环形腔光纤激光器的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光通信技术的不断发展,人们对光通信系统光源的要求越来越高,而光纤激光器以其显著的优势受到了广泛的关注,本文对环形腔掺Yb~(3+)光纤激光器、环形腔掺Er~(3+)光纤激光器和可调谐大功率光纤激光器进行了理论和实验研究,主要内容如下:
     1.在忽略放大自发辐射(ASE)的情况下,从速率方程出发,详细推导出环形腔掺Yb~(3+)光纤激光器的阈值功率、增益、斜率效率及输出功率的解析表达式;对环形腔掺Yb~(3+)光纤激光器进行数值模拟,详细分析了激光器阈值、输出功率、增益等重要参数与抽运功率、光纤长度、光纤掺杂浓度、激光器输出耦合比等参量之间的关系。结果表明,激光器结构参数的选择对激光器的优化设计具有重要意义。
     2.从偏振主态理论出发,分析了利用非线性偏振旋转技术实现光纤激光器波长可调谐的机理,并推导出光纤激光器的工作波长、调谐带宽、调谐精度等特性与光纤长度、偏振角等结构参数之间的关系。
     3.实验研制了以不同长度(10cm、20cm)的高掺杂浓度Yb~(3+)纤为增益介质的短腔长光纤激光器,激光器的阈值功率为36.8mW和39.4mW、最大输出功率为21.1mW和12.7mW、斜率效率为8.2%和5.1%;利用光纤的非线性偏振旋转效应,实验研制了连续可调谐掺Yb~(3+)光纤激光器,其连续调谐范围为9.88nm。
     4.理论分析了环形腔掺Er~(3+)光纤环形腔激光器的输出特性,获得了稳态条件下激光器输出功率、阈值泵浦功率和斜率效率的解析表达式,结合MATLAB编程,对输出特性进行了数值模拟。
     5.基于非线性偏振旋转技术,采用功率放大器,实验研究了连续可调谐大功率掺Er~(3+)光纤激光器。在放大器的泵浦功率为2.5W时,实现了在1546.96nm-1557.72nm波段波长连续可调谐的激光输出,激光器的边模抑制比高于30dBm,3dB谱线宽小于0.1nm,斜率效率高达80.1%。
With the development of optical communication technology, lasers in the optical communication system have to meet the increasing requirement. Fiber lasers, as a device with distinguished advantage, have received great attention from the world. This thesis mainly describes the theoretical and experimental work on Yb~(3+)-doped ring cavity fiber laser, Er~(3+)-doped ring fiber cavity laser and tunable high power fiber laser. The main contents are shown as follows:
     1.By means of omitting the ASE and according to the rate equation,We deduced the expressions of threshold value, gain, slope efficiency and output power which belong to the Yb~(3+)-doped ring cavity fiber lasers .The characteristics of the Yb~(3+)-doped ring cavity fiber laser have been simulated. The relations between performance parameters which contain threshold power, output power and gain and structure parameters which consist of pump power, fiber length, impure chroma, output coupling rate of fiber laser have also been studied. The results show the choose of the structure parameters has important meaning to the optimized design of the laser.
     2. According to the PSP theory (principal state of polarization, PSP), the mechamism of the tunable fiber laser using the nonlinear polarization technique(NPT) is researched. The relations between the output characters(such as the central wavelength,the tunable bandwidth and the tunable precision)and the parameters of the fiber laser(such as fiber length and polarization angle)are deduced.
     3.In experiment,we researched a short-cavity ring fiber laser with different fiber length(10cm and 20cm) has been designed and turned out with high concentration Yb~(3+)-doped fiber as gain medium. The threshold power of the laser with gain fiber length 10cm is 36.8mW and the other is 39.4mW , and the maximum output power of the laser with gain fiber length 10cm is 21.1mW and the other is 12.7mW.The slope efficiency of the laser with gain fiber length 10cm is 8.2% and the other is 5.1%. Widely tunable ranges as 9.88nm is obtained.
     4. The output characteristics of Er~(3+)-doped ring cavity fiber laser are theoretically studied. Under stationary conditions analytical expressions on output power, threshold pump power and slope efficiency are presented. After that, the output characteristics are simulated numerically combining MATLAB PROGRAMME.
     5. By means of nonlinear polarization rotation technique and using power amplifier, we studied a high power tunable Er~(3+)-doped fiber laser. We achieved a lasing output with continuously tunable wavelength in the range from 1547.70 to 1557.52nm when the pump power of power amplifier is 1.5W and 2.5W. Its optical signal-to-noise ratio and 3-dB spectral width is about 30dBm and no more than 0.1 nm, and the slope efficiency is about 80.1%.
引文
[1] Snitzer. Optical Maser action of Nd3+ in a Barium Crown Glass. Phys.Rev.Lett, 1961, 7 (12): 444~446
    [2] Kao, Hockman. Dielectric-fiber surface waveguides for optical frequencies. Proc. IEEE, 1966, 113: 1151~1158
    [3] Karpon, et al. Radiation loss in glass optical waveguide. Appl.Phys.Lett., 1970, 17(10): 423~425
    [4] Stone and Burrus. Neodymium-doped silica laser in end-pumped fiber geometry. Appl.Phys.Lett., 1973, 23(7):388~389
    [5]Stone and Burrus. Neodymium-doped fiber lasers: Room temperature CW operation with an injection laser pump. IEEE.J.Quantum Electron., 1974,10(9): 794~794
    [6] Poole, Payne, and Fermann. Fabrication of low loss optical fibers containing rare-earth ions. Electron.Lett., 1985, 21: 737~738
    [7] Alcock, Tropper, et al. Q-swithed operation of a neodymium-doped monomode fiber laser. Electron.Lett., 1985, 21: 84~85
    [8] Miller, Mortimore, Urquhart, et al. High efficiency Nd-doped fiber lasers using direct-coated dielectric mirrors. Electron.Lett., 1987, 23: 2197~2201
    [9] Brinkmann. Upconversion fiber laser now powerful in the visible. Laser Foucs World. 1998, 34(5): 15~16
    [10] Chen, Grudinin, et al. Enhanced Q switching in double-clad fiber laser. Opt. Lett,1998, 23(6): 454~456
    [11] Dominic, S. MacCormack, R. Waarts, et al. 110W fiber laser. Electron.Lett. 1999, 35(14): 1158~1160
    [12] Liem, J .Limpert, H .Zellmer, et al. 100W single frequency master-oscillator fiber power amplifier. Opt.Lett, 2003, 28(5): 1537~1539
    [13] Limpert, Liem, Zellmer, et al. 500 W continuous-wave fiber laser with excellent beam quality. Electron.Lett. 2003, 39(4): 645~647
    [14] Jeong, Sahu, Payne, et al. Ytterbium-doped large-core fiber laser with 1kW of continuous-wave output power. Electron.Lett. 2004, 40(8): 470~472
    [15]Fomin, Mashkin, Abramov et al. 3kW Yb fibre lasers with a single-mode output 3rd International Symposium on High-Power Fiber Lasers and Their Applications. 2006, session HPFL-3
    [16] Etzel, Gandy, Ginther. Stimulated emission of infrared radiationfrom ytterbium activated silicate glass. Appl.Opt., 1962, 1 (4): 534~536
    [17] Hanna, Percival, Perry, et al. Continuous-wave oscillation of a monomode ytterbium-doped fiber laser. Electron.Lett., 1988, 24 (17): 1111~1113
    [18] Hanna, Percival, Perry, et al. An ytterbiun-doped monomode fiber laser: broadly tunable operation from 1.010μm to 1.162μm and three-level operation at 974nm. J.of Mod.Opt., 1990, 37 (4): 517~525
    [19] Mackechnie, Barnes, Hanna, and Townsend.High power ytterbium (Yb3+)-doped fiber laser operating in the 1.12μm. Electron.Lett., 1993, 29 (1): 52~53
    [20] Pask, Archambault, Hanna, et al. Operation of cladding-pumped Yb3+-doped silica fiber lasers in 1um region. Electon.Lett. 1994, 30 (11): 863~865
    [21] 友清译。超高功率光纤激光器。激光与光电子学进展,1998,35(1):40
    [22] Dominic, MacCormack, Waarts, Sanders et al. ll0W fiber laser, Electon.Lett. 2000, 35 (14): 1158~1160
    [23] 华仁忠,陈兰荣,逯其荣,陈柏等。钛宝石激光器泵浦的掺 Yb3+光纤激光器。中国激光,1999, A26(9):781~784
    [24] 陈柏,陈兰荣,林尊琪等。LD 抽运运行在 1041nm 的掺 Yb3+环形腔光纤激光器。中国激光,1999,A26(11):965~968
    [25] 陈柏,陈兰荣,林尊琪等。运用波长与光纤长度关系选择激光波长。中国激光,1999, A26(12):1061~1065
    [26] 陈柏,林尊琪。掺 Yb 光纤激光器激射波长与阈值关系的研究。光学学报,2000,20(6):750~754
    [27]吕可诚,刘伟伟,吕福云等。包层泵浦光纤激光器。中国科学基金,1999,13(5):288~292
    [28]陈柏,陈兰荣,林尊琪等。LD 抽运的掺 Yb3+双包层光纤激光器。中国激光,2000,A27 (2):I01~105
    [29]孙迭茂,胡谊梅,梁建中等。掺 Yb3+双包层光纤激光器研究。光通信研究,2000,5:40~42.
    [30]宁鼎,李乙钢,董新永等。矩形内包层掺 Yb3+石英光纤的研制及其抽运性能。光学学报,2001,21(12):1417-1420
    [31] Dong Xue, Qihong Lou, et al. A 1102W fiber laser with homemade double-clad fiber . Chin.Opt.Lett., 2005, 3(6): 345~347
    [32] Lou Qihong, Zhou Jun, Zhu Jianqiang et al. 440W continuous wave high power output from home made Yb-doped double clad fiber. Chin.J.Lasers, 2005, 32(1): 20 (in Chinese)
    [33] Lou Qihong, Zhu Jianqiang, Zhou Jun et al. Pulsed 133W high average power double clad fiber amplifer . Chin.J.Lasers, 2005, 32(4): 552 (in Chinese)
    [34] 周军,楼祺洪等。采用国产大模场面积双包层光纤的 714 W 连续光纤激光器。光学学报,2006,26(7):1119~1120
    [35] 赵 鸿,周寿桓,朱辰,李尧,吴健。输出功率超过 1.2 kW 的大功率光纤激光器。红外与激光工程,2007,36(1):81
    [36]蔡治平,曾丽珠,葛春风,吕辰刚,武垦,李世忱。基于角度调谐 F-P 干涉仪的 C 波段可调谐激光器的研究。光电子·激光,l6(4),2005:429~432
    [37]贾宝华,盛秋琴,陈凯,韩军,董孝义。一种实用化的高功率低噪声波长连续可调光纤激光器。中国激光,31(2),2004:133~136
    [38]胡智勇,刘俭辉,葛春凤。李世忱.基于光纤环形镜滤波的 L-波段可调谐光纤激光器。光电器件,25(6),2004:46~48
    [39] Azami, Salssy, Micheli, Monnom, Ostrowsky. Improved polarimetric tuning of an Er3+-doped fiber laser. Opt.Commu., 1998, 158(15):84~88
    [40] Antoine, Miroslav, Christophe, Bellemare et al.A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling. IEEE.J.Selected Topics in Quantum Electron. 2001, 7(1): 22~29
    [41]王东,张敏明,刘晓明,刘德明等。100nm 宽光谱可调谐掺 Er3+光器。光子学报,2006,35(9):1289~1292
    [42] Lim, Ilday , Wise. Generation of 2 nJ pulses from a femto second ytterbium fiber laser. Opt.Lett,, 2003 ,28 (8): 660~662.
    [43]Hall,Taylor. Wavelength tunable CW Raman fibrering laser operating at 1486-1551nm. Electon.Lett.2001,37(8): 491~492
    [44]乔学光,杨和钱,贾振安,习聪玲。光纤激光器的研究进展与展望。光机电信息,2006,9(23):44~50
    [1] 廖先炳。半导体激光器泵浦的稀土掺杂光纤激光器和放大器述评。光纤通信,1990,(4):5~15
    [2] Rudiger , Johan, et al. Ytterbium-Doped Fiber Amplifiers. IEEE.J.Quantum Electron.,1997, 33(7):1049~1056
    [3] Hanna, Perry, Smart, et al. Efficient Superfluorescent Emission at 974nm and 1040nm from an Yb-Doped Fiber. Opt.Commu., 1989, 72(3): 230~234
    [4] Pask, Carman, Hanna, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1~1.2 μm region. IEEE.J.Quantum Electron., 1995, 1(1): 2 ~13
    [5] Digonnet and gaeta. Theoretical analysis of optical fiber laser amplifiers and oscillators. Appl. Opt, 1985, 24(3): 333~342
    [6] Digonnet. Theory of supfluorescent fiber lasers. IEEE. J.Lightwave Technol., 1986, 4(11): 1631~1639
    [7] Digonnet. Closed-form expressions for the gain in the three- and four-level laser fibers. IEEE.J.Quantum Electron.,1990, 26(10):1788~1796
    [8] Barnard, Myslinski, Chrostowski, et al. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE.J.Quantum Electron., 1994, 30(8): 1817~1830
    [9] Zou and Toratani. Evaluation of spectroscopic properties of Yb3+-doped glasses. Physical Review B, 1995, 52(22): 15889~15897
    [10] 陈柏,林尊琪。掺 Yb3+光纤激光器激射波长与阈值关系研究。 光学学报, 2000, 20(6):750~754.
    [11]余有龙,谭华耀,王骐。环行腔光纤激光器波长选择技术。中国激光,2002,29(1):1~4
    [12] Friedman, Eyal, and Tur. The use of the principal states of polarization to describe tunability in a fiber laser. IEEE.J.Quantum Electron., 1997, 33(5): 642~648
    [13]Salhi, Leblond, and Sanchez. Theoretical study of the erbium-doped fiber laser passively mode-locked by nonlinear plarizaion rotaion. Physical Review B,2003, A67(013802): 1~7
    [1] Lefort,Price, and Richardson. Practical low-noise stretched-pulse Yb3+doped fiber laser. Opt.Lett., 2002, 27: 291~293
    [2] Lim ,Ilday, Wise. Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control. Opt.Express.,2002, 10(25): 1497~1502
    [3] Luis, Orsila, Jouhti, et al. Picosecond SESAM-based ytterbium mode-locked fiber lasers. IEEE.J.Selected Topics in Quantum Electron.,2004, 10(1): 129~136 第四章
    [1] MENG Hong-yun, YANG Shi-quan, ZHAO Chun-liu, et al. The theoretical study on sagnac fiber loop mirror. Acta Sciem-tiarum Naturalium Universitatis Nankaiensis (Natual Science Edition),2003,36(3):1~84
    [2] HUANG Zhi-jiang, SUN Jun -qiang, HUANG De-xiu. Output characteristics of linear cavity erbium-doped fiber laser. Acta Photonica Sinica,1996,16(12):1671~1675
    [3] CHEN Sheng-ping, Lü Ke-cheng, LI Yi-gang, et al. High power ,high efficiency erbium-doped superfluorescent fiber source and its applications.Acta Photonica Sinica,2004,33(1):17~20
    [4] XU Hua-Bin, CHEN Lin. Study on the output characteristics of erbium-doped fiberlaser. Acta Photonica Sinica,2004,33(7):777~781

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700