城市生活垃圾厌氧消化的关键生态因子强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧消化城市生活垃圾(MSW)是集环保、能源和资源回收于一体的新的生物处理技术,其中如Dranco、Valorga、Kompogas和Biocel等工艺已经成功实现了工程化运行。然而,在厌氧消化过程中仍存在产气速率、产气量低,发酵周期长,有机物降解效率不高等问题。主要原因有:一是缺乏高效微生物;二是缺乏高效反应器;三是MSW的复杂性和可变异性;四是厌氧工艺过程稳定性差。本文在国内外已有的研究基础上,系统地研究了MSW可变异性与生物降解性、接种物筛选、好氧微生物强化厌氧消化城市有机生活垃圾(OFMSW)、OFMSW与剩余污泥的联合消化、有机负荷(OLR)波动对厌氧过程稳定性影响、温度因子对厌氧消化性能的影响与强化等内容。论文主要研究内容与结论有:
     MSW是厌氧消化的关键非生物因子,能显著影响厌氧消化的效率。论文在研究MSW可变异性的基础上,比较了城市生活垃圾(MSW)、机械分选城市有机生活垃圾(MS-OFMSW)、人工分选城市有机生活垃圾(HS-OFMSW)和源分城市有机生活垃圾(SS-OFMSW)的物理组成及有机质成分;并分析了它们在不同温度(35℃/55℃)下的厌氧生物降解率分别为47.8%/49.1%、66.7%/68.0%、80.5%/81.5%和86.1%/86.9%,可生物降解物质分数(BF)分别为51.4%、63.7%、72.1%和74.0%。因而它们的产沼气潜力(BMP)存在显著差异,MSW、MS-OFMSW、HS-OFMSW和SS-OFMSW的中温(35℃)BMP分别为215.9mLCH_4/gVS、302.5mLCH_4/gVS、368.8mLCH_4/gVS和391.9mLCH_4/gVS,高温(55℃)BMP分别为221.8mLCH_4/gVS、308.4mLCH_4/gVS、373.7mLCH_4/gVS和395.4mLCH_4/gVS。
     OFMSW厌氧消化的生物因子强化结果表明,初始接种物的最大比产甲烷活性(SMA)明显不同,以中温厌氧消化污泥的为最高(224mLCH_4/gVSS·d),其次为来自常温运行的UASB反应器污泥和化粪池底泥,SMA分别为196mLCH_4/gVSS·d和184.8mLCH_4/gVSS·d。经过两次中温培养、富集后,SMA显著提高,能加快OFMSW厌氧过程的启动和提高OFMSW的厌氧降解率;SMA与OFMSW厌氧降解率呈一定的正相关性,即SMA越大,OFMSW厌氧降解率越大。
     接种物-OFMSW比率(ISR)会显著影响OFMSW的厌氧消化性能。在相同质量的接种物下,ISR=1是厌氧消化的最适宜值,过大或过小都会影响有机物产气量和反应器利用率。ISR=1时发酵过程稳定性较高,产气速率和产气量较大,同时,有机物降解率和反应器利用率都得到合理的提高。
     此外,还利用好氧微生物(作为生物因子)对OFMSW高温厌氧消化进行了强化研究。好氧微生物能提高OFMSW的可生物降解性,增加后续厌氧过程的稳定性,提高产气量和消化效率。其中以好氧生物处理12h的OFMSW厌氧过程稳定性最好、产气量最大(29927.98mL),提高了25.8%。好氧Oh、6h、12h、24h、48h和72h的OFMSW厌氧消化速率常数分别为0.1517d~(-1)、0.1453d~(-1)、0.1428d~(-1)、0.1396d~(-1)、0.1748d~(-1)和0.1819d~(-1)。
     为改善消化底物的营养结构和C/N,提高厌氧消化性能,进行了OFMSW-剩余污泥联合消化实验研究。OFMSW-剩余污泥的BMP测试结果表明,理论甲烷产量(TMP)随着OFMSW组分的增加而降低(560CH_4mL/gVS~521 CH_4mL/gVS),而BMP随之增大(223CH_4mL/gVS~414CH_4mL/gVS)。OFMSW-剩余污泥的半连续联合消化结果说明,产气速率随着OFMSW组分的增加而增大,其中以90:10(OFMSW/剩余污泥,VS基)进料(HRT=15d和OLR=4.8gVS/L·d)时的产气速率最大(2456mL/L·d)。
     OLR的波动或突变对厌氧过程的稳定性有着显著的影响,主要表现在对产气速率、pH值、CH_4含量和VFA浓度的变化上。OLR对各参数影响的强弱顺序为:VFA浓度>产气速率>甲烷含量>pH值。因而可以通过对上述参数的监测来判断厌氧过程的稳定性,其中以pH监测法最为便捷实用。
     在厌氧消化过程的生物因子与非生物因子强化实验中,还研究了半连续和间歇厌氧反应动力学模型,包括有机物产气动力学、降解动力学和大肠杆菌死亡动力学。由产气量和反应器的出口浓度模拟或计算,得出了有关动力学参数。35℃时半连续消化(CSTR)反应速率常数为0.119d~(-1),大肠杆菌死亡速率常数为0.69d~(-1)(以消化污泥符合美国A级污泥排放标准为例)。25℃、35℃、55℃的间歇反应速率常数分别为0.013d~(-1)、0.047d~(-1)、0.1254d~(-1);OFMSW厌氧反应的活化能为58.93kJ/mol;大肠杆菌死亡速率常数分别为0.001d~(-1)、0.0256d~(-1)和16.11d~(-1)(以消化污泥符合城镇垃圾农用控制标准GB8172-87要求为例)。
     温度对OFMSW厌氧消化的影响与强化结果表明,55℃为最适宜反应温度。55℃时OFMSW平均产气率为180.80mL/gTS,平均甲烷含量为70.0%,消化时间为20d左右;发酵残留物的比产甲烷活性(SMA)为477mLCH_4/gVSS·d,其中大肠杆菌浓度和蛔虫卵的死亡率分别为10~(-3)MPN/g和100%,符合GB8172-87控制标准的卫生要求。
The integrative anaerobic digestion is a new bioremediation technique with advantages in environment protection, energy and resource recovery treating municipal solid waste (MSW), among that Dranco, Valorga, Kompogas and Biocel processes have been industrialized. However, there are several disadvantages such as low gas production rate and gas production, long digestion time and inefficient organic compounds-decomposing in anaerobic process because of lack of effective microorganism and anaerobic reactor, complex-variability of organic fraction of municipal solid waste (OFMSW) and instability of anaerobic process. On basis of domestic and abroad references, there have been some systematic researches of key factors enhancement of anaerobic digestion for treating MSW including comminution and separation of MSW, variability and biodegradability of MSW, filtration and enrichment culture of inoculum, aerobic microorganism pretreatment of OFMSW enhancing anaerobic process, codigestion of OFMSW with waste sludge, influence of organic loading rate (OLR) and temperature on anaerobic process in this dissertation.
     MSW play an important role in anaerobic process, which is the key abiological factor having influence on anaerobic performance. On basis of the variability of MSW, the comminuting and sorting experiments were carried out for MSW in Kunming University of Science and Technology.The analyses were taken about the physical compositions and organic chemical components of MSW respectively by machine-sorted, hand-sorted, and source-sorted method which called MS-OFMSW, HS-OFMSW and SS-OFMSW. Based on the data from the experiments it was about 47.8%/49.1%,66.7%/68.0%,80.5%/81.5% and 86.1%/86.9% at 35℃/55℃respectively for biodegradability percentage while their biodegradable fractions (BF) based lignin content was 51.4%,63.7%,72.1% and 74.0% respectively. The biochemical methane potential (BMP) of MS-OFMSW, HS-OFMSW and SS-OFMSW were 215.9mLCH_4/g VS, 302.5mLCH_4/gVS, 368.8mLCH_4/gVS and 391.9mLCH_4/gVS in the mesophilic condition,221.8mLCH_4/gVS,308.4mLCH_4/gVS,373.7mLCH_4/gVSand 395.4mLCH_4/g VS in the thermophilic condition respectively.
     The results of biological factors enhancement under the mesophilic anaerobic digestion of OFMSW showed that each inoculum possessed particular characteristics because of their different source, among that the initial specific methanogenic activity (SMA) were the most important. The mesophilic anaerobic sludge (MAS) presented the highest SMA value. UASB sludge (UAS) and septic tank bottom sludge (STBS) were much of SMA value which were 196mLCH_4/gVSS·d and 184.8mLCH_4 /gVSS·d respectively. These inoculums after incubation and enrichment shorted the lag time of anaerobic process and improved the biodegradability of organic waste. The relationship between OFMSW and anaerobic degradability was positive, namely the more the SMA was, the more the anaerobic degradability was.
     The inoculum-substrate ratio (ISR) had influence on the mesophilic anaerobic performance of OFMSW evidently. When ISR being one was the best condition under the same mass (based volatile solid) which kept anaerobic process high stability; meanwhile the biodegradability, gas production rate (GPR) and accumulative gas production were higher than that of others. The biodegradability of organic waste and utilization of reactor capacity improved reasonably.
     Aerobic microorganism was regarded as biological factor to pre-treat OFMSW, which improved the biodegradability of OFMSW.Therefore the anaerobic process stability, gas production and digestion efficiency improvement presented in the anaerobic process, especially in the OFMSW pretreated for 12 hours by aerobic microorganism, which gas production increased 25.8% being the most gas production (29927.98mL) of all others. The reaction rate constants of anaerobic digestion of OFMSW pretreated for Oh, 6h, 12h, 24h, 48h and 72h by aerobic microorganism were 0.1517d~(-1), 0.1453d~(-1), 0.1428d~(-1), 0.1396d~(-1), 0.1748d~(-1) and 0.1819d~(-1) respectively.
     The experiments of OFMSW and waste sludge codigestion were carried out in order to improve the nutrition ingredients and C/N of OFMSW and their anaerobic performance. The results of batch codigestion of OFMSW and waste sludge showed that theoretical methane production (TMP) decreased with OFMSW content increase from 560CH_4mL/gVS to 521CH_4mL/gVS; while BMP increased with OFMSW content increase from 223CH_4mL/gVS to 414CH_4mL/gVS. The results of semicontinuous codigestion of OFMSW and waste sludge showed that gas production rate(GPR) increased with OFMSW content increase. The appropriate proportion of OFMSW and waste sludge was 90/10(based VS content),which GPR was the highest under the conditions that HRT and OLR was 15d and 4.8gVS/L·d respectively. The GPR was 2456mL/L·d.
     OLR fluctuation or sudden variation had influence on stability of anaerobic process distinctly by the fluctuation of some important parameters. The influence degree of OLR fluctuation on some important parameters as follows:VFA concentration > GPR > methane content > pH. Therefore, the anaerobic process stability was estimated by inspecting these parameters above-mentioned, among that pH assay was the most convenient and effective.
     During the biological and abiological factors enhancing anaerobic digestion dynamics model of semi-continuous and batch anaerobic process have been studied including gas production, degradability and fecal coliform destruction. The parameters concerned obtained according to these data and dynamics model. The reaction rate constant of semicontinuous anaerobic process was 0.119d~(-1); while the rate constant of fecal coliform destruction according to the class A criterion of sludge (USA) was 0.69d~(-1) under the mesophilic (35℃) condition. However, the reaction rate constants of batch anaerobic process were 0.013d~(-1),0.047d~(-1) and 0.1254d~(-1);meanwhile the rate constant of fecal coliform inactivation of the criterion in GB8172-87 were 0.001d~(-1),0.0256d~(-1) and 16.11d~(-1) under the psychrophilic (25℃), mesophilic (35℃), and thermophilic (55℃) conditions respectively. The activation energy of anaerobic reaction of OFMSW was 58.93kJ/mol.
     Laboratory-scale experiments were carried out to assess the influence of temperature enhancement on anaerobic treatment of OFMSW. The results showed that it was 55℃for the optimum temperature. The parameters were obtained such as 180.80mL/gTS for average biogas production, 70.0% for average methane concentration in biogas, about 20d for digestion time, 477mLCH4/gVSS·d for the residue SMA, 10~(-3)MPN/g for fecal coliform and 100% for destruction rate of roundworm eggs under thermophilic condition, which exceeded the psychrophilic and mesophilic conditions. The inactivation of pathogens in the residue under thermophilic condition was in accordance with the citerion in GB8172-87.
引文
[1] 解强,边炳鑫,赵由才.城市固体废弃物能源化利用技术.北京:化学工业出版社,2004
    [2] 席北斗,魏自民,刘洪亮等.有机固体废弃物管理与资源化技术.北京:国防工业出版社,2006
    [3] 国家环保总局污染控制司.城市固体废物管理与处理处置技术.北京:中国石化出版社,2000
    [4] 刘芳,陈季华,奚旦立等.上海城市生活垃圾处置及污染防治对策研究.中国资源综合利用,2005,(5):13~15
    [5] 周翠红,路迈西,吴文伟等.北京市城市生活垃圾产量预测.中国矿业大学学报, 2003,32(2):169~172
    [6] 韩林.天津市城市生活垃圾处理问题研究.天津:天津大学,2003
    [7] 昆明市统计局.2004年昆明市统计年鉴.北京:中国统计出版社,2004
    [8] 陈金发.昆明城市生活垃圾处理与处置方法优化.昆明:昆明理工大学,2003
    [9] 吴满昌.城市有机生活垃圾高温厌氧消化工艺及沼渣综合利用研究.昆明:昆明理工大学,2005
    [10] U.S.EPA. Municipal solid waste in the United States: 2001 Facts and figures, Office of solid waste and emergency response.2003
    [11] 陈朱蕾,唐赢中.我国城市粪便的可持续利用研究.城市环境与城市生态,1999,12(2):42~44
    [12] 陈朱蕾,唐赢中.我国城市粪便清运处理系统的数量特征和预测.武汉城市建设学院学报,1997,14(2):16~19
    [13] 李金红,何群彪.欧洲污泥处理处置概况.中国给水排水,2005,21(1): 101~103
    [14] 邹绍文,张树清,王玉军等.中国城市污泥的性质和处置方式及土地利用前景.中国农学通报,2005,21(1):198~201
    [15] 段丽杰,盛连喜,王志平.长春市生活垃圾处理现状分析与对策探讨.环境卫生工程,2004,12(3):168~170
    [16] 张记市,苏存荣,谢刚.昆明城市生活垃圾处理研究.云南环境科学,2004, 23(1):3~5
    [17] 张于峰,邓娜,李新禹等.城市生活垃圾的处理方法及效益评价.自然科学进展,2004,14(8):863~869
    [18] 王华.二恶英零排放化城市生活垃圾焚烧技术.北京:冶金工业出版社,2001
    [19] Tchobanoglous G, Theisen H, Vigil S. Integrated solid waste management: Engineering principles and management issues. New York: McGraw-Hill international editions, 1993
    [20] 刘会友,王俊辉,赵定国.厌氧消化餐厨垃圾的工艺研究.能源技术,2005, 26(4)150~154
    [21] Ormeci B, Vesilind P. A development of an improved synthetic sludge: A possible surrogate for studying activated sludge dewatering characteristics. Water resource, 2000, 34(4): 1069~1078
    [22] 张记市,王华,谢刚等.垃圾焚烧二恶英污染物的控制技术.环境保护,2003, (1):20~21
    [23] Speece R E. Anaerobic digestion of biomass. New York: Elsevier Applied Science Publishing, 1987
    [24] 李亚新,董春娟,徐明德.厌氧消化过程中Fe、Co、Ni对NH_4~+-N拮抗作用.城市环境与城市生态,2000,13(4):11~12
    [25] 莫测辉,吴启堂,李桂荣,广东省城市污泥农用资源化的思考.农业环境与发展,1998,56(2):8~12.
    [26] 谭启玲,胡承孝,赵斌等.城市污泥的特性及其农业利用现状.华中农业大学学报,2002,21(6):587~592
    [27] Bidlingmaier W, Sidaine J M, Papadimitriou E K. Separate collection and biological waste treatment in the European Community. Reviews in Environmental Science and Biotechnology,2004, 3(4): 307~320
    [28] 张越.城市生活垃圾减量化管理经济学.北京:化学工业出版社,2004
    [29] Murphy J D, Mckeogh E. Technical, economic and environmental analysis of production from municipal solid waste. Renewable Energy, 2004,29 (7) :1043~1057
    [30] Lema J M, Omil F. Anaerobic treatment: A key technology for a sustainable management of wastes in Europe. Water Science and Technology, 2001, 44 (8):133~140
    [31] Sakai S, Sawell S E, Chandler A J et al. World trends in municipal solid waste management. Waste Management and Research, 1996,16 (5~6):341~350
    [32] De Baere, L. Anaerobic digestion of solid waste: State-of the art. Water Science and Technology, 2000, 41(3):283~290
    [33] Kalyuzhnyl S, Veeken A, Hamelers B. Two-particle model of anaerobic solid state fermentation. Water Science and Technology, 2000, 41(3):43-50
    [34] McCarty P L, Smith D P. Anaerobic wastewater treatment. Environmental Science and Technology, 1986, 20(12):1200~1206
    [35] 任南琪,王爱杰,马放.产酸发酵微生物生理生态学.北京:科学出版社,2005
    [36] 李建政,任南琪.污染控制微生物生态学.哈尔滨:哈尔滨工业大学出版社, 2005
    [37] 胡纪翠,周孟津,左剑恶等.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003
    [38] 吕炳南,陈志强.污水生物处理新技术.哈尔滨:哈尔滨工业大学出版社,2004
    [39] Largus T A, Sungb L S, Raskina L. Methanogenic population dynamics during start up of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Resource,2002,38(18):4648~4654
    [40] Florencio L, Field J A, Letting G. Substrate competing between methanogens and acetogens during the degradation of methanol in UASB reactors. Water Resource, 1995,29(3):915~922
    [41] 周少奇.有机垃圾厌氧处理的微生物作用原理.华南理工大学学报(自然科学版),1999,27(9):81~84
    [42] 周少奇.环境微生物.北京:科学出版社,2003
    [43] 陈鲁言,李顺诚,覃有均.佛山市垃圾填埋场地下废气组成与产量研究.环境科学,1997,18(1):30~34
    [44] 侯贵光.垃圾填埋气体产气模型研究.北京:北京师范大学,2003
    [45] 俞大绂,李季伦.微生物学(第二版).北京:科学出版社,1985
    [46] Han S K, Shin H S. Performance of an innovative two-stage process converting food waste to hydrogen and methane.Air and Waste Management Association, 2004, 54(4): 242~249
    [47] Wang Q H, Kuninobu M, Ogawa H I et al. Degradation of volatile fatty acids in highly efficient anaerobic digestion.Biomass and Bioenergy, 1999, 16 (6): 407~416
    [48] Voolapalli R, Stuckey D. Relative importance of trophic group concentrations during anaerobic degradation of volatile fatty acids. Applied and Environmental Microbiology, 1999, 65(11):5009-5016
    
    [49]赵一章.产甲烷细菌及研究方法(第二版).成都:成都科技大学出版社,1999
    
    [50] Jules B L, Katja C F, Carla T M et al. Effects of acetate, propionate, and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures Applied and Environmental Microbiology, 1993, 59(4):1003-1011
    
    [51] Wiegant W M, Hennink M, Lettinga G. Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acidified wastewaters. Water Research, 1986,20(4):517-524
    [52] Speece R E. Anaerobic biotechnology for industrial wastewaters. Nashville, Tennessee (USA): Archae Press, 1996
    [53] Kim M. Comparative process stability and efficiency of mesophilic and thermophilic anaerobic digestion.Nashville, Tennessee (USA): Vanderbilt University, 2001
    [54] Irini Angelidaki.Comprehensive model of anaerobic bioconversion of substrates to biogas.Biotechnology and Bioengineering,1999,63(3):363-372
    [55] Palmowski L M, Müller J A. Influence of the size reduction of organic waste on their anaerobic digestion. Water Science and Technology 2000, 41 (3):155- 162
    [56] Vavillin V A, Angelidaki I. Anaerobic degradation of solid material: Importance of initiation centers for methanogenesis, mixing intensity, and 2Ddistributed model. Biotechnology and Bioengineering, 2004, 82(1):l-10
    [57] Angelidaki I, Ellegaard L, Ahring B K.A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia Inhibition. Biotechnology and Bioengineering, 1993, 42(2):159-166
    [58] Rao M S, Singh S P. Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield-organic loading relationships for process optimization. Bioresource Technology, 2004, 95(2):173- 185
    [59] Siegrist H, Renggli D, Gujer W. Mathematical modeling of anaerobic mesophilic sewage sudge treatment. Water Science and Technology, 1993, 27(2):25-36
    [60] Cho J k, Park S C. Chang H N. Biochemical methane potential and solid state anaerobic digestion of Korea food wastes. Bioresource Technology, 1995, 52(3):245-253
    [61] Christ O, Wilderer P A, Angerhofer R, et al. Mathematical modeling of the hydrolysis of anaerobic processes. Water Science and Technology, 2000, 41(3):61-65
    [62] Zeeman G, Palenzuela A R, Sanders W et al. 1999.Anaerobic hydrolysis and acidification of lipids, proteins and carbohydrates under methanogenic and acidogenic conditions. In: Mata-Alvarez J, Tilche A, Cecchi F (Eds.). Proceedings of the second international symposium on anaerobic digestion of solid wastes, Barcelona, 1999, 2:21 -24
    [63] Barlaz M A, Schaefer D M, Ham R K.Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Applied and Environmental Microbiology,1989,55(1):55 -65
    [64] Vavilin V A, Rytov S V, Lokshina L Ya et al. Description of hydrolysis and acetoclastic methanogenensis as the rate-limiting steps during anaerobic conversion of solid waste into methane. In: Mata-Alvarez J, Tilche A, Cecchi F (Eds.). Proceedings of the second international symposium on anaerobic digestion of solid wastes, Barcelona, 1999,2:1 - 4
    [65] Kalyuzhnyi S, Veeken A, Hamelers B. Two-particle model of anaerobic solid state fermentation. In: Mata-Alvarez J, Tilche A, Cecchi F (Eds.).Proceedings of the second international symposium on anaerobic digestion of solid wastes. Barcelona, 1999, 1:332 - 339
    [66] Lagerkvist A, Chen H. Control of anaerobic degradation of MSW by enzyme addition.In: proceeding of the international symposium on anaerobic digestion of solid waste. Venice, Italy, 1992:78 — 84
    [67] Jokela J P Y, Kettunen R H, Sormunen K M et al. Methane production from landfilled municipal solid waste: Effects of source-segregation, moisture control, and landfill operation. In: Proceeding of the ninth world congress anaerobic digestion of solid waste. Antwerp, Belgium. 2001:657 - 662
    [68] Veeken A, Hamelers B. Effect of temperature on hydrolysis rate of selected biowaste components. Bioresource Technology, 1999, 69(3):249 — 254
    [69] Mata-Alvarez J, Mace S, Llabres P. Anaerobic digestion of organic solid wastes: an overview of research achievements and perspectives. Bioresource Technology,2000,74(1):3-16
    [70] Paramsothy A, Wimalaweera R M, Basnayake B F A et al. Optimizing hydrolysis/acidogenesis anaerobic reactor with the application of microbial reaction kinetics. Tropical Agricultural Research,2004,16:327-338
    [71] Vavilin V A, Lokshina L Y, Jokela J P Y et al. Modeling solid waste decomposition. Bioresource Technology,2004,94(1):69-81
    [72] Vavilin V A, Rytov S V, Lokshina L Y.A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technology, 1996,56(2):229-237
    [73] Andara A R, Lomas Esteban J M. Kinetic study of the anaerobic digestion of the solid fraction of piggery slurries. Biomass and Bioenergy, 1999, 17 (5): 435- 443
    [74] Kiely G, Tayfur G, Dolan C et al. Physical and mathematical-modelling of anaerobic digestion of organic wastes. Water Resource, 1997,31 (3):534-540
    [75] Kalyuzhnyi S, Veeken A, Hamelers B. Two-particle model of anaerobic solid state fermentation.Water Science and Technology,2000, 41(3):43-50
    [76] Lissens G, Vandevivere P, De Baere L et al. Solid waste digestors: process performance and practice for municipal solid waste digestion. Water Science and Technology, 2001, 44(8):91-102
    [77]余昆明.城市生活垃圾厌氧消化技术进展.环境卫生工程,2003,11(1): 16-20
    [78] Ghosh S, Pohland F G. Kinetics of substrate assimilation and product formation in anaerobic digestion Journal of Water Pollution Control Federation, 1974, 46(4):748-759
    [79] Pavan P. Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability.Water Science and Technology, 2000, 41(3):75-81
    [80] Ghosh S. Pilot-scale gasification of municipal solid waste by high-rate and two-phase anaerobic digestion (TPAD). Water Science and Technology, 2000, 41(3):101-110
    [81] Wang J Y, Xu H L, Tay J H. A hybrid two-phase system for anaerobic digestion of food waste.Water Science and Technology,2002,45(12):159-165
    [82] Pavan P, Battistoni P, Cecchi F et al. Two-phase anaerobic digestion of source-sorted OFMSW (organic fraction of municipal solid waste): performance and kinetic study. Water Science and Technology, 2000:41 (3):111-118
    [83] Yu H W, Samani Z, Hanson A et al. Energy recovery from grass using two-phase anaerobic digestion.Waste management and Research.2002, 22(1):1-5
    [84] Ahring B K, Mladenovska Z, Iranpour R, Westermann P. State of the art and future perspectives of thermophilic anaerobic digestion. Water Science and Technology, 2002, 45 (10):293-298
    [85] Ten E, Brummeler. Full scale experience with the BIOCELL process.Water Science and Technology, 2000, 41(3):299-304
    [86] Braber K. Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass Bioenergy, 1995,9 (1-5):365- 376
    [87] Chugh S, Chynoweth D P, Clarke W et al. Degradation of unsorted municipal solid waste by a leach-bed process, Bioresource Technology, 1999, 69(2): 103- 115
    [88] Chynoweth D P, Owens J, Keefe D O et al. Sequential batch anaerobic composting of the organic fraction of municipal solid waste. Water Science and Technolog,1992 ,25(7):327-339
    [89] Nopharatana A, Pullammanappallil P C, Clarke W P. A dynamic mathematical model for sequential leach bed anaerobic digestion of organic fraction of municipal solid waste. Biochemical Engineering Journal, 2003, 13 (1): 21- 33
    
    [90]杨宏毅,卢英方.城市生活垃圾的处理和处置.北京:中国环境出版社,2006
    
    [91] Pavlostathis S G, Giraldo-Gomes E. Kinetics of anaerobic treatment. Water Science, 1991, 24(8):35-59
    [92] Braber K. Anaerobic digestion of municipal solid waste: a modern waste disposal option on verge of breakthrough. Biomass and Bioenergy, 1995, 9 (1-5):365 — 376
    [93] Clarkson W W, Xiao W. Bench-scale anaerobic digestion bioconversion of newsprint and office paper.Water Science and Technology, 2000, 43 (3):93~100
    [94] Angelidaki I, Ahring B K. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure.Water Science and Technology, 2000, 41 (3):189~194
    [95] Wang Q H, Kuninobu M, Ogawa H I et al. Degradation of volatile fatty acids in highly efficient anaerobic digestion.Biomass and Bioenergy, 1999, 16 (6): 407~416
    [96] 张爱军,陈洪章,李佐虎.有机固体废物厌氧消化处理的研究现状与进展.环境科学研究,2002,15(5):52~54
    [97] Teihm A, Nickwl K, Zellhorn N et al. Ultrasonic waste activated sludge disintegration for improving anaerobic digestion. Water Resource, 2001, 3 (8):2003~2009
    [98] Ghosh S, Henry M P, Sajjad A et al. Pilot-scale gasification of municipal solid waste by high-rate and two-phase anaerobic digestion (TPAD). Water Science and Technology, 2000, 41 (3):101~110
    [99] Hiraoka M, Takeda N, Sakai S et al. Highly efficient anaerobic digestion with thermal pretreatment. Water Science and Technology, 1985, 17(4~5):529~539
    [100] Schmidt A S, Thomsen A B. Optimization of wet oxidization pretreatment of wheat straw. Bioresource Technology, 1998, 64(2):139~151
    [101] Lissens G, Thomsen A B, Baere Let al. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste. Environmental Science and Technology, 2004,38(12): 3418~3424
    [102] Weemaes M, Grootaerd H, Simoens F. Anaerobic digestion of ozonized biosolids.Water Resource,2000,34(8):2330~2336
    [103] Harikishan S, Sung S. Cattle waste treatment and Class A biosolid production using temperature-phased anaerobic digestion.Advances in Environmental Research, 2003,7 (3): 701~706
    [104] 吴满昌,孙可伟,李如燕等.不同反应温度的城市生活垃圾厌氧发酵研究.化学与生物工程,2005,23(9):28~30
    [105] 张记市,张雷,王华.城市有机生活垃圾厌氧发酵处理研究.生态环境,2005, 14(3):321~324
    [106] Karim K, Hoffmann R, Klasson T et al. Anaerobic digestion of animal waste: effect of mode mixing. Water Research, 2005, 39 (15): 3597~3606
    [107] 陈振民.提高厌氧处理甲烷生成量方法的初步探讨.环境污染治理技术与设备,2004,5(5)43~47
    [108] Lopes W S, Duarte V, Prasad L S. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste.Bioresource Technology, 2004, 94, (3):261~266
    [109] 李俊涛,钱小青,赵由才.泔脚的厌氧消化处理可行性研究.上海环境科学, 2003,22(9):646~648
    [110] 潘云霞,李文哲.接种物浓度对厌氧发酵产气特性影响研究.农机化研究, 2004,(1):187~189
    [111] Kivaisi A K, Eliapenda, S. Application of rumen microorganisms for enhanced anaerobic degradation of bagasse and rice bran. Biomass and Bioenergy, 1995, 8(1), 45~50
    [112] 陈庆今,刘焕彬,胡勇有.瘤胃微生物在有机废物处理中的应用研究.微生物学杂志,2001,21(2):41~44
    [113] 陈庆今,胡勇有,刘焕彬.瘤胃微生物体外驯化降解纤维素研究.造纸科学与技术,2002,21(2):17~19
    [114] Tuomela M, Vikman M, Hatakka A et al. Biodegradation of lignin in a compost environment: areview. Bioresource Technology, 2000,72 (2): 169~183
    [115] Speece R E. Anaerobic digestion of biomass.London: Elsevier Applied Science Publishers, 1987
    [116] 陈朝猛,曾光明,张碧波等.城市有机垃圾厌氧消化痕量激活剂的促进作用及产能研究.南华大学学报(理工版),2004,18(1):12~16
    [117] 王星,王德汉,徐菲等.矿物材料对餐厨垃圾厌氧消化的影响研究.环境科学学报,2006,26(2):256~261
    [118] Yadvike, Santosh T R, Sreekrishnan et al. Enhancement of biogas production from solid substrates using different techniques—a review.Bioresource Technology, 2004, 95(1):1~10
    [119] Xi B D, Liu H L, Zeng G M et al. Composting MSW and sewage sludge with effective complex microorganisms. Journal of Environmental Sciences, 2002, 14(2): 264~268
    [120] Hartmann H,Angelidaki I,Ahring B K. Co-digestion of the organic fraction of municipal solid with other waste types. In biomethanization of the organic fraction of municipal solid wastes.Mata-Alvarez J. (ed.), London, UK, IWA Publishing, 2002
    [121] Rivard C J, Vinzant, T B, Adney W S et al. Anaerobic digestibility of two processes municipal solid wastematerials.Biomass,1990, 23(3), 201~217
    [122] Hamzawi H, Kennedy K J, Mclean D D. Anaerobic digestion of co-digestion municipal solid waste and sewage sludge. Water Science and Technology, 1998, 38 (2):127~132
    [123] Sosnowski P, Wieczorek A, Ledakowicz S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes.Advances in Environmental Research, 2003,7(3): 609~616
    [124] Kayhanian M, Rich D.Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements.Biomass and Bioenergy, 1995,8(6):433~444
    [125] Poggi Varaldo H M, Tingley J, Oleszkiewicz J A.Inhibition of growth and acetate uptake by ammonia in a batch anaerobic digestion. Journal of Chemical Technology and Biotechnology, 1991,52(2): 135~143
    [126] Rintala J A, Jarvinen K T, Full-scale mesophilic anaerobic co-digestion of municipal solid waste and sewage sludge: methane production characteristics. Waste and Management Research, 1996,14(2): 163~170
    [127] 张禄文.城市生活垃圾破碎筛分设备工艺研究.昆明:昆明理工大学,2004
    [128] 乔玮.城市垃圾厌氧消化处理技术研究.长沙:湖南大学,2004
    [129] 吴文伟.城市生活垃圾资源化.北京:科学出版社,2003
    [130] Wang Z, Banks C J. Accelerated hydrolysis and acidification of municipal solid waste (MSW) in a flushing anaerobic bioreactor using treated leachate recirculation. Waste Management and Research, 2000, 18(3): 215~223
    [131] 屈维钧.制浆造纸实验.北京:中国轻工业出版社,1992
    [132] 张惟杰.糖复合物生化研究技术(第二版).杭州:浙江大学出版社,1999
    [133] 赵杰红,张波,蔡伟民.温度对厨余垃圾两相厌氧消化中水解和酸化过程的影响.环境科学,2006,27(8):1682~1686
    [134] 赵庆祥.污泥资源化技术.北京:化学工业出版社,2002
    [135] Bidlingmaier W, Sidaine J M, Papadimitriou E K. Separate collection and biological waste treatment in the European Community. Reviews in Environmental Science and Biotechnology, 2004, 3(4):307~320
    [136] Kouzeli-Katsiri A, Bosdogianni A, Christoulas D. Prediction of leachable quality from sanitary landfills.Journal of Environmental Engineering, 1999, 125(10): 950~958.
    [137] 冯明谦,蒋培志,李彦春等.城市生活垃圾破碎筛分一体化设备研制.环境卫生工程,2000,8(4):157~160
    [138] 陈天虎,庆乘松.固体废弃物处理方法—选择性破碎分选.矿产保护与利用, 1995:5:43~45
    [139] Hartmann H, MOiler H B, Ahring B K. Efficiency of the anaerobic treatment of the organic fraction of municipal solid waste: collection and pretreatment. Waste Management and Research, 2004, 22(1): 35~41
    [140] Powell J C. The evaluation of waste management options.Waste Management and Research, 1996,14(6):515~526
    [141] 蒋展鹏,杨宏伟,师绍琪.有机化合物厌氧生物降解性的测定.1999,25(6): 20~24
    [142] Benner R, Hodson R E. Thermophilic anaerobic biodegradation of [~(14)C] lignin, [~(14)C] cellulose, and [~(14)C] lignocellulose preparations.Applied and Environmental Microbiology, 1985, 50(4): 971~976
    [143] 韩朔睽,张爱茜,王连生.有机化合物厌氧生物降解性的测定和预测.环境化学,1995,14(3):200~205
    [144] Chung Y C, Neethling J B. ATP as a measurement of anaerobic sludge digester activity .Journal Water Pollution Control Federation, 1988, 61(3):343~349
    [145] Owen W P, Stuckey D C, Healy J B et al. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Resource,1979, 13(6): 485~492
    [146] Penaud V, Delgenes J P, Moletta R. Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme and Microbial Technology, 1999, 25 (6):258-263
    [147] Brummeler E T, Koster I W.Enhancement of dry anaerobic batch digestion of the organic fraction of municipal solid waste by an aerobic pretreatment step.Biological Wastes, 1990,31 (3): 199~210
    [148] Pitter P, Chudoba J. Biodegradability of organic substances in the aquatic environment.New York: Chemical Rubber Company Press, 1990.
    [149] Kayhanian M. Biodegradability of the organic fraction of municipal solid waste in a high-solids anaerobic digester.Waste Management and Research, 1995, 13(2):123-136
    [150] Weimer P J. Different fermentation of cellulose allomorphs by ruminal celluloytic bacteria.Applied and Environmental Microbiology, 1991, 57 (11):3101~3106
    [151] 雷中方,陆雍森.木质素在厌氧生物处理过程的转化.同济大学学报,1995, 23(4):421~425
    [152] Baeten D, Verstraete W. Manure and municipal solid waste fermentation in Flanders-an appraisal.Biological Wastes, 1988, 26(4), 297~314
    [153] 杨玉楠,熊运实,杨军等.固体废弃物的处理工程与管理.北京:科学出版社,2004
    [154] 周孟津,张榕林,蔺金印.沼气实用技术.北京:化学工业出版社,2004.
    [155] K.马迪克,S.孔斯特著.王绍芳,王海译.污水生物处理和水污染控制.北京:中国环境科学出版社,1991
    [156] 安思科.城市垃圾的处理与利用技术.北京:化学工业出版社,2006
    [157] Alvarez Gallego C J. Testing different procedures for the start up of a dry anaerobic co-digestion process of OFMSW and sewage sludge at thermophilic range. Cadiz (Spain): Universidad de Cadiz, 2005
    [158] Scherer P A, Vollmer G R, Fakhouri T et al. Development of a methanogenic process to degrade exhaustively the organic fraction of municipal "grey waste" under thermophilic and hyperthermophilic conditions. Water Science and Technology,2000,41(3): 83~91
    [159] 王绍文,罗志腾,钱雷.高浓度有机废水处理技术与工程应用.北京:冶金工业出版社,2003
    [160] Lin J G, Ma Y S, Chao A C et al. BMP test on chemically pretreated sludge. Bioresource Technology, 1999,68(2): 187~192
    [161] Nallathambi G V. Biochemical methane potential of fruits and vegetable solid waste feed stocks. Biornass and Bioenergy, 2004,26(4):389-399
    [162] Harries C, Cross C, Smith R. Development of a biochemical methane potential (BMP) test and application to testing of municipal solid waste samples.In: Proceedings of the Eighth International Landfill Symposium, Cagliari, Sardinia, 2001
    [163] Hansen T L, Schmidt J E, Angelidaki I et al. Method for determination of methane potentials of solid organic waste.Waste Management and Research, 2004, 24 (4):393-400
    [164] Chynoweth D P, Turick C E, Owens J M et al. Biochemical methane potential of biomass and waste feed stocks. Biomass and Bioenergy, 1993, 5 (1) : 95-111
    [165] Cecchi F, Traverso P G, Medici F et al. Comparison between the literature and a new approach to the kinetics of anaerobic degradation of organic fraction of MSW.Biomass, 1988, 16(4):257-284
    [166] Klein M, Rump H. Anaerobic digestion of solids-example: organic fraction of municipal solid waste. In: Biomass for Energy and Industry, 4th E.C. Conference, eds. GrassiG, Delmon B, Molle J F andZibetta H. , London: Elsevier Applied Science Publishers, 1987
    [167] Pauss, A., Nyns, E.J., Naveau, H. Production of methane by anaerobic digestion of domestic refuse. Biotechnology and Bioengineering, 1984, 16(6):771-787. [168] Cecchi F, Traverso P G, Cescon P. Anaerobic digestion of organic fraction of municipal solid waste: Digester performance. The Science of Total Environment, 1986, 56:183-197
    [169] Mata-Alvarez J, Llabres P, Cecchi F et al. Anaerobic digestion of the Barcelona central food market organic wastes: Experimental study. Bioresource Technology,1992, 39(1):39-48
    [170] Brinkman J. Anaerobic digestion of mixed waste slurries from kitchens, slaughterhouses and meat processing industries. In: Mata-Alvarez J, Tilche A, Cecchi F. Proceedings of the Second International Symposium on Anaerobic Digestion of Solid Wastes, Barcelona, Grafiques, 1999:190-195
    
    [171]邓舟,蒋建国,杨国栋.有机固体废弃物生化产甲烷潜能测定标准方法.清华 大学学报(自然科学版),2005,45(9):1213~1216
    [172] Shelton D R, Tiedje J M. General method for determining anaerobic biodegradation potential.Applied and Environmental Microbiology, 1984, 47 (4): 850~857
    [173] 李刚,杨立中,欧阳峰.厌氧消化过程控制因素及pH和Eh的影响分析.西安交通大学学报,2001,36(5):518~521
    [174] Gunaseelan V N. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy, 1997, 13(1~2):83~114
    [175] Baldasano J M, Soriano C. Emission of greenhouse gases from anaerobic digestion processes: Comparison with other municipal solid waste treatment. Water Science and Technology, 2000, 41(3): 15~18
    [176] 赵亚乾.一种新的厌氧污泥比活性试验测定法.中国沼气,1993,11(1)19~22
    [177] 于晓章.厌氧发酵过程中温度对甲烷产量的影响.生态科学,2004,23(4): 310~314
    [178] Kotsyurbenko O R, Nozhevnikova A N, Kalyuzhnyy S V et al. Methanogenic digestion of cattle manure at low temperature.Mikrobiologiya,1993,62 (4), 761~771
    [179] Ohmura T, Sakai T, Shindo Y et al. Start-up of full-scale anaerobic digesters treating municipal solid waste.Water Science and Technology, 2003, 48 (4):249~252
    [180] R.E.斯皮思.工业废水的厌氧生物技术.北京:中国建筑工业出版社, 2001
    [181] Kim, M, Speece, R E. Aerobic waste activated sludge (WAS) for start-up seed of mesophilic and thermophilic anaerobic digestion. Water Research, 2002, 36(15): 3860~3866
    [182] 隋军.厌氧消化中的多相过程.哈尔滨:哈尔建筑大学,1991
    [183] Neves L, Oliveira R, Alves, M M. Influence of inoculum activity on the biomethanization of a kitchen waste under different waste/inoculum ratios. Process Biochemistry, 2004, 39(12): 2019~2024
    [184] Hasegawa S, Shiota N, Katsura K. Solubilization of organic sludge by thermophilic-aerobic bacteria as a pretreatment for anaerobic digestion. Water Science and Technology, 2000, 41(3): 163-169
    [185] 廖银章,刘晓凤,刘克鑫.城市有机生活发酵工艺研究.太阳能学报,1993, 14(4):337~343
    [186] Pagilla K R,Kim H,Cheunbarn T. Aerobic thermophilic and anaerobic mesophilic treatment of swine waste.Water Research,2000,34(10):2747~2753
    [187] Del Borghi A, Converti A, Pallazi E et al.Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction of municipal solid waste. Bioprocess and Biosystems Engineering, 1999,20 (6): 553~560
    [188] 刘连开.好氧预处理农业草类废弃物的BMP分析和动力学研究.环境科学进展,1997,5(2):61~66
    [189] Cheunbam T, Pagilla K R. Aerobic thermophilic and anaerobic mesophilic treatment of sludge.Environment Engineering, 2000, 126(9):790~795
    [190] Ktibler H, Hoppenheidt K, Hirsch Pet al. Full scale co-digestion of organic waste.Water Science and Technology, 2000, 41(3): 195-202.
    [191] E1-Mashad H M, Zeeman G, Van Loon W K Pet al.Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresource Technology, 2004, 95(2):191-201
    [192] Amanda W,David S H, John F F. Effect of autothermal treatment on anaerobic digestion in the dual digestion process. Water Science and Technology, 1998, 38(8~9):435~442
    [193] Chen T H, Hashimoto A G. Effects of pH and substrate: inoculum ratio on batch methane fermentation. Bioresource Technology, 1996, 56 (2~3):179~186
    [194] Rao M S, Singh S P, Singh A K et al. Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. Applied Energy,2000, 66(1):75~87
    [195] Nordberg A, Edstrom M. Co-digestion of energy crops and the source-sorted organic fraction of municipal solid waste.Water Science and Technology, 2005, 52(1~2):217~222
    [196] Harmann H, Ahring B K. Anaerobic digestion of the organic fraction of municipal solid waste: Influence of co-digestion with manure. Water Research, 2005, 39:1543~1552
    [197] Laffitte-Trouque S, Foster C F. Dual anaerobic co-digestion of sewage and confectionery waste.Bioresource Technology, 2000, 71(1):77~82
    [198] Demirekler E, Anderson G K. Effect of sewage sludge addition on the start -up of the anaerobic digestion of OFMSW.Environmental Technology, 1998, 19(8): 837~843
    [199] 张记市,孙可伟,徐静.城市有机生活垃圾溶胞处理及其对厌氧消化的影响研究.生态环境,2006,15(4):862~865
    [200] Vlssides A G, Karlis P K.Thermal-alkaline solubilization of waste activated sludge as a pretreatment stage for anaerobic digestion. Bioresource Technology, 2004,91 (2):201~206
    [201] Schieder D, Schneider R, Bischof F. Thermal hydrolysis (TDH) as a pretreatment method for the digestion of organic waste.Water Science and Technology, 2000,41 (3): 181~187
    [202] Kim H J, Choi Y G, Kim G D et al. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste. Water Science and Technology,2005,52(10~11):51~59
    [203] 孙艳.城市生活垃圾厌氧消化工艺研究.昆明:昆明理工大学,2005
    [204] Murto M, Bjomsson L, Mattiasson B. Impact of food industrial waste on anaerobic co digestion of sewage sludge and pig manure. Journal of Environmental Management,2004,70(2): 101~107
    [205] Saint-Joly C, Desbois S, Lotti J P. Determinant impact of waste collection and composition on anaerobic digestion performance: industrial results.Water Science and Technology,2000,41(3):219~297
    [206] Hamzawi N, Kennedy K J, McLean D D. Technical feasibility of anaerobic co-digestion of sewage sludge and municipal solid waste. Environmental Technology, 1998, 19 (10): 993~1003
    [207] Cecchi F, Traverso P G, Perin G et al. Comparison of co-digestion performance of two differently collected organic fractions of municipal solid waste with sewage sludge. Environmental Technology Letters,1988, 9:391~400
    [208] Angelidki I, Ellegaard L, Ahring B K.A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnology and Bioengineering, 1993,42(11): 159~166
    [209] Schmit K H, Ellis T G. Comparison of temperature-phased and two-phase anaerobic co-digestion of primary sludge and municipal solid waste.Water Environment Research, 2001, 73 (3),314~321
    [210] Sanchez E P, Weiland P, Travieso L. Effect of the hydraulic retention time on the anaerobic biofilm reactor efficiency applied to screened cattle waste treatment. Biotechnology Letters, 1992,14(7):635~638
    [211] Lane A G. Laboratory scale anaerobic digestion of fruit and vegetable solid waste.Biomass, 1984, 5(4):245~259
    [212] 任南琪,赵丹,陈晓蕾等.厌氧生物处理丙酸产生和积累的原因及控制对策.中国科学(B辑),2002,32(1):83~89
    [213] Inanc B, Matsui S, Ide S. Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate: Effects of H_2 and pH. Water Science and Technology,1996, 34(5~6):317~325
    [214] Yadvika A, Santosh A, Sreekrishnan T R et al. Enhancement of biogas production from solid substrates using different techniques-a review. Bioresource Technology, 2004, 95(1): 1~10
    [215] Watanabe H, Kitamura T, Ochi S et al. Inactivation of pathogeic bacteria under mesophilic and thermophilic conditions.Water Science and Technology,1997, 36(6~7):25~32
    [216] De Leon C. Pathogen destruction in thermophilic anaerobic digestion.Berkeley: University of California, 2003
    [217] 赵庆良,王宝贞,Kugel G.厌氧消化的重要中间产物—有机酸,哈尔滨建筑大学学报,1996,29(5):32~38
    [218] Malina J F, Pohland F G. Disign of anaerobic process for the treatment of industrial and municipal solid wastes.New York: Technomic Pulishing Company, Inc. 1992
    [219] Katherine D M, Peter G S, Roderick I M, et al. Anaerobic co-digestion of municipal solid waste and bio-solid under various conditions Ⅱ: microbial population dynamics. Water Research,2001,35(7): 1817~1827
    [220] Gray N F. Biology of waste treatment.New York: Oxford University Press, 1989
    [221] Jeris J S, Kugelman I J. Secrets to the success of anaerobic digestion.Water Engineering and Management, 1985, 32(7):32~35
    [222] Bitton G. Wastewater microbiology.New York: Wiley-Liss publishers, 1994
    [223] Bouallagui H, Haouari O, Touhmi Y et al.Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochemistry,2004,39(12):2143~2148
    [224] 张运真,青春耀,刘亚纳等.改变厌氧发酵工艺条件对发酵液氮含量的影响.可再生能源,2004,(5):44~45
    [225] Charest M, Beauchamp C. Composting of de-inking paper sludge with poultry manure at their nitrogen levels using mechanical turning: Behavior of physical-chemical parameters.Bioresource Technology, 2002,81 (1): 7~17
    [226] Molnar L, Bartha I. High solids anaerobic fermentation for biogas and compost production.Biomass, 1988, 16(3):173~182
    [227] Voca N, Kricka T, Rupic V et al.Digested residue as a fertilizer after the mesophilic process of anaerobic digestion.Plant Soil Environment, 2005, 51(6):262~266
    [228] Banks C J, Humphreys P N. The anaerobic treatment of a lignocelluloses substrate offering little natural pH buffering capacity.Water Science and Technology, 1998.38(4~5):29~35
    [229] 乔玮,曾光明,袁兴中等.易腐有机垃圾与剩余污泥混合厌氧消化处理.农业环境学报,2004,23(3):607~610
    [230] 马洪儒,林聪.常温厌氧消化及环境效应研究.安阳工学院学报,2005,(6): 10~12
    [231] Song Y C, Kwon S J, Woo J H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic and thermophilic digestion of sewage sludge. Water Research, 2004, 38 (6): 1653~1662
    [232] 于红艳.城市生活垃圾厌氧发酵沼渣制备复混肥研究.昆明:昆明理工大学, 2005
    [233] Hashimoto A G, Chen Y R, Varel V H. Theoretical aspects of methane production: State of the art. In: livestock waste: A Renewable Resource. In: proceeding of the 4th annual international symposium on livestock wastes. ASAE, Michigan (USA): 1980
    [234] Zhang Ji-shi,Sun Ke-wei,Wu Manchang et al. Influence of temperature on performance of anaerobic digestion of municipal solid waste. Journal of Environmental Sciences, 2006, 18 (4) : 810~815
    [235] 王罗春.城市生活垃圾填埋场稳定化进程研究.上海:同济大学,1999
    [236] Mahmoud N, Zeeman G, Gijzen H et al. Anaerobic stabilization and conversion of biopolymers in primary sludge-effect of temperature and sludge retention time.Water Research,2004,38(4):983~991
    [237] 郑平,冯孝善.废物生物处理.北京:高等教育出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700