.山东省农业生态环境问题及其防治对策[J].农业环境保护,1990,9(2):31-33.
    [50] 叶森,韩玉珍,武大安.吉林省农业环境问题及对策[J].农业环境保护,1990,9(1):25-27.
    [51] 陶战.农业环境是农业生产力的要素[J].农业环境保护,1990,9(6):22-25.
    [52] 徐冬青.环境问题:21世纪中国面临的严峻挑战[J].生态环境与保护,2003,1:13-16.
    [53] 张宝莉.农业环境保护[M].北京:化学工业出版社,2002.
    [54] 戴树桂.环境化学[M].北京:高等教育出版社,1996.
    [55] Astruc M,Lestered JN.Heavy metals in the hydrological cycle[J].London:Selper,1988,481-488.
    [56] 李天杰,宫世国,潘根兴,肖月芳.土壤环境学—土壤环境污染防治与土壤生态保护[M].北京:高等教育出版社,1995.
    [57] Chen HM, Lin Q, Zhang CR. Interaction of Pb and Cd in soil-water-plant system and its mechanism: Pb, Cd interaction in rhizosphere[J]. Pedosphere, 1998, 8: 237-244.
    [58] Fergusson JE. The Heavy Element:Chemistry, Environmental Impact on Health Effect[M]. London: Pegramon Press, 1990.
    [59] 喜田村正次.汞[M].北京:原子能出版社,1988.
    [60] 丁磊,吴萍,蔡春芳,宋学宏,黄鹤忠.Cd对积雪清溶菌酶和过氧化酶的影响[J].农业环境科学学报,2004,23(2):243-245.
    [61] 薄梅花,叶葶葶.镉的危害作用与生物监测[J].劳动医学,1999,16(1):44-46.
    [62] 谢黎虹,许梓荣.重金属对动物及人类的毒性研究进展[J].浙江农业学报,2003,15(6):376-351.
    [63] 廖琳,胡晓荣,李晖,王上辅.生态环境中镉对生物体毒性作用机理及硒对该毒性拮抗作用的研究进展[J].四川环境,2002,21(2):21-24.
    [64] 夏运生,王凯荣,张格丽.土壤镉生物毒性的影响因素研究进展[J].农业环境保护,2002,21(3):272-275.
    [65] 许嘉林.杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995:60-61,393-395.
    [66] 陈志良,莫大伦,仇荣亮.镉污染对生物有机体的危害及防治对策[J].环境保护科学,2001,27,106:37-39.
    [67] 姜声扬,庄勋,马振祥,朱晓蓉,曾蓉,顾艳红,林鑫山.亚慢性镉中毒所致小鼠睾丸、精子损伤及锌保护作用研究[J].中国工业医学杂志,2004,17(1):7-10
    [68] Weidner W J, Sillmen AJ. Low levels of cadmium chloride damage the comeal endothelium[J]. Archives of Toxicology, 1997, 71 (7): 455-460.
    [69] Shiva K. The effect of cadmium on female rat[J]. Contraception, 1982, 26(2): 181.
    [70] 李建秀,王晓梅.氯化镉对小鼠精子的影响[J].工业卫生与职业病,1997,23(4):213-214.
    [71] 阎平,李煌元,张文昌,林炜,陈晓燕,吴思英.镉对雌性大鼠血清FSH-LH水平的影响[J].职业与健康,2002,18(6):37-36.
    [72] Groten JP, Hissink E, Van-Bladeren PJ. Cadmium accumulation and metallothionein concentration after 4 weeks dietary exposure to cadmium chloride or cadmium-metallothionein in rats[J].Toxico. Appi. Phamancol., 1991, 11:504-511.
    [73] Dudley RE, Klassen CD. Changes in hepatic glutathione concentratiom modify cadmium-induced hepatotoxicity.Toxicol[J]. Appl. Pharmacol., 1984, 72:530-538.
    [74] 阮晓,郑春霞,王强,周疆明,邹岩.重金属在罗非鱼淡水白鲳和鲤鱼体内的蓄积[J].农业环境保护,2001,20(5):357-359.
    [75] 张彩云.膨润土对废水溶液中镉(Ⅱ)离子的吸附研究[J].广西化工,2002,6,31:18-19
    [76] Alexandra P, Margeli S. Metallothioneein expression during liver regeneration after partial hepatectomy in cadmium-pretreated rats[J]. Archives of Toxicology, 1994, 16(1): 253-256.
    [77] Toshio T. Calmodulin-dependent calcium signal transduction[J]. Pharmacol., 1988, 46:101.
    [78] Nicotera P, Zhivotosky B and Orrenius S. Nuclear calcium transport and the role of calcium in apoptosis[J]. Cell Calcium., 1994, 16(4): 279-288.
    [79] Sharma G, Nath R, Gill KD. Effect of ethanol on cadmium-induced lipid perxidation enzymes in rat liver[J]. Biochemicol Pharmacology, 1991, 42(Suppl): 9-16.
    [80] 申立军,周袁芬,金泰虞.镉雌激素样作用的实验研究[J].劳动医学,2001,18,2:67-68.
    [81] 王文仲,徐兆发.镉的肾脏毒理学[J].中国工业医学杂志,2001,14(5):291-293.
    [82] 杨居荣,贺建新.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197.
    [83] 周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004.
    [84] Canli M and FurnessRW. Mercury and cadmium uptake from seawalter and from food by the Norway lobster nephrops norvegicus[J]. Environmental Toxicology and Chemistry, 1995, 14(5): 819-828.
    [85] Llamas A, Ullrich CI and Sanz A. Cd~(2+) effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryzasativa L) roots[J]. Plant andSoil, 2000, 219: 21-28.
    [86] Obata H, Inoue N and Umebayashi M. Effect of Cd on plasma membrane ATPase from plant roots differing in tolerance to Cd. Soil Sci[J]. Plant Nutr, 1996, 42: 361-366
    [87] Hendry GAF, Baker AJM and Ewart CF. Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus lanatus L[J]. Acta Bot. Neerl., 1992, 41: 271-281.
    [88] Bowler C and Montagu MV. Superoxide dismutase and stress tolerance. Ann.Rev. Plant Physiol[J]. Plant Mol. Boil., 1992, 43:83-116.
    [89] Ouariti O, Boussama N, Zarrouk M, Cherif A and Ghorbal MH. Cadmium-and copper-induced changes in tomato membrane lipids[J]. Phytochemistry, 1997, 45: 1343-1350.
    [90] Zhang JB and Huang WN. Advances on physiological and ecological effects of cadmium on plants[J]. Acta Ecologica Sinica, 2000, 20(3): 514-523.
    [91] 杨世勇,谢建春,刘登义.镉的生物学效应及植物的耐性机制[J].生物学教学,2000,25(9):6-7.
    [92] Klobus G and Buczek J. Chlorophyll content, cells and chloroplast number and cadmium distribution in Cd-treated cucumber plants[J]. Acta Physiologiae Plantarum, 1985, 7(3): 139-147.
    [93] Peng M, Wang HX and Wu YS. Ultrastructural changes induced by cadmium and lead in corn seedling cell [J]. China Environmental Science, 1991, 11(6): 426-431.
    [94] Yang JR, He JQ and Zhang GX. Tolerance mechanism of crops to Cd pollution[J].Chinese J. Applied Ecology, 1995, 6(1): 87-91.
    [95] Chien HF and Kao CH. Accumulation of ammonium in rice leaves in response to excess cadmium[J]. Plant Sci., 2000, 156:111-115.
    [96] Zhou JH and Wang YR. Physiological studies on poisoning effects of Cd and Cr on rice (Oryza sativa L.) seedlings through inhibition of Sinutrition[J]. Chinese J. Appl. Environ. Biol., 1999, 5(1): 11-15.
    [97] Ji YM and Li ZG. The telation between the generation of stress ethylene induced by cadmium and the uptake and distribution of cadmium in wheat seedlings[J]. Acta Phytophysiologica Sinica, 1989, 15(2): 159-166.
    [98] 凌秀凤,唐玲芳.镉的致癌性研究进展.职业医学[J],1998,25(2):46-49.
    [99] Nishizono H. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J]. Plantand Soil, 1987, 101:15-20.
    [100] Wang J. Computer-simulatede valuation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles[J]. Plant Physiol, 1991, 97:1154-1160.
    [101] Rauser WE and Acker CA. Localization of cadmium in granules within differentiating and mature root cells[J]. Can. J. Bot., 1987, 65: 643-646.
    [102] Zhang YX, Chai TY and Burkard G. Research advances on the mechanisms of heavy metal tolerance in plants[J]. Acta Botanica Sinica, 1999, 41(5): 453-457.
    [103] Cobbett CS. Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiol., 2000, 123: 825-832.
    [104] Rauser WE. Phytochelatins.Ann.Rev[J]. Biochem., 1990, 59:61-86.
    [105] Rauser WE. Phytochelatins and related peptides[J]. Plant Physiol., 1995, 109: 1141-1149.
    [106] Kneer R and Zenk MH. Phytochelatins protect plant enzymes from heavy metal poisoning[J]. Phytochem., 1992, 31(8): 2663-2667.
    [107] Kitagishi K and Yamane I. Heavy metal pollution in soils of Japen[M], 1981.
    [108] Simon L. Cadmium accumulation and distribution in sunflower plant[J]. Jouranl of Plant Nutrition. 1998, 21(2): 341-352.
    [109] Zenk MH. Heavy metal detoxification in higher plants-areview[J]. Geng. 1996, 179: 21-30.
    [110] Salt DE, Prince R, Pickering IJ and Raskin I. Mechanism of cadmium mobility and accumulation in Indian Mustard[J]. Plant Physiol., 1995, 109: 1427-1433.
    [111] Ouariti O, Gouia H and Ghorbal MH. Response of bean and tomato plants to cadmium: Growth, mineralnutrition and nitrate reduction[J]. Plant Physiol. Biochem., 1997, 35: 347-354.
    [112] Moral R and Gomez I. Effect of cadmium on nutrient distribution yield and growth of tomato grown in soilless culture[J]. Plant Nutrition, 1994, 17(6): 953-962.
    [113] Greger M and Lindberg S. Effects of Cd~(2+) and EDTA on young sugar beets(Beta vulgaris)l.Cd~(2+) uptake and sugar accumulation[J]. Physiol. Plant., 1986, 66: 69-74.
    [114] Burton KW, Morgan E and Roig A. Interactive effects of cadmium, copper and nickel on the growth of sitkaspruce and studies of metal uptake from nutrient solutions[J]. New Phytol, 1986, 103: 549-557.
    [115] Hassett JJ, Miller JE and Koeppe DE. Interaction of lead and cadmium on corn root growth and uptake of lead and cadmium by roots[J]. Environ. Pollut., 1976, 11: 297-302.
    [116] Mukherji S and Maitra P. Toxic effects of lead on growth and metabolism of germinating rice (Oryzasativa L.) seeds and mitosis of omon(Alliumcepa L.) [J].
     India J. Exp.Bio.,1976,14:519-521.
    [117] 秦天才,吴玉树,王焕校,李启任.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320-325.
    [118] Colbom T. Developmental effects of endocrine-disrupting chemical in wild life and humans[J]. Environ Health Perspect, 1993, 101: 378-384.
    [119] Hutchinson TH and Matthiessen P. Endocrine disruption in wildlife: identification and ecological relevance[J]. The Science of the Total Environment, 1999, 233: 1-3.
    [120] Carey C and Bryant CJ. Possible interrelations among environmental toxicants, amphibian development and decline of amphibian populations[J]. Environ. Health Perspect, 1995, 103: 13-17.
    [121] Stevens A and Lowe J. In: Zabel M.ed., Histologia[J]. PZWL, Warsaw, 2000.
    [122] Shinozaki T, Pritzker KPH. Regulation of alkaline phosphatase: implications for calcium pyrophosphate dehydrate crystal dissolution and other alkaline phosphatase functions[J]. Rheumatol, 1996, 23(4): 677-683.
    [123] Hew KW, Ericson WA and Welsh MJ. A single low cadmium dose causes failure of spermiation in the rat[J]. Appl. Pharmacol., 1993, 121: 15-21.
    [124] 杨建明,蒋学之,金泰廙.镉的男(雄)性生殖毒性研究进展[J].中华劳动卫生职业病杂志,1999,17(6):375-377.
    [125] Pisa J, Cibulka J and Ptacek M. Effect of subcutaneous application of a single cadmium dose on oocyte maturation in vitro[J]. Physiol Bohemoslov, 1990, 39(2): 182-190.
    [126] 沈维干,陈彦,李朝军,李霖,季全兰,贡昌春.6种金属元素对小鼠卵母细胞成熟和体外受精的影响[J].卫生研究,2000,29(4):202-204.
    [127] Antonio MT, Corredor L and Leret ML. Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium[J]. Toxicology Letters, 2003, 143: 331-340.
    [128] Oehlschlager K, Huttl R and Wolf G. The rmal investigations of enzyme-catalyzed reactions for detection of heavy metals in the case of cadmium[J]. Thermochimica Acta, 1996, 271: 41-48.
    [129] Zhou XW, Zhu GN and Shun JH. Effects of mixture metals on the fish (Carassius auratus) ATPase activity and its genotoxicity[J]. Journai of Zhejiang University (Agriculture & Life Sciences), 2001, 27(6): 665-669.
    [130] Hussain T, Shukla S and Chandra SV. Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats[J]. Pharmacol Toxicol., 1987, 60: 355-358.
    [131] Shukla GS, Hussain T and Chandra SV. Protective effect of vitamin E on cadmium-induced altherations in lipofuscin and superoxide dismutase in rat brain regions[J]. Pharmacology Toxicology, 1988, 63: 305-306.
    [132] Wong K, Curtis DK. Neurotoxic effects of cadmium in young rats[J]. Toxicology and Applied Pharmacology, 1982, 63: 330-337.
    [133] 徐莉春,王沭沂,赵人,王心如.必需元素在镉致睾丸脂质过氧化损伤中的作用[J].工业卫生与职业病,2000,26(4):199-201.
    [134] 刘爱萍.镉的毒性损伤作用与自由基[J].中国工业医学杂志,1998,11(4):221-223.
    [135] 袁伯勇,王玉珍,赵秀兰.镉的免疫毒性及其作用机制[J].泰山医学院学报,2004,25(1):75-77.
    [136] 余日安,陈学敏.镉对大鼠肝细胞DNA损伤作用的研究[J].中国公共卫生学报,1998,17(2):106-107
    [137] Littlefield NA and Hass BS. Damage to DNA by cadmium or nickel in the presence of aseorbate. Ann. Clin. Lab[J]. Sci., 1995, 25(6): 485-492.
    [138] 徐晨,李维信.镉对大鼠附睾体部的损伤及锌的保护作用[J].解剖学报,1999,30(3):15,259-263.
    [139] 王兰,王定星,王茜,杨秀清.镉对长江华溪蟹肝胰腺细胞超微结构的影响[J].解剖学报,2003,34(5):522-526.
    [140] 陈敏,高晓钦,荆俊杰,谢吉民,吕伟中,顾红兵,王春海.镉对小鼠脏器脂质过氧化作用的影响[J].镇江医学院学报,1999,9(4):520-522.
    [141] 刘秀英,王翔朴,贺全仁.镉对肝、肾毒性与谷胱甘肽含量的关系[J].卫生毒理学杂志,2001,15(1):31-32.
    [142] 金慧英,胡惠民,周雍,李法卿,谭维国,李素芹,陈华标.急性镉中毒的肝脏损伤机制及金属硫蛋白的保护作用[J].中华劳动卫生职业病杂志,1998,16(1):43-46.
    [143] 陈剑兴,丁磊,吴康,姚建敏.镉对鲫特异性免疫力的影响[J].水利渔业,2004, 24(5):19-20.
    [144] 丁磊,黄鹤忠,吴康,蔡春芳,吴萍.镉对鲫非特异性免疫力的影响[J].农业环境科学学报,2004,23(1):64-66.
    [145] 余日安.镉与DNA损伤、癌基因表达、细胞凋亡[J].国外医学卫生学分册,2000,27(6):359-363.
    [146] 李金龙,徐世文,熊永忠,李术,王秀荣.镉致鸡脾淋巴细胞凋亡及对p53mRNA表达的影响[J].中国环境科学,2004,24(4):456-459.
    [147] 余日安,陈学敏,鲁文清.镉对大鼠肝细胞凋亡的影响[J].卫生研究,2001,30(5):271-272.
    [148] 杨建明,吴向东,金泰虞,蒋学之,丁训诚,周袁芬,吴晓芸,曾祥斌.镉的性腺和附性腺毒性研究[J].中华劳动卫生职业病杂志,1998,16(1):40-42.
    [149] 杜卓民,牟肇龄,罗明,许庭良,姜俸蓉.镉对小白鼠卵巢的毒害[J].贵阳医学院学报,1998,23(1):18-23.
    [150] 徐顺清,包克光,舒柏华,姚大纯.镉对骨形态发生蛋白诱导软骨和骨形成的影响[J].中华预防医学杂志,1997,31(5):292-294.
    [151] 马晓春,赵立新,李家玲.镉对小麦发芽率及淀粉酶活力的影响[J].环境保护科学,1997,23(6):27-29.
    [152] 罗立新.镉对小麦细胞膜脂过氧化的效应[J].河南科学,1999,17(专辑):47-49.
    [153] 任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116.
    [154] 倪才英,李华,骆永明,陈英旭.铜、镉及其交互作用对泡泡草细胞超微结构的影响[J].环境科学学报,2004,4(2):343-348.
    [155] 刘东华,蒋悟生,李海峰,高秀芝.镉对大蒜根生长和根尖细胞超微结构的影响[J].华北农学报,2000,15(3):66-71.
    [156] 李大辉,施国新,杜开和.镉对菱浮水叶片结构影响的研究[J].南京师大学报(自然科学版),1999,22(3):55-59.
    [157] 秦天才,吴玉树,黄巧云,胡红青.镉铅单一和复合污染对小白菜抗坏血酸含量的影响[J].生态学杂志,1997,16(3):31-34.
    [158] 张先福,樊立超,宋晓平,史宏弟.Hg、As、Cr、Cd在食物链中迁移规律的研究[J].西北农林科技大学学报(自然科学版),2001,29(1):103-105.
    [159] 李建秀,王晓梅.氯化镉对雄性生殖系统生理机能的影响[J].中国公共卫生, 2003,19(5):566-567.
    [160] 姜声扬,庄勋.镉对小鼠睾丸细胞DNA损伤及锌保护作用研究[J].中国公共卫生,2003(12):1450-1452.
    [161] 余日安,陈学敏.镉对大鼠肝细胞增值周期和DNA合成的影响[J].中国公共卫生,2003,19(3):298-300.
    [162] George E Eduardo C. Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line[J]. Toxicology in Vitro. 2005, 19(4): 481-489.
    [163] Filipic M., Hakurta T. Mutagenicity of cadmium in mammalian cells: implication of oxidative DNA damage[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 546(1-2): 81-91.
    [164] 姜辉,叶庆春.部分金属污染物质对人体的危害[J].齐鲁医学杂志,2003,18 (4):497-498.
    [165] Nriagu JO and PacynaJM. Quantitative assessment of worldwide conraminarion of air, water and soil by trace metals[J]. Nature, 1988, 333: 134-139.
    [166] Kota SZ. Chronum occurrence in the environment and method of its speciation[J]. Environmental Pollution, 2000, 107: 263-283.
    [167] Weng CH, Huang CP and Paul FS. Effect of PH on Cr(Ⅵ) leaching from soil enriched in chromium ore processing residue[J]. Environment Geochemistry and Health, 2001, 23:207-211.
    [168] 朱定祥,倪守斌.铬的生物地球化学及生物效应[J].广东微量元素科学,2004,11(4):1-9.
    [169] 顾公望,张宏伟.微量元素与恶性肿瘤[M].上海:上海科学技术出版社,1983: 199-205.
    [170] 马广岳,施国新,徐勤松,王学,拉非克.Cr~(6+)、Cr~(3+)胁迫对黑藻生理生化影响的比较研究[J].广西植物,2004,24(2):161-165.
    [171] 程义勇.必需微量元素铬的研究[J].生理科学进展,1999,21(4):349-352.
    [172] 郭艳丽,罗绪刚,郝正里.畜禽铬营养作用的研究进展[J].国外畜牧科技,1996,23(6):9-13.
    [173] 惠秀娟.环境毒理学[M].北京:化学工业出版社,2003.
    [174] 孙游云.铬对植物体生长生理的影响及其在植物体中的积累规律[J].环境污染与防治,2001,23(1).45-46
    [175] Sharma DC, Chatterjee C and Sharma CP. Chromium accumulation and its effects on wheat metabolism[J]. Plant Science, 1995, Ⅲ: 145-151.
    [176] Samantary S. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium[J]. Chemosphere, 2002, 47: 1065-1072.
    [177] 徐勤松,施国新,杜开和.六价铬污染对水车前叶片生理生化及细胞超微结构的影响[J].广西植物,2002,22(1):92-96.
    [178] 王夔.生命科学中的微量元素(第二版)[M].北京:中国计量出版社,1996:172-197.
    [179] 戎秋涛,翁焕新.环境地球化学[M].北京:地质出版社,1989:1.
    [180] 陈英旭,朱祖祥,何增耀.土壤中铬的有效性与污染生态效应[J].生态学报,1995,15(1):79-84
    [181] Voutsa D, Grimanis A and Samarac C. Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter[J]. Environmental Pollution, 1996, 94(3): 325-335.
    [182] Janusz B and Joanna K.A comparison of the in vitro genotoxocity of tri- and hexavalent chromium[J]. Mutation Research, 2000, 469, 135-145.
    [183] Samantary S. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium[J]. Chemosphere. 2002, 47: 1065-1072.
    [184] 考庆君.铬的生物学作用及毒性研究进展[J].中国公共卫生,2004,20(1): 1398-1400.
    [185] Doreen YC and Karen EW. Binding of chromium to chromatin and DNA from liver and kidney of rats treated with sedium dichromate and chromium(Ⅲ) chloride in vivo[J]. Cancer Research, 1985, 45:1146-1151.
    [186] Anderson RA. Chromium as an essential nutrient for humans[J]. Regulatory Toxicity and Pharmacalogy. 1997, 26(5):35-41.
    [187] Kertesz TF. Adverse of (surface water pollutants) Cd, Cr, and Pb on the embryogenesis of the mallard[J]. Aquatic Toxicology, 2003, 65: 524-433.
    [188] Elbetieha A and A1Hamood MH. Long-term exposure of male and female mice to trivalent and hexavalent chromium compounds effect on fertility[J]. Toxicity, 1997, 116(1-3): 39-47.
    [189] Neylen D.Effect of pH and chelator EDTA on Cr toxicityand accumulation in lemnaminor[J]. Chemosphere, 1998, 37(4): 771-783.
    [190] Sharma DC, Chatterjee C and Sharma CP. Chromium accumulation and its effects on wheat metabolism[J]. Plant Science, 1995, Ⅲ: 145-151.
    [191] Chatterjee C. Phytotoxicity of cobalt, chromium and copper in cauliflower[J]. Environmental Pollution, 2000, 109: 67-74.
    [192] Wilson DO and WcDonals NB. The lipidperoxidation metal of seed aging[J]. Seed Sci. Technol., 1996, 14: 269-282.
    [193] 金伟,陆敏,王瑞恒.铬(Ⅲ)对亚心形扁藻(Platymonas subcordiformis)细胞超微结构的影响[J].辽宁师范大学学报(自然科学版),1998,21(4):319-322.
    [194] 陈海柳,潘纲,闫海,秦延文.六价铬抑制淡水蓝绿藻生长的毒性效应[J].环境科学,2003,24(2):13-18.
    [195] 李丁,李勤,安静,王淑华.六价铬对小鼠诱变作用与脂质过氧化关系[J].环境与健康杂志,2001,18(6):362-363.
    [196] 贾秀英,董爱华.Cd、Cr(Ⅵ)及复合污染对鲫鱼组织脂质过氧化的影响[J].浙江大学学报(农业与生命科学版),2003,29(3):325-328.
    [197] 陈琼宇,李洪,李时恩,徐玉宝,姚武,孟爱民,陈琛.六价铬对男工血清及精浆乳酸脱氢酶C4同工酶的影响[J].工业卫生与职业病,1999,25(1):21-23.
    [198] 贾光,刘世杰,林慰慈,周树森,赵修南.六价铬对g12细胞gpt位点的影响[J].卫生毒理学杂志,1998,12(2):71-73,131.
    [199] 贾光,刘世杰,吕有勇,李文梅,周树森.重铬酸钾对HEL和细胞p53及WAFl基因表达的影响[J].中国药理学与毒理学杂志,1997,11(2):111-112.
    [200] 薛德彬,沈维干,陈兰,荀爱华.锰铬对体外培养小鼠卵母细胞减数分裂的影响[J].微量元素与健康研究,2000,17(1):14-16.
    [201] 肖经纬,钟才高,张洪霞.六价铬对L-02肝细胞线粒体功能的影响[J].实用预防医学.2004,11(5):918-921.
    [202] 王珏,郑艺梅,李升和,顾有方,康曹宇.补铬对热应激蛋鸡甲状腺组织构的影响[J].中国兽医科技,2004,34(6):29-32.
    [203] 李升和,王珏,郑艺梅,许万祥,金光明,董华.铬对热应激下蛋鸡脾组织结构的影响[J].中国兽医学报,2004,24(1):71-74.
    [204] 王珏,郑艺梅,金光明,刘德义,于群,李升和.铬对热应激下蛋鸡空肠组织结构的影响[J].畜牧与兽医,2003,35(2):3-5.
    [205] 韩爱民,蔡继红,屠锦河,朱伊君.水稻重金属含量与土壤质量的关系.环境监测管理与技术[J].2002,14(3):27-32.
    [206] 陈阳,谢红红,吴启祥.浅析重金属元素与土壤环境的相互关系[M].土壤资源环境研究.北京:中国农业科技出版社,1997:661.
    [207] 韦公远.硒、镁、铜人体不可缺少的微量元素[J].山东食品科技,2003,5:17.
    [208] 姚庆祯,减维玲,戴习林,江敏,徐桂荣,丁福江.铜、镉、敌敌畏和甲胺磷对南美白虾幼虾的急性致毒及相互关系[J].上海水产大学学报,2003,12(2):117-122.
    [209] 钱剑,王哲,刘国文.铜在动物体内代谢的研究进展[J].动物医学进展,2003,24(2):55-57.
    [210] 孙华,张桃林,孙波.江西省贵溪市污灌水田重金属污染状况评价研究[J].农业环境保护,2001,20(6):405-407.
    [211] 鲁双庆,刘少军,刘红玉,刘筠.Cu~(2+)对黄鳝肝脏保护酶SOD、CAT、GSH-PX活性的影响[J].中国水产科学,2002,9(2):138-141.
    [212] 王友保,张莉,刘登义.Cu~(2+)胁迫对作物截根苗生长影响的研究[J].安徽师范大学学报(自然科学版),2002,25(2):172-174.
    [213] Ouzounidou G, Mousbakas M and Karataglis S. Responses of maize (Zea mays L.) plants to copper stress: growth, mineral content and ultrastructure of roots[J]. Environ. Experi. Bot., 1995, 35(2): 167-176.
    [214] Strange J, Macbaur MR. Evidence for a role for the cell membrane in copper tollerance[J]. New physiol., 1991, 119:383-388.
    [215] Clijsters H, Van Assche F. Inhibition of photosynthesis by heavy metals[J]. Photosyn Res., 1985, 7:31-40.
    [216] McBride MB. Toxic metal accumulation from agricultural use of sludge: are USEPA regulations protective[J]. Environ. Qual., 1995, 24: 5-18.
    [217] Kahle H. Response of roots of trees to heavy metals. Environ. Exper[J]. Botany., 1993, 33: 99-119.
    [218] Femando C. Role of rice shoot vacuoles in copper toxity regulation[J]. Environ Experi. Botany., 1998, 39(3): 197-201.
    [219] Ouzounidou G. Copper-induced changes on growth, methal content and photosynthetic function of Alyssum montanum Plants. Environ[J]. Experi. Botan., 1994, 34(2): 165-172.
    [220] 王狄,李锋民,熊治廷,郑振华.铜的植物毒性与植物蓄积的关系[J].土壤与环境,2000,9(2):146-148.
    [221] Gupta A and Singhal C.Inhibition of PSⅢactivity by copper and its effect on spectral properties on intact cells in Anacystis nidulans[J].Environ. Exper. Botany., 1995, 35: 435-439.
    [222] Mohanty N, Vass Ⅰ and Demeter S. Copper toxity affects photosystem Ⅱ electron transport at the secondary quinone acceptor, QB[J]. Plant physiol., 1989, 90: 175-179.
    [223] Shioi Y, Tamai H and Sasa T. Effect of copper on photosynthetic electron transport systems in spinach chloroplasts[J]. Plant Cell Physiol., 1978, 19: 203-209.
    [224] 高晓莉,罗胡英,赵彦珍,任晓惠.铜、锌对鲤鱼抗氧化酶影响的研究[J].淡水渔业.2004,34(4):22-23.
    [225] 冯丰.金属元素与细胞凋亡[J].国外医学卫生学分册,2000,27(4):235-238.
    [226] 李玉荣,郝晨光,杨宝峰,徐长庆,张季叶,孙明智.铜对异丙肾上腺素致损豚鼠心室肌细胞L型钙通道电流的影响[J].中国应用生理学杂志,1999,15(1):18-21.
    [227] 刘福军,张饮江,王明学.铜对鱼类慢性毒性研究进展[J].水生生物学报,2003,27(3):302-307
    [228] Bastrup E. Structural and function effects of heavy metals on the nervous system, including sense organs of fish[J]. Comp. Biochem. Physicol., 1999, 100C: 253-253.
    [229] Reid SD and McDonald DG. Metal binding activity of gills of rainbow trout (Oncorhynchus mykiss) [J]. Can. d. Fish Aquat. Sci., 1999, 48:1061-1068.
    [230] Allen P. Soft-tissue accumulation of lead in the blue tilapia, Oreochromis aureus (Stiendachner), and the modifying effects of cadmium and mercury[J]. Biological Trace Element Research, 1995, 50(3): 193-208.
    [231] 戴家银,郑微云,洪丽玉,刘琼玉.铜、铅、镉在真鲷幼鱼组织的积累与分布[J].海洋科学,1997,6:8-9.
    [232] 赖力英,杨旭,李代强,贺兴鄂.铜负荷饲养兔肝、肾组织含铜量和组织病理 学观察[J].动物学杂志,2004,39(6):96-98.
    [233] 沈骅,王晓蓉,张景飞,刘慧,赵永娟.Cu~(2+)和Cu-EDTA对鲫鱼脑组织应激蛋白HSP70诱导的影响[J].环境科学,2004,25(3):94-97.
    [234] 南旭阳.铜离子对鲫鱼血红细胞微核和核异常的影响[J].河南科学,2002,20(1):42-46.
    [235] 刘浩,刘天云.发育过程中铜在肝脏内的储存及运输细胞毒性作用[J].国外医学医学地理分册,1997,18(2):68-70.
    [236] 何欣,杨佐君,滑静,王晓霞,武书庚.铜水平对蛋鸡铜铁锌代谢及淋巴组织的影响[J].北京农学院学报,2002,17(2):38-42.
    [237] 王利,汪开毓.铜离子对鲤鱼的急性毒性研究[J].淡水渔业,2004,34(1):21-22.
    [238] 赵元凤,吴益春,宋晓阳,王凡,吕景才,刘长发,赵冲,郑伟.牙鲆对海水中铜的吸收、积累和排放规律[J].大连水产学院学报,2004,19(2):81-86.
    [239] 杨秀清,原海云,焦晓光,麻彦明,李云峰.铜、锌元素对华北落叶松苗期酶活性影响[J].山西农业大学学报,2001,21(3):277-280.
    [240] 周宏,项斯端.重金属铜、锌、铅、镉对小形月牙藻生长及亚显微结构的影响[J].杭州大学学报(自然科学版),1998,25(2):85-92.
    [241] 倪才英.铜对紫云英根系生长发育的影响[J].江西师范大学学报(自然科学版),2000,24(2):176-180.
    [242] 宋玉芳,许华夏,任丽萍,龚平,周启星,孙铁珩.重金属对西红柿种子发芽与根伸长的抑制效应[J].中国环境科学,2001,21(5):390-394.
    [243] 李君,周守标,黄文江,王广林.马蹄金叶片中铜、铅含量及其对生理指标的影响[J].应用生态学报,2004,15(12):2355-2358.
    [244] 李锋民,熊治廷,胡洪营.海州香薷对铜的蓄积及铜的毒性效应[J].环境科学,2003,24(3):30-34.
    [245] 朱云集,王晨阳,马元喜,杨百黎.铜胁迫对小麦根系生长发育及生理特性的影响[J].麦类作物,1997,17(5):49-51.
    [246] 郑曦,肖炜.Cu对小麦种子萌发及幼苗生长的影响[J].徐州师范大学学报(自然科学版),2003,21(3):64-66.
    [247] Francesconi KA.Cadmium uptake from seawater and food by the western rock lobster Panulirus cygnus[J]. Bull. Environ. Contam. Toxicol., 1994, 53(2): 219-223.
    [248] 刘长发,陶澍,龙爱明,曹军,徐福留.铅与镉在被金鱼积累过程中的相互作用[J].生态学报,2001,21(11):1863-1868.
    [249] 赵守城,陈贵良,赵沉浮.镉污染对鲫鱼体内Cu~(2+)和Zn~(2+)含量的影响[J].河北渔业,2002,122(2):9-10.
    [250] Garia-Fernandez AJ. Environmental exposure and distribution of lead in four species of in raptors Southeastern Spain[J]. Arch. Environ. Contam. Toxicol., 1997, 33(1): 76-82.
    [251] Devkota B and Schmid G.H. Effects of heavy metals (Hg~(2+), Cd~(2+), Pb~(2+)) during the embryonic development of acridid grasshopper (Insecta, caelifera) [J]. Arch. Environ. Comtam. Toxicol., 1999, 36:405-414.
    [252] Devkota B and Schmidt GH. Accumulation of heavy metals in food plants and Locusta migratoria manilensis (Meyen) from the Taigetos Mountains, Greece[J]. Agriculture, Ecosystrms and Environment. 2000, 78: 85-91.
    [253] 洪楠,林爱花,李志辉,侯军.统计分析教程[M].北京:电子工业出版社,2000:134-148.
    [254] 莫争,王春霞,陈琴,王海,薛传金,王子建.重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的累积和分布[J].环境化学,2002,21(2):110-116.
    [255] 黄吉厚.镉对环境和食品的污染[J].世界今日医学杂志,2002,3(9):854-855.
    [256] 戴习林,臧维玲,杨鸿山,钟霞云,江敏,柯晓东.Cu~(2+)、Zn~(2+)、Cd~(2+)对罗氏沼虾幼虾的毒性作用[J].上海水产大学学报,10(4):298-302.
    [257] 丁曲中,王小明,何利军,汪仁平,谢万树,邵民,John Thorbjamarson.扬子鳄卵不同部位中的Cu、Zn、Cd和Pb重金属元素分布[J].动物研究,2001,22(3):253-256
    [258] Lwanga MS, KansiimeF, Patrick D and Scullion J. Heavy metals in Lake George, Uganda, with relation to metal concentrations in tissues of common fish species[J]. Hydrobiologia, 2003, 499: 83-93.
    [259] Chiou PW, Chen K and Yu B. Toxicitty, tissue accumulation and residue in egg and excreta of copper in laying hens[J]. Animal Feed Science Technolog, 1997, 67: 49-60.
    [260] Crawford LA, Lepp NW and Hodkinson ID. Accumulation and egestion of dietary copper and cadmium by grasshopper Locusta Migratoria R and F (Orthoptera: Acrididae)[J].Environmental Pollution,1996,92(3):241-246.
    [261] 刘长发,陶澍,龙爱明.金鱼对铅和铬的吸收蓄积[J].水生生物学报,2001,25(4):344-349.
    [262] 李毅平,龚和.昆虫体内抗氧化系统研究进展[J].生命科学,1998,10(5):240-243,221.
    [263] 李周直,沈慧娟,蒋巧根,嵇保中.几种昆虫体内保护酶系统活力的研究[J].昆虫学报,1994,37(4):399-403.
    [264] 夏世钧,吴中亮.分子毒理学基础[M].武汉:湖北科学技术出版社,2001:87
    [265] Schützendüb elA, Schwanz P, Teichmann T, Gross K, Langenfeld HR, Godbold DL and Polle A.Cadmium-induced change in antioxidative system, hydrogen peroxide content, and differentiation in scots pine roots[J]. Plant Physiol., 2001, 127: 887-898.
    [266] Rotilio G, Rossi L, De Martino A, Da Costa Ferreira AM and Ciriolo MR. Free radcals, metal ions and oxidative stress:Chemical mechanisms of damage and protection in living system[J]. J. Braz. Chem. Soc., 1995, 6:221-227.
    [267] Fomazier RF, Ferreira RR, Vit6ria AP, Molina SMG., Lea, PJ and Azevedo R A. Effects of cadmium on antioxidant enzyme activities in sugar cane[J].Biologia. Plantarum., 2002, 45(1): 91-97.
    [268] Bhattacharjee S. Membrane lipid peroxidation, free radical scavengers and ethylene evolution in Amaranthus as affected by lead and cadmium[J].Biologia. Plantarum. 1997/98, 40(1): 131-135.
    [269] Lee MY and Shin HW. Cadmium-induced changes in antioxidant enzymes from the marine alge Nannochloropsis oculate[J]. Journal of Applical Phycology, 2003, 15: 13-19.
    [270] Skorzyfiska-polit E, Drazkiewicz M and Krupa Z. The activity of the antioxidantive system in cadmium-treated Arabidopsis thaliana[J].Biologia. Plantarum., 2003/4, 47(1): 71-78.
    [271] Pereira GJG, Molian SMG, Lea PJ and Azevedo RA. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea[J]. Plant and Soil, 2002, 239:123-132.
    [272] Gallego SM, Benavides MP and Tomaro ML. Effect of cadmium ions antioxidant defense system in sunflower cotyledons[J]. Biologia. Plantarum., 1999, 42(1): 49-55.
    [273] Francisco J, Roero JR, Francisco B, Belen R, Jauan S, Antonio Land Lar-Emster. Reduction of brain antioxidant defense upon treatment with butylated hydroxyanisole (BHA) and sudan Ⅲ in Syrian golden hamster[J]. Neurochemical Research, 2000, 25(3): 389-393.
    [274] Sarkar S, Yadav Pand Bhatnagar D. Lipid peroxidative damage on cadmium exposure and alterations in antioxidant system in rat erythrocytes: A study with relation to time[J]. BioMetals, 1998, 11: 153-157.
    [275] Rashed MN. Cadmium and lead levels fish (tilapia nilotica) tissues as biological indicator for lake water pollution[J]. Environmental Monitoring and Assessment. 2001, 68: 75-89.
    [276] Ephraim C and Teomi S. Enzymes associated with defence against reactive oxygen species in the bulb mite Rhizoglyphus robini[J]. Comparative Biochemistry an(?) Physiology C: Pharmacology Toxicology & Endocrinology. 1995, 111(3): 435-440.
    [277] Grubor LG., Block W, Joranoric A, Worland R. Antioxidant enzymes in larvae of the Antracitic fly, Belgica Antarctica[J]. Croy Letters, 1996, 17(1): 39-42.
    [278] Sharma SP, Sharma M., and Kakkar R. Methionine-induced alterations in the life span, antioxidant enzymes, and peroxide levels in aging Zaprionus paravittiger(Dipters) [J]. Gerontology, 1995, 41(2): 86-93.
    [279] 蒋志胜,尚稚珍,万树青,徐汉虹,赵善欢.光活化杀虫剂α-三噻吩的电子自 选共振分析及其对库蚊保护酶系统活性的影响[J].昆虫学报,2003,16(1):22-26.
    [280] Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzana MD, Fulimoto EK, Goeke NM, Olson BJ and Klenk DC[J]. Measurement of protein using bicinchoninic acid. Anal. Biochem., 1985, 150: 76-85.
    [281] Finney DJ. Probit Analysis,Third ed[M]. London:Cambridge University Press, 1970.
    [282] Donahue JL, Okpodu CM, Cramer CL, Grabau EA and Aischer RG. Responses of antioxidant to paraquat in pea leaves[J]. Plant Physiol., 1997, 113: 249-257.
    [283] Lagriffoul A, Mocquot B, Mench M and Vangronsveld J. Cadmium toxicity effects of stress related enzymes in young maize plant (zea mays L.) [J]. Plant and Soil, 1998, 200: 241-250.
    [284] Laurence N, Sandrine R, Alain J, Catherine V, Alain B and Lysiane R. Clofibric acid or diethylmaleate supplemented diet decrease blood pressure in DOCA-salt treated male Sprague Dawley rats-relation with liver antioxidant status[J]. Molecular and Cellular Biochemistry, 2000, 213: 65-73.
    [285] Khaper N, Kaur K, Li T, Farahmand F and Singal PK. Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction[J]. Molecular and Cellular Biochemistry, 2003, 251:9-15.
    [286] 徐秋嫚,陈宏,程景胜,高红.镉对油菜叶细胞膜的损伤及细胞自身保护机制初探[J].农业环境保护,2001,20(4):235-237.
    [287] 徐勤松,施国新,周红卫,徐楠,张小兰,曹晓敏.Cd、Zn复合污染对水车前叶绿素含和活性氧清除系统的影响[J].生态学杂志,2003,22(2):5-8.
    [288] Laszczyca P, Augustyniak M, Babczyfiska A, Bednarska K, Kafel A, Migula P, Wilczek G. and Witas I. Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland)[J]. Environment International, 2004, 30:901-910.
    [289] 林少琴,兰瑞芳.金属离子对蚯蚓CAT、GSH-Px及SOD酶活性的影响[J].海峡药学,2001,13(2):23-25.
    [290] 王宏镔,王焕校,文传浩,常学秀,段昌群.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002,22(4):523-528.
    [291] Fornazier RF, Ferreira RR, Pereira G.JG., Molina SMG., Smith RJ, Lea PJ and Azevedo RA. Cadmium stress in sugar cane callus cultures: Effect on antioxidant enzymes[J]. Plant Cell, Tissue and Organ Culture, 2002, 71:125-131.
    [292] 刘翠红.镉对淋巴细胞谷胱甘肽过氧化物酶的影响[J].中华临床医药,2001,2(10):33-35.
    [293] 刘晓玲,周忠良,陈立侨.镉对中华绒螫蟹(Eriocheir sinensis)抗氧化酶活性的影响[J].海洋科学,2003,27(8):59-62.
    [294] Bartlett RJ. Chromium cycling in soil and water: links, gaps, and methods[J]. Environ. Health Perspect, 1991, 92: 17-24.
    [295] Witmer CM, Harris R and Shupack SI. Oral Bioavailability of chromium from a specific site[J]. Environ. Health Perspect, 1991, 92:105-110.
    [296] Mei B, Jeffrey DP and Ronald JN. Assessment of tolerance and accumulation ir, selected ant specie[J]. Plant and soil, 2002, 247:223-231.
    [297] Debasis B, Manashi B and Sidney J. Chromium (Ⅵ)-induced oxidative stress, apoptotic cell death and modulation of P53 tumor suppressor gene[J]. Molecular and Cellular Biochemistry, 2001, 222:149-158.
    [298] Desjardin V, Bayard R, Lejeune P and Gourdon R. Utilisation of supernatants of pure cultures of streptomyces thermocarboxydus NH50 to reduce chromium toxicity and mobility in contaminated soils[J]. Water, Air, and soil Pollution: Focus, 2003, 3: 153-160.
    [299] Klein CB, Frenkel K and Costa M. The whole of oxidative process in metal carcinogenidid[J]. Chem. Res. Toxical., 1991, 4: 590-604.
    [300] Stohs SJ and Bagchi D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radical. Biol. Med., 1995, 18: 321-336.
    [301] Snow ET. A possible role for chromium (Ⅲ) in genotoxicity[J]. Environ. Health. Perspect., 1991, 92:75-81.
    [302] Dinauer MC and Orkin SH. Chronic granulomatous disease[J]. Ann. Rev. Med., 1992, 43:117-124
    [303] Dawes IW. Response of eukaryotic cells on oxidative stress[J]. Agric. Chem. Biotechnol, 2000, 43:211-217.
    [304] Xie Y and Zhuang Z. Chromium-induced production of reactive oxygen species, change of plasma membrane potential and dissipation of mitochondria membrane potential in Chinese hamster lung cell cultures[J]. Biomedical and Environmental Sciences, 2001, 14: 199-206.
    [305] Wang S, Leonard SS, Ye J, Gao N, Wang L and Shi X. Role of reactive oxygen species and Cr (Ⅵ) in Rasmeduated signal transduction[J]. Molecular and Cellular Biochemistry, 2004, 255: 119-127.
    [306] 胡晓盘,周建华.镉对鱼类毒性作用的研究现状[J].水利渔业,2005,25(2): 76-78.
    [307] Elumalai M, Antunes C and Guilhermino. Effects of single metals and their mixtures on selected enzymes of Carcinus maenas[J]. Water, Air, and Soil Pollution, 2002;141: 273-280.
    [308] Hamed RR, Farid NM, Elowa SHE and Abdalla AM. Glutathuine related enzyme levels of freshwater fish as bioindicators of pollution[J]. The Environmentalist, 2003, 23: 313-322.
    [309] 王重刚,郑微云,余群,郁昂,陈荣.苯并(a)芘何芘的混合物暴露对梭鱼肝脏抗氧化酶活性的影响[J].环境科学学报,2002,22(4):529-533.
    [310] 董爱华,贾秀英.Cd、Pb对蟾蜍肝脏超氧化物歧化酶活性及其同工酶的影响[J].四川动物,2005,24(2):152-156.
    [311] 陈莹,曹心德,王晓蓉.镧及其配合物对鱼体肝脏中酶活性的影响[J].环境化学,2000,19(1):37-41.
    [312] Cuny D, Haluwyn CV, Shirali P, Zerimech F, Jerome L and Haguenoer JM. Cellular mpact of metal trace elements in terricolous lichen Diploschistes muscorum (scop.)R. sant. -identification of oxidative stress biomarkers[J]. Water, Air, and Soil Pollution, 2004, 152: 55-69.
    [313] Berr C, Richard M, Gourlet V, Garrel C and Favier A. Enzymatic antioxidam balance and cognitive decline in aging- the EVA study[J]. European Journal of Epidemiology, 2004, 19: 133-138.
    [314] 吴进才,刘井兰,沈迎春,徐建样,姜永厚,徐素霞.农药对不同水稻品种SOD活性的影晌[J].中国农业科学,2002,35(4):451-456.
    [315] Parlash S, Lewontin RC, and Hubby JL. A moleculer approach to the study of genetic heterozygosity in natural populations. Ⅳ. Patterns of genic variation in cetrol, marginal isolated populations of Drosophila pseudoobscura[J]. Genetics 1969, 61: 841-858.
    [316] Ruth MH, Ediward FW, Mike HF, Geoffrey IS, Philippe ER. Protective effects of allozyme genotype during chemical exposure in the grass shrimp, Palaemonetes pugio[J]. Aquatic Toxicology, 2004, 70: 41-54.
    [317] Virgilio M, Abbiati M. Allozyme genotypes and tolerance to copper stress in Hediste diversicolor (Polychaeta: Nereididae)[J]. Marine Pollution Bulletin. 2004, 49: 978-985.
    [318] Duan YH, Guttman SI, Oris JT, Bailer AJ. Genotype and toxicity relationships among Hyalella azteca: I Acute exposure to metals or low pH[J]. Enviro. Toxicol. Chem., 2000, 19(5): 1414-1421.
    [319] 李翠兰,段毅豪,卢芙萍,郭亚平,马恩波.氟虫氰急性致死作用对中华稻蝗种群遗传结构的影响[J].农业环境科学学报,2005,24(5):919-923.
    [320] Swofford DL, Selander RB. BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics[J]. Journal of Heredity, 1981, 72:419-426.
    [321] 卢芙萍,李翠兰,段毅豪,郭亚平,马恩波.马拉硫磷对中华稻蝗种群遗传结构的作用[J].遗传,2004,6(5):663-668.
    [322] Ruth MH, Ediward FW, Mike HE Geoffrey IS, Philippe ER. Protective effects of allozyme genotype during chemical exposure in the grass shrimp, Palaemonetes pugio[J]. Aquatic Toxicology. 2004, 70: 41-54.
    [323] Virgilio M, Abbiati M. Allozyme genotypes and tolerance to copper stress in Hediste diversicolor (Polychaeta: Nereididae) [J]. Marine Pollution Bulletin. 2004, 49: 978-985.
    [324] Duan Y H, Guttman S I, Oris J T, Huang X D, Burton G A. Genotype and toxicity relationships among Hyalella azteca : Ⅱ. Acute exposure to fluoranthene2contaminated sediment [J]. Enviro. Toxicol. Chem., 2000, 19(5): 1422-1426.
    [325] Gillsepie RB, SI Guttman. Correlations between water quality and frequencies of allozyme genotypes in Spotfin Shiner (Notropis spilopteris) Populations[J]. Environ. Pollu., 1993, 81: 147-150.
    [326] Duan YH, Guttman SI, Oris .IT, Bailer AJ. Differential survivorship among allozyme genotypes of Hyalella azteca exposed to cadmium, zinc or low pH. [J] Aquatic Toxicology, 2001, 54: 15-28.
    [327] Hong ZD, Ando Y. Parthenogenesis in the three species of Oxya. Jap[J]. J. Applied Ent. & ZooL, 1998, 42(2): 65-69.
    [328] Watt WB. Eggs, enzymes and evolution: Natural genes variants change insect fecundity[J]. Proc. Natl. Acda Sci USA, 1992, 89: 10608-10612.
    [329] 李翠兰,段毅豪,卢芙萍,郭亚平,马恩波.中华稻蝗等位酶基因型与阿维菌素急性死亡率差异研究[J].遗传学报,2004,31(11):1241-1247.
    [330] 耿文奎,杨玉英.溴氰菊酯毒性研究现状[J].广西预防医学,1996,2(5):308-310.
    [331] 郭朕群,贺秉军,高永闯,孙金生,刘安西.溴氰菊酯对神经细胞钙通道和钙库的激活作用[J].昆虫学报,2000,43(3):248-254.
    [332] Berlin JR, Akera T and Brady TM. The inotropic effects of a synthetic pryethriod decamethrin on isolated guinea pig arrial muscle[J]. Europen J. Phyamacol., 1984, 98, 3-4: 313-322.
    [333] 李小鹰,高道蓉,夏亚忠.溴氰菊酯对散白蚁(Reticulitermes sp.)毒力测定结果初报[J].白蚁科技,1998,15(2):8-9.
    [334] Okiria R, Okuna JW, Magona JW and Mayende JSP. Sustainbility of testse control by subsequent treatment of 10% of a previously treated Ugandan cattle population with 1% w/v deltamwthrin[J]. Tropical Animal Health and Production, 2002, 34: 105-114.
    [335] Lee CY, Yap HH and Chong NL. Sublethal effects of deltamethrin and propoxur on longevity and reproduction of Germen cockroaches, Blattella germanica[J]. Entomologia Experimentalis et Applicata, 1998, 89: 137-145.
    [336] 黄卓烈.溴氰菊酯对黄瓜幼苗过氧化氢酶活性的影响[J].热带亚热带植物学报,1998,6(4):336-340.
    [337] 郑东,黄卓烈.溴氰菊酯对黄瓜光合色素、叶绿素酶和氨基乙酰丙酸合酶活性的影响[J].华南农业大学学报,1996,17(3):75-80.
    [338] 王明学,周志刚,张财兵.溴氰菊酯对草鱼脑乙酰胆碱酯酶(AchE)活性的影响[J].淡水渔业,1998,28(2):198-199.
    [339] 刘烈刚,严红,石年,刘毓谷.溴氰菊酯对大鼠脑中EROD酶活性及蛋白表达的影响[J].中国公共卫生,2000,16(2):117.
    [340] 徐文东,杨强,徐志伟.谷胱甘肽及其相关酶在生物体内的作用[J].福建热作科技,1999,24(3):42-43.
    [341] 齐晓东,范来富.1,2,4—三氯苯对谷胱甘肽过氧化物酶活力的影响[J].中国公共卫生,2002,18(5):605.
    [342] 刘萍,梁英,吴世德等.铝对兔血清、脑组织中微量元素及抗氧化系统的影响[J].山东大学学报(医学版),2002,40(4):324-325,328.
    [343] Manda K, Bhatia A. L. Prophylactic action of melatonin against cyclophosphamide-induced oxidative stress in mice[J]. Cell Biology and Toxicology, 2003, 19: 367-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700