双拱型空间钢管结构闸门的分析理论和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双拱型空间钢管结构闸门是应用大跨度空间结构设计理念提出的一种新型闸门,其承重结构是由模拟鱼体构造为适应闸门双向荷载特点设计的双拱钢管桁架组成。每榀双拱钢管桁架包括正拱、反拱、腹杆和弦杆等构件,多榀双拱钢管桁架由横向桁架连接就构成了双拱型空间钢管结构闸门。相对于传统实腹梁格结构闸门而言,双拱型空间钢管结构闸门构件主要承受轴向应力,刚度大。在相同条件下,采用这种结构型式的闸门比实腹梁格闸门节省大量的用钢量。
     本文就对这种闸门进行了分析理论和试验的研究,首先对双拱钢管桁架结构的渊源进行了探讨,提出了双拱型空间钢管结构闸门的概念。并和传统的实腹梁格闸门进行比较,发现双拱型空间钢管结构闸门构件主要以承受轴向应力为主。介绍了双拱型空间钢管结构闸门在“中国第一河口大闸”曹娥江挡潮泄洪闸门中的应用,曹娥江大闸闸门将承受巨大的钱塘江涌潮荷载,双拱型空间钢管结构闸门在这里显示出较大的优势,相对于传统的实腹梁格型式闸门节省了30%左右的用钢量。
     接着对双拱型空间钢管结构闸门的静力计算方法做了研究。提出了两种静力计算方法,分别为按空间结构体系应用有限元计算的方法和按平面结构体系推导简化计算公式的方法。并根据静力计算结果对双拱型空间钢管结构闸门的受力性能进行了分析。
     同时针对双拱型空间钢管结构闸门的重要参数,如双拱钢管桁架结构的布置榀数、双拱的线型、双拱的厚跨比等,进行了参数分析,找出合理的参数为双拱型空间钢管结构闸门的初步设计作参考。
     进一步以曹娥江大闸工程为背景进行了闸门的静力模型试验研究。模型试验研究内容主要有3个部分,分别为闸门静力加载试验、反复加载试验、和滞回性能试验研究。静力加载试验研究验证了计算分析理论的准确性,并分析了结构的受力特性;反复加载试验研究验证了闸门在设计试验荷载谱反复作用下不会发生疲劳破坏;滞回性能试验研究发现闸门结构的承载特性分为三个阶段:分别为弹性阶段、局部塑性阶段、破坏阶段。相应有局部屈服点和整体屈服点,结构的延性较好。闸门结构在双拱交叉处和拱脚处节点破坏明显,这些部位是结构的薄弱之处。
     闸门作为一种挡水构造物,经常会承受较大的水动力荷载作用,于是又以曹娥江大闸工程为背景对双拱型空间钢管结构闸门进行了动力性能的分析研究,动力性能研究主要有两个方面内容:首先对闸门的自振特性进行研究分析,分别考虑了闸门干模态(闸前无水时)和湿模态(闸前有水时)的情况。然后应用实测涌潮冲击荷载谱,考虑附加水质量的影响,对闸门在涌潮冲击下的动力响应进行了分析研究。从研究结果可知涌潮冲击荷载引起的动力效应不会对闸门结构造成破坏。
     从整体模型试验中发现,拱脚处节点和正拱、反拱相交节点是双拱型空间钢管结构闸门的薄弱之处。于是进一步对正、反拱相交的节点进行模型试验研究,对其不同的节点型式(无加强型、套管加强型、肋板加强型)的承载力,应力分布等进行了分析,发现套管加强型是较好的加强节点型式。同时对拱脚支座节点,提出了设计原则,并以曹娥江大闸双拱型空间钢管结构闸门的拱脚节点为例进行了分析和改进优化设计。提出了双拱型空间钢管结构闸门疲劳性能分析方法,对曹娥江大闸双拱型空间钢管结构闸门进行了疲劳性能分析。
     最后对双拱型空间钢管结构闸门制作工艺中注意的事项和尺寸检查步骤进行了研究探讨,并介绍了曹娥江大闸双拱型空间钢管结构闸门的制作情况。
Double-arch gate is a new gate made up of spatial tubular trusses, designed based on the idea of spatial structure. The load-bearing members of the gate are double-arch fish-alike trusses, which are capable of bearing bilateral load. The double-arch truss is composed of the main-arch, the minor-arch, the chord, and the wed-member. The double-arch gate is made up of multiple double-arch trusses. It has more rigidity and larger load-bearing capacity than the traditional gate made up of solid wed girder, because most of its members sustain axial stresses. As a result, this double-arch gate can save much steel consumption under the same condition.
    The analytic theory and experimental research for the new gate were presented in the paper. At first, the original idea of double-arch truss was introduced and the double-arch gate was designed. It was compared with the traditional gate made up of solid wed girder. The new gate was first adopted in Caoe River gate as tidal barrage and sluice .The Caoe River gate bore tremendous tidal bore strike in Qiantang River. Analyses showed that the new gate performed better than the traditional gate in the project because it saved about 30% steel consumption under the same condition.
    Then the analytical methods under dead-load are studied. Comparisons are made between two methods: one of them is FEM regarding the gate as spatial structure and the other is simplified formula regarding the gate as independent plain substructure. The stress of gate is preliminarily analyzed from the result.
    At the same time, for optimization, the significant designing parameters of the gate such as the number of the double-arch truss, the line style of arch axis, the thickness of double-arch were analyzed.
    Further, the scale-model experiment was also conducted in the paper. The research included three procedures: static test, repetitive loading, and cyclic experiment. Result of the static test showed that the result from experiment was consistent with the result from FEA analysis .The repetitive loading experiment verify that fatigue failure cannot appear in Caoe River Gate during serviceable life. In cyclic experiment it is found that the bearing-status is divided into three stages: the elastic stage, the local plastic stage and the failure stage with
    different local yield points and structural yield points. The arch-springing joints and the locations where the main-arches and minor-arches are jointed are the first to be damaged.
    The gate usually bears the dynamic load, so the dynamic property of gate is also researched. The research includes two contents. Firstly, the vibration mode of gate was analyzed by numeric method in consideration of the situation with and without water. Secondly, a numerical analysis of the gate under the load spectrum of the tidal bore strike is carried out. The fluid-structure interaction is considered in the analysis.
    It is shown that arch-springing joints and the locations where the main-arches and minor-arches are joined are relatively weak in the structure. So the detailed experiments on the joints where the main-arches and minor-arches are joined were carried out. Three types of X-shape joints, namely unreinforced joints, rib-plate-reinforced joints and sleeve-reinforced joints, were proposed and studied in experiments. Through the analysis of stress distribution and bearing-capacity of joints, it could be found the sleeve-reinforced joints have the best performance. Also, for the arch-springing joints, the designing principle was proposed, and those on Caoe River Gate were improved and optimized. Moreover, the methods of fatigue analysis were proposed and the fatigue life of the key joints of Caoe River gate was analyzed. At last, the fabrication process and inspection of the double-arch gate were proposed. The fabrication of Caoe River gate was introduced.
引文
[1].蔡正坤.闸门与启闭机.1981,北京:水利出版社.
    [2].安徽省水利局勘测设计院.水工钢闸门设计.1980,北京:水利水电出版社.
    [3].郭崇.意大利威尼斯市的防洪工程闸门.上海水务,2000(2):246-249.
    [4].马丁·彦德利.鹿特丹特大潮挡潮闸.水利水电快报,1996.17(8):10-11.
    [5].傅宗甫,严忠民.新型浮体闸的稳定性分析.水利学报,2005.36(8):1014-1019.
    [6].卢树春.浮体闸技术的发展与推广应用.水利水电技术,1994(1):19-21.
    [7]. Mostafiz M. Experimental results for full-scale composite and steel wicket at smithland facility. Journal OF composites for Construction, 1998.2(2):69-77.
    [8].孙希兵.水工钢闸门聚酯玻璃钢防腐技术研究.水利水电技术,1997.28(8):21-23.
    [9].中华人民共和国电力工业部.水利水电工程钢闸门设计规范,DL/T5039-95.1995,北京:中国电力出版社.
    [10]. Chander G. design guideline for spillway gate. Journal of hydraulic engineer, 1996. 122(3): 155-165.
    [11].周建方.水工钢闸门结构系数的确定.长江科学院院报,2002.19(5):34-38.
    [12].蔡元奇,李建清.弧形钢闸门结构整体优化设计.武汉大学学报(工学版),2005.38(6):20-24.
    [13].蔡元奇.基于ANSYS的遗传算法在水工弧形钢闸门优化设计中的应用.武汉大学学报(工学版),2005.38(5):50-54.
    [14].练继建,李火坤.基于SQP优化算法的露顶式弧形闸门主框架优化设计.水利水电技术,2004.35(9):63-67.
    [15].徐永蔚.葛洲坝枢纽二江泄水闸金属结构总体布置.10,1998:10-12.
    [16].程永东.鸡打港档潮闸设计的主要技术问题.人民珠江,2002(3).
    [17]. G.vittori L. Free and forced oscillations of a gate system as proposed for the protection of Venice Lagoon:the discrete and dissipative model. Coastal Engineering, 1997.31(1):37-58.
    [18].李大伟.满拉水利枢纽金属结构设计.东北水利水电,1998(12):41-42.
    [19].颜宏亮.王堤口渡槽橡胶布双曲扁壳新型闸门的构造原理.山东农业大学学报(自然科学版),2004.35(2):268-272.
    [20].胡霜天.巴帕南水闸工程双扉闸门设计.水利发电,2004.30(5):71-73.
    [21].李亚非.高坝洲水电站弧形闸门设计和原型观测试验.水利发电,2002.20(3).
    [22].谢小玲.三峡导流底孔弧形钢闸门结构应力有限元分析.长江科学院院报,2003.20(6):20-27.
    [23].何文娟.大型人字闸门主要构件的抗扭性能研究.水利学报,1995(3):40-45.
    [24].朱方.漫湾弧形闸门三维有限元应力分析.水利发电学报,2001(2):10-15.
    [25].王正中.钢闸门面板弹塑性调整系数的研究.西北工业大学学报,1995.23(2):84-88.
    [26]. Staka K.P.. Flow-induced Gate Vibration, Water--loopkunding Laboratiorium. 1976, Delft Hydraulics Laborato: Delft.
    [27].刘海浪.水工平面闸门流激振动的激励机理.中国计量学报,2005.12(2):122-127.
    [28].刘汉礼.平面闸门水平振动的附加质.大连工学院学报,1981.21(1):21-26.
    [29].兄汉根.平板闸门振动中的两个问题.大连工学院学报,1964(4).
    [30]. Kolkman P.A. A Simple Scheme for Calculating the Add Mass of Hydraulic Gate Joural of Fluid and Structure, 1982(2).
    [31].吴望一.流体力学.1983,北京:北京大学出版社.
    [32].曹青.弧形闸门自振特性研究.水利水电技术,2001.32(5):16-19.
    [33].催广涛.水流动力荷载于流固相互作用.1999,北京:中国水利电力出版社.
    [34].郭永刚.考虑流—固耦合影响的挡水结构自振特性.世界地震工程,2004.20(3):78-84.
    [35].徐汉忠.动水压力的附加质量矩阵的边界元分析.河海大学学报,1994.22(1):117-120.
    [36].谢省宗.泄水建筑物的压力脉动和振动问题.高速水流,1986(2):21-26.
    [37].Weaver D.论水流引起水工建筑物的振动和减振措施.高速水流译文集.1979,北京:水利电力出版社.
    [38].中华人民共和国电力部.水工建筑物荷载设计规范.1998,北京:中国电力出版社.
    [39].中华人民共和国电力部.水工建筑物抗震设计规范.1997,北京:电力出版社.
    [40]. Westergaard H. Water pressures on dams during earthquakes Trans. ASCE, 1933. 9(8):413-418.
    [41].严根华,阎诗武.水工弧形闸门的水弹性耦合自振特性研究.水利学报,1990(7):49-55.
    [42].严根华.水动力荷载与闸门振动.水利水运工程学报,2001(2):10-15.
    [43].吴一红,谢省宗.水工结构流固耦合动力特性分析.水利学报,1995(1):27-34.
    [44]. N.Ishii. Field study of a long-span shell-type gate undergoing flow-induced vibration. Journal of Fluids and Structures, 1995.9(1): 19-41.
    [45]. Sibert K. The improvement of the Ohio River[Transactions of the ASCE 63, 1909:388-425.
    [46]. Mostafiz K. Dynamic performance evaluation of gate vibration. Journal of Structural Engineering, 1999. 125(4):445-452.
    [47]. Sanabri S. Hydrodynamic study of the theolmsted wicket gate using a l:25-scale model. Mechanical Systems and Signal Processing, 1998.12(5):661-677.
    [48]. Billeters E Flow-induced multiple-mode vibrations of gates with submerged dischage. Journal of Fluids and Structures, 2000. 14(2):323-338.
    [49]. Hardy K. Flow induced Vibration of Vertical Lift Gate. Journal of the Hydraulics Division,, 1974. 100(5):631-644.
    [50].王韦,杨永全.孔板泄洪洞事故闸门动水下门实验研究.水利学报,2003(1):39-45.
    [51].吴杰芳.张林让.三峡大坝导流底孔闸门流激振动水弹性模型试验研究.长江科学院院报,2001.18(5):76-80.
    [52].严根华.高水头大尺寸闸门流激振动原型观测研究.水力发电学报,2001(4):65-75.
    [53].刘礼华,袁文阳.凤滩弧形闸门局部开启原型振动试验研究.武汉水利电力大学学报,1997.30(3):29-33.
    [54]. Liao C.Y. Numerical solution for trapped modes about inclined Venice gates. Journal of Waterway, Port, Coastal, and Ocean Engineering,, 2000. 126(5):236-244.
    [55]. Guangda L. Natural modes of mobile flood gates. Applied Ocean Research, 2003.25(8): 115-126.
    [56].王玉林.高压闸门在水击作用下的动力响应.长沙铁道学院学报,1991.9(1):61-71.
    [57].刘亚坤.水工弧形闸门流激振动分析.大连理工大学学报,2005.45(2):730-734.
    [58].刘加海.悬臂式钢闸板在波浪荷载下的动力响应.哈尔滨工业大学学报,2005.37(3):336-338.
    [59]. Therese F. Relability-based condition assessment of welded miter gate structure. Journal of Infrastructure Systems, 2001.7(3):95-106.
    [60]. Cleary D. Development of miter gate reliability model, in Proc., 7th Spec. Conf. 1996. New York: ASCE.
    [61]. Allen B. Updating reliability of steel miter gates on locks and dams using visual inspection results. Engineering Structures, 2004. 26(2):319-333.
    [62]. Yilmaz L. The design of hydraulic steel gates subject to wave motion and fatigue life prediction according to the theory of stochastic dynamic analysis. ARI, 1998.51 (1): 105-112.
    [63]. Eellom T. Investigation of bridge floor-truss behavior in tied-arch span. Journal of Performance of Constructed Facilities, 1996. 10(2):79-86.
    [64].戴公连.深圳市芙蓉大桥连续钢管拱系杆拱桥空间稳定性分析.中国公路学报,2001.14(1):48-51.
    [65]. X.Y. Yang. G.P. Steven, Evolutionary methods for topology optimisation of continuous structures with design dependent loads. Computers and Structures, 2005.83(8):956-963.
    [66].欧进萍.海洋平台结构安全评定:理论、方法与应用.2003,北京:科学出版社.
    [67].武汉水利水电学院.水工钢结构.1986,北京:水利水电出版社.
    [68]. Wang D. Truss shape optimization with multiple displacement constraint. Computer methods in applied mechanics and engineering, 2002. 191(33):3597~3612.
    [69]. Zhang W.H. Domaszewski.M., a., A new mixed convex approximation method with applications for tru&s configuration optimization.. Struct. Optim, 1998. 15(2):237-241.
    [70]. Liu G. A. Shape and cross-section optimisation of a truss structure. Computers and Structures, 2001.79(5):681-689.
    [71]. Taylor T. On the prediction of topology and local properties for optimal trussed structures. Struct Optim, 1997. 14(1):53-62.
    [72]. Airbowz P.C. The weight estimation of gate. International Water Power and Dam Construction, 1984.36(5):125-136.
    [73].浙江大学空间结构研究中心.曹娥江大闸新型挡潮泄洪闸门研究报告.2006:杭州.
    [74].沈祖炎,陈扬骥.网架与网壳.1996,上海:同济大学出版社.
    [75].陈以一.圆钢管相贯节点抗弯刚度和承载力试验.建筑结构学报,2001.22(6):25-30.
    [76].刘鹏.方圆汇交平面钢管节点的刚度研究,in结构工程.2001,同济大学:上海.
    [77].沈祖炎,陈扬骥.上海八万人体育场屋盖的整体模型和节点试验研究.建筑结构学报,1198(2).
    [78].龙驭球.包世华,结构力学,第一版.1996,北京:高等教育出版社.
    [79].顾国邦.公路桥涵设计手册(拱桥).1994,北京:人民交通出版社.
    [80].沈祖炎,大型空间结构整体模型静力试验的若干关键技术.土木工程学报,2001.34(4):102-107.
    [81].赵宪忠.上海东方明珠国际会议中心单层球网壳整体模型试验研究.建筑结构学报,2000.21(3):16-22.
    [82].陈以一.大型预制预应力混凝土空间结构试验研究.土木工程学报,2006.39(11):15-21.
    [83].施飞,门式拱架轻型房屋钢结构承载性能的试验研究.清华大学学报(自然科学版),2006.46(6):757-759.
    [84].王韦.孔板泄洪洞事故闸门动水下门实验研究.水利学报,2003(1):39-44.
    [85].陈长植,董曾南.上海市苏州河挡潮闸底板沉放试验研究.水利学报,1993(5):59-67.
    [86]. Inc Ansys. Ansys release 9.0 documen. 2003, ANSYS Inc.
    [87]. Bernasconi A. Multiaxial fatigue of a railway wheel steel under non-proportional loading. International Journal of Fatigue, 2006.28(6):663-672.
    [88]. Chen X. Evaluation of fatigue damage at welded tube joint under cyclic pressure using surface hardness measurement. Engineering Failure Analysis, 2005. 12(6):616-622.
    [89]. Yang X. Low cycle fatigue and cyclic stress ratcheting failure behavior of carbon steel 45 under uniaxial cyclic loading. International Journal of Fatigue, 2005.27(10):1124-1132.
    [90]. Liu W.C. Low-Cycle Bending-Fatigue Strength of Steel Bars under Random Excitation. Part Ⅰ: Behavior. Journal of Structural Engineering, 2005.131 (6):913-918.
    [91]. Eleiche A.M. Low-cycle fatigue in rotating cantilever under bending. Ⅲ: Experimental investigations on notched specimens. International Journal of Fatigue, 2006.28(3):271-280.
    [92].孙静涛.HG50钢焊接接头疲劳特性.焊接学报,2004.25(3):89-92.
    [93]. Paul A. Tsakopoulos, Full-Scale Fatigue Tests of Steel Orthotropic Decks for the williamsburg Bridge. Journal of Bridge Engineering,, 2003.8(5):323-333.
    [94]. Charles W. Dynamic response and fatigue of steel tied-arch bridge. Journal of Bridge Engineering, 2000.5(1):14-21.
    [95]. Claybaugh B.G. Fatigue and Strength Performance of Concrete-Filled Steel-Grid Bridge Deck. Journal of Bridge Engineering,, 2004.9(5):435-443.
    [96]. Wang T.L. Truck Loading and Fatigue Damage Analysis for Girder Bridges Based on Weigh-in-Motion Data. Journal of Bridge Engineering, 2005.10(1): 12-20.
    [97].钟铭.高强度钢筋混凝土梁静力和疲劳性能试验研究.建筑结构学报,2005.26(2):94-101.
    [98].沈祖炎.钢结构焊接方管节点疲劳性能研究.土木工程学报,1993.26(4):40-46.
    [99].J.A.Packer.空心管结构连接设计指南.1997,北京:科学出版社.
    [100].王天亮.芜湖长江钢梁整体节点疲劳试验研究.中国铁道科学,2001.22(5):93-97.
    [101].徐加寿.七堡站涌潮观测统计.浙江水利科技,1994(2):19-22.
    [102].浙江水利河口研究院.曹娥江大闸涌潮作用力专题研究报告.2005:杭州.
    [103].邵卫云,刘国华.钱塘江涌潮压力的动态测试与分析研究.浙江大学学报(工学版),2002.36(3):247-251.
    [104].林炳尧.钱塘江河口潮波变化过程.水动力学研究与进展,2002.17(6):665-675.
    [105]. Associations, C.S. CSA,Limit states design of steel structures. CAN/CSA-S16.1-M89. 1989: Ontario.
    [106]. Whittaker A. Fatigue-life evalution of steel post structures. Ⅱ: Experiment..Journal of Structural Engineering, 2000. 126(3):331-340.
    [107]. Pedersen N.T. Fatigue damage accumulation in offshore tubular structures under stochastic loading. Proceedings, 4th.International Symposium onTubular Structures, 1991:665-675.
    [108]. Alloa G.. Buckling of built-up columns with or without stayplates. Joural of Engineering Mechanics, 1998.116(5):393-400.
    [109]. Michael K. Steel lattice members under cyclic axial and flexural actions. Journal of Structural Engineering, 1999. 125(4):393-400.
    [110]. Praween C. Strength and Ductility of Steel Box Girders under Cyclic Shear. Journal of Structural Engineering, 2000. 128(9):1130-1138.
    [111]. Lin F.J. Glauser, E. C., Behavior of laced and battened structural members. Journal of Structural Engineering, 1970.96(7):1377-1401.
    [112]. Hsu H.L. Cyclic responses of thin-walled structural steel members subjected to three-dimensional loading. Thin-Walled Structures; 2001.39(4):571-582.
    [113]. Mcdaniell C. Cyclic Testing of Built-Up Steel Shear Links for the New Bay Bridge. Journal of Structural Engineering,, 2003. 129(6):801-809.
    [114]. Collruy J. Cyclic Testing of Moment Connections Upgraded with Weld Overlays. Journal of Structural Engineering, 2002. 128(4):509-516.
    [115]. Cavidan Y. Cyclic tests for welded-plate sections with end-plate connections. Journal of Constructional Steel Research, 2001.57(10): 1309-1320.
    [116]. Zepeda A. Cyclic behavior of steel moment frame connections under varying axial load and lateral displacements. Journal of Constructional Steel Research, 2003.59(1): 1-25.
    [117]. Elchalakani M. Cyclic Bending Tests to Determine Fully Ductile Section Slenderness Limits for Cold-Formed Circular Hollow Sections. Journal of Structural Engineering, 2004. 130(7):1001-1010.
    [118]. Elchalakani M. Tests of Cold-Formed Circular Tubular Braces under Cyclic Axial Loading. Journal of Structural Engineering Failure Analysis, 2003. 129(4):507-514.
    [119].朱伯龙.结构抗震试验.1989,北京:地震出版社.
    [120].陈以一.翟红,圆钢管相贯节点滞回特性的实验研究.建筑结构学报,2003.24(6):57-63.
    [121]. W.Johnson, Engineering Plasticity, ed. V.N.R. Company. 1973, London.
    [122].欧谨,新型钢管混凝土柱框架节点低周反复荷载试验研究.地震工程与工程振动,1999.19(3):44-48.
    [123]. American Institute of Steel Construction. Load and Resistance Factor Design Specification for Structural Steel Buildings., ed. A. Committee. 1999, Chicago.
    [124]. Thang N. Self-excited vibrations of vertical lift gates. Journal of Hydrautic Research, 1986. 24(6):323-338.
    [125]. Billeter P. Flow-induced multiple-mode vibrations of gates with submerged dischage. Journal of Fluids and Structures, 2000. 14(4):323-338.
    [126].邱流潮,王进廷.海绵吸收层法在坝.库水瞬态动力相互作用分析中的应用.水利学报,2004.46(1):46-51.
    [127].南京水利科学研究院.曹娥江大闸新型双拱型闸门流激振动试验研究报告.2006,南京.
    [128].武振宇,张壮南.K型、kk型间隙方钢管节点静力工作性能的试验研究.建筑结构学报,2004.25(2):32-38.
    [129].武振宇,张耀春.直接焊接钢管节点静力工作性能的研究现状.哈尔滨建筑大学学报,1996.29(6):102-107.
    [130].武振宇.K型、K K型搭接方管节点的试验研究.土木工程学报,2005.38(4):25-31.
    [131].张壮南,武振宇.弦杆轴向压力作用下K型、K K型间隙方管节点静力工作性能的试验研究.土木工程学报,2005.38(4):32-39.
    [132].李俊,卫星.大型钢网壳结构铸钢节点复杂受力的试验研究.木工程学报,2005.38(6):8-19.
    [133].卫星,大跨度网壳结构铸钢球节点实体试验研究.西南交通大学学报,2004.39(4):428-433.
    [134].陈以一,园钢管空间相贯节点实验研究.土木工程学报,2003.36(8):24-30.
    [135]. Choo Y.S. Static Strength of T-Joints Reinforced with Doubler or Collar Plates. Ⅰ: Experimental Investigations. Journal of Structural Engineering, 2005.31 (1): 119-128.
    [136]. Choo Y.S. Static strength of T-joints reinforced with doubler or collar plates. Ⅱ: Numerical simulations. Journal of Structural Engineering, 2005. 131 (1): 129-138.
    [137]. Choo Y.S. Effects of boundary conditions and chord stresses on static strength of thick-walled CHS K-joints. Journal of Constructional Steel Research, 2006.62(4):316-328.
    [138]. Fung T.C. Ultimate capacity of doubler plate reinforced tubular joints. Journal of Structural Engineering, 1999. 125(8):891-899.
    [139]. Sing-Ping Chiew. Experimental and numerical stress analyses of tubular XT-joint. Journal of Structural Engineering, 1999. 125(11): 1239-1248.
    [140]. Gho W.M. Load combination effects on stress and strain concentration of completely overlapped tubular K(N)-joints. Thin-Walled Structures, 2005.43(10): 1243-1263.
    [141]. Wlluy M. Stress and strain concentration factors of completely overlapped tubular K(N)-joints. Journal of Structural Engineering, 2003.129(1):21-30.
    [142]. Zhao X.L. Design guide for circular and rectangular hollow section joints under fatigue loading., I.D.X.E.V. TUV. 1998, Germany: Rheinland,.
    [143]. Dutta D. Parameters influencing the stress concentration factors in joints in offshore structures, in Fatigue in offshore structures,Balkema. 1996: The Netherlands. p. 77-128.
    [144]. Fung T.C. Stress Concentration Factors of Doubler Plate Reinforced Tubular T Joints. Journal of Structural Engineering, 2002. 128(11):1399-1412.
    [145].朱邵宁.长沙贺龙体育场钢屋盖圆管相贯节点足尺试验研究.建筑结构学报,2004.25(3):8-13.
    [146].中华人民共和国建设部.钢结构设计规范,ed.G.50017-2003.2003.
    [147].孙德发.钢塔结构的节点设计.黑龙江八一农垦大学学报,1999.11(4):39-42.
    [148].中华人民共和国建设部.建筑抗震设计规范.2001,北京:中国计划出版社.
    [149]. F.Chen, Theory of Beam-Columns. 1997, New York: McGraw- Hill Inc.
    [150]. Wardenier J. Hollow sections in structural appliction. 2002, Netherland: Boutwen Met Staal.
    [151]. Radaj D. Design and analysis of fatigue resistent welded structure. 1990, Abington: Woodhead publishing Ltd.
    [152].高镇同.疲劳性能测试.1980,北京:国防工业出版社.
    [153].高镇同,疲劳应用统计学.1986,北京:国防工业出版社.
    [154]. Richard.C. Fatigue Design Hnadbook. 1988, US: ASCE.
    [155].程育仁.疲劳强度.1990,北京:中国铁道出版社.
    [156].航空工业部科学技术委员会.应变疲劳分析手册.1987,北京:科学出版社.
    [157]. Romeijn A, Wardenier J. Guidelines on the numerical determination of stress concentration factors in tubular joints, in Proceedings of the 5th International Symposium on Tubular Structures,. 1993. Nottingham (UK).
    [158]. Wingerde A. New guideline for fatigue design of HSS Connections. Journal of Structural Engineering. Journal of Structural Engineering Structures, 1996. 122(2): 125-132.
    [159].李治彬.海洋工程结构1999,哈尔滨:哈尔滨工程大学出版社.
    [160]. M.K.Lee. Stress concentration factors in tubular K-joint under in-plane moment loading. Journal of Structural Engineering, 1998.124(4):382-390.
    [161]. Healy B. Extrapolation procedures for determining SCFs in mid-surface tubular joint models in Proceedings of the 6th International Symposium on Tubular Structures. 1994. Melbourne (Australia).
    [162]. Lee M. Strength, stress and fracture analyses of offshore tubular joints using finite elements. Journal of Constructional Steel Research, 1999.51 (2):265-289.
    [163]. Institute A.P. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design. 1996, Washington: America Petroleum Institute.
    [164]. M.A.Miner. Cumulative Damage in Fatigue. Trans.ASME,J.Appl.Mech, 1945.67(9): 159—167.
    [165].中华人民共和国建设部.钢结构工程施工质量验收规范.2002,北京:中国计划出版社.
    [166].罗尧治,朱世哲.双锥型圆钢管的强度设计计算方法.建筑结构学报,2005.26(6):86-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700