牙鲆淋巴囊肿病毒黏附蛋白及受体蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼类淋巴囊肿病(Lymphocystis disease,LCD)是一种世界范围内流行的病毒病,宿主遍及42科125种以上的海水、淡水和半咸水鱼类。研究黏附蛋白与细胞受体以及两者之间的相互作用是探讨淋巴囊肿病毒(Lymphocystis disease virus,LCDV)感染机制和综合防治淋巴囊肿病的一个有效途径。本文利用牙鲆LCDV敏感细胞系—牙鲆鳃细胞系(Flounder gill cell line,FG),建立了牙鲆LCDV中和抗体的筛选体系,从制备的抗牙鲆LCDV单克隆抗体中,筛选出2株牙鲆LCDV中和单抗,并对病毒的黏附蛋白进行初步确认;利用病毒铺覆蛋白印迹技术(VOPBA)鉴定出牙鲆LCDV靶器官及FG细胞的LCDV受体蛋白,研究分析了FG细胞的LCDV受体蛋白特性及其在病毒感染中的作用。具体结果如下: FG细胞的培养是本文研究的基础,在本文所选择的培养条件下(含10%胎牛血清的Eagle’s MEM培养基培养,pH7.4,温度20℃),FG细胞生长迅速,状态良好,细胞生长曲线显示,细胞3-4d即可达到增殖顶峰,7d之内均保持良好状态。将粗提的牙鲆LCDV接种于FG细胞,1-2d后细胞即出现明显的病变,半数细胞培养物感染量(TCID50)为22.88/40μL。细胞病变有两种形式,一是细胞崩解、脱落形成明显的空斑,二是细胞融合形成大量的合胞体。利用制备的抗牙鲆LCDV单克隆抗体,通过免疫荧光技术和免疫细胞化学方法,均可检测到FG细胞内增殖的牙鲆LCDV,进一步证实FG细胞是牙鲆LCDV的敏感细胞。另外免疫荧光检测病毒对FG细胞的吸附发现,牙鲆LCDV可与FG细胞表面结合,说明FG细胞表面具有牙鲆LCDV的受体,为受体蛋白的研究提供理论依据。
     本文利用FG细胞,以患LCD的牙鲆血清和通过免疫获得的兔抗牙鲆LCDV血清为研究对象,通过微量细胞病变中和实验,建立了检测牙鲆LCDV中和抗体的方法,且对中和实验的主要参数包括病毒与血清的孵育条件、病毒与血清的浓度设定以及判定标准进行探讨。结果显示患病牙鲆血清以及兔抗血清对牙鲆LCDV感染都具有明显的中和作用,具有中和效果的血清最高稀释度分别为1:64和1:160。
     本文采用差速离心和密度梯度法分离提纯了牙鲆LCDV,以此作为抗原,运用单克隆抗体技术,通过免疫荧光抗体技术和斑点免疫印迹技术筛选,有限稀释法克隆出9株分泌抗牙鲆LCDV单克隆抗体的杂交瘤细胞。经微量细胞病变中和实验筛选,得到2株具有中和性的牙鲆LCDV单克隆抗体(3G3和1B2)。Western blotting结果显示,中和单抗3G3和1B2能特异性结合的病毒多肽分子量分别为38.2 kDa和32.9 kDa。
     本文运用免疫荧光技术,检测到牙鲆的鳃、表皮、肾、胃、肠是牙鲆LCDV的靶器官。提取了各靶器官蛋白,通过病毒铺覆蛋白印迹技术(VOPBA)进行受体蛋白的鉴定,结果如下:鳃组织蛋白中鉴定出1条分子量为37.6 kDa的受体蛋白带;表皮组织蛋白中鉴定出1条分子量为56 kDa的受体蛋白带;胃、肠和肾组织蛋白中均鉴定出1条分子量为27.8 kDa的受体蛋白带。
     本文利用NP-40裂解和差速离心法,提取了FG细胞的膜蛋白,利用VOPBA鉴定出FG细胞膜上的1个牙鲆LCDV受体蛋白,其分子量大小为37.6 kDa。采用电洗脱的方法提纯了该受体蛋白,双向电泳结果显示此蛋白为单一多肽,其等电点在6.0左右。将该受体蛋白经胰蛋白酶和高碘酸钠作用后,发现病毒与受体蛋白的结合变弱,推测此受体蛋白可能为糖基化的蛋白受体。用该受体蛋白免疫Balb/c小鼠,制备其多抗,免疫荧光结果显示,受体蛋白抗体能够与FG细胞表面结合。通过VOPBA阻断实验发现,稀释50倍和100倍的受体蛋白抗体能够阻断病毒与受体蛋白的结合,稀释200倍的受体蛋白抗体阻断效果不明显。病毒体外感染阻断实验发现,稀释50倍、100倍和200倍的受体蛋白抗体能够在不同程度上阻断病毒的感染。由此推测37.6 kDa受体蛋白可能是介导牙鲆LCDV感染FG细胞的一个功能蛋白。
Lymphocystis disease (LCD) is a chronic worldwide fish disease, characterized by papilloma-like lesions typically on the skin, fins and tail. It has more than 100 hosts including marine and freshwater species. Virus attachment to a cellular receptor through virion attachment proteins is the first step in viral infection. Understanding of how viral proteins and host cell receptors mediate this initial interaction will contribute to understanding the virus infection mechanism and provide a new method for virus disease prevention. In this paper, flounder gill (FG) cell line was used for study of virion attachment proteins and cellular receptors of lymphocystis disease virus (LCDV) isolate from Japanese flounder. An efficient method to detect neutralizing antibodies against LCDV was established using FG cells, through which we screened and obtained two strains of neutralizing monoclonal antibodies against LCDV; Virus overlay protein binding assays (VOPBA) were carried out to find out the virus binding proteins of the LCDV target organs and FG cells. The characteristics and function of the virus binding protein of FG cells were also studied.
     FG cell culture was the foundation of this study. FG cells were derived from flounder gill tissue and they grew fast and well at 20℃in Eagle’s MEM supplemented with 10% of fetal calf serum. According to the growth curve, the density of cells could reach the peak 3-4 days after inoculation.Obvious cytopathic effect (CPE) could be found on FG cells 1-2 days after inoculation with LCDV purified from lymphocystis cells of Japanese flounder, and the half tissue culture infection dosage (TCID50) was 22.88 per 40μL. Two kinds of CPE were observed including plaques and syncytia. The results of detecting LCDV in FG cells using immunofluoresence assay test (IFAT) and immunocytochemistry (ICC) by monoclonal antibodies against LCDV show that virus could propagated in FG cells. The location of the virions was detected in virus-adsorbed cells by IFAT, suggesting the specific LCDV receptors on the surface of FG cells.
     Micro-cytopathic effect neutralization test (MCPENT) demonstrated that infectivity to FG cells was reduced by pretreatment of virus with serum obtained from LCD-diseased Japanese flounder and rabbit anti-LCDV serum, the neutralization titers were respectively 1:64 and 1:160. As a sensitive cell line for LCDV, FG cells could be used in the detection of neutralizing antibodies to LCDV.
     Monoclonal antibodies against LCDV were raised using virus purified by differential centrifugation and sucrose density gradient centrifugation as antigen. By IFAT and dot blotting assay, 9 positive hybridomas were found and then cloned.
     MCPENT demonstrated that Mab 3G3 and 1B2 were able to neutralize LCDV infection to FG cells. Western blotting analysis showed that Mab 3G3 reacted with a polypeptide with molecular weight of of 38.2 kDa, while Mab 1B2 reacted with a polypeptide with molecular weight of 32.9 kDa.
     Tissues of LCDV-diseased Japanense flounder were detected by IFAT using Mabs against LCDV. The result showed the gill, stomach, intestine, kidney and epidermis were the target organs of LCDV. Proteins of target organs were extracted and then subjected to VOPBA for LCDV binding protein identification. A gill tissue protein of 37.6 kDa could bind LCDV. A kidney tissue protein of 56 kDa could bind LCDV. The stomach, intestine and epidermis tissue shared the same binding protein of 27.8 kDa. FG cell membrane proteins was extracted by NP-40 lysis buffer and separated
     from other cellular components by differential centrifugation. The cell membrane proteins were subjected to VOPBA. A protein of 37.6 kDa located on the surface of FG cells bound LCDV. This virus binding protein was purified by electroelution and then analysed by 2D gel electrophoresis. The profile of 2D gel electrophoresis showed it was a single polypeptide with pI of 6.0. After treated by Trypsin and sodium periodate, the ability of virus binding with 37.6 kDa protein was weakened, which suggested this protein was a glycosylated binding protein. Balb\c mice were immunized by 37.6 kDa protein to product polyclonal antibodies. IFAT found the polyclonal antibodies could react with the surface of the FG cells. Virus binding and infection inhibition test demonstrated that the polyclonal antibodies against the 37.6 kDa binding protein could block the virus binding and infection to FG cells, so that the 37.6 kDa binding protein might be a putative receptor of LCDV to FG cells.
引文
1. Alborali L, Paternello P, Lavazza A, et al. An outbreak of lymphocystis in Diplodus puntzzo. Bollettino societa Italiana di Patologia Ittica, 1996, 8 (20): 2-7
    2. Alonso M, Rodriguez S, Perez-Prieto S I. A continuous cell line from the cultured marine fish gilt-head seabream (Sparua aurata L). Aquaculture, 1997, 150: 143-153
    3. Alonso, M.C., Cano, I., Garcia-Rosado, E., Castro, D.,Lamas, J., Barja, J.L., Borrego, J.J., Isolation of lymphocystis disease virus from sole, Solea senegalensis Kaup, and blackspot sea bream, Pagellus bogaraveo (Brünnich). J. Fish. Dis., 2005, 28: 221-228
    4. Anderson BE,Brock JA, Hayashi T, et al. The occurrence of lymphocystis in a new host species, Sargocentron punctatissimum Cuvier and Valenciennes, collected and maintained in Hawaii. Pacific Science, 1988, 42(3-4): 214-216
    5. Bernhard O K, Sheil MM, Cunningham AL. Lateral membrane protein associations of CD4 in lymphoid cells detected by cross-linking and mass spectrometry [J]. Biochemistry, 2004, 43 (1) : 256-264
    6. Basurco B. First report of lymphocystis disease in Sparus aurata in Spain. Bull. Eur. Ass. Fish Pathol., 1990, 10: 71-73
    7. Berthiaume L, Heppell J, Desy M, LeBlanc L, et al. Manifestation of lymphocystis disease in American plaice (Hippoglossoides platessoides) exposed to low salininities. Canad. J. Fish. Aquat. Sci., 1993, 50(2): 430-434
    8. Berthiaume, L., Alain, R., Robin, J.. Morphology and ultrastructure of lymphocystis disease virus, a fish iridovirus, grown in tissue culture. Virology, 1984,135:10-19
    9. Block B, Larsen J L. an iridovirus-like agent associated with systemic infection in cultured turbot Scophalumus maximus fry in Denmark. Dis. Aquatic. Org., 1993, 15: 235-240
    10. Bowden R A, Oestmann D J, Lewis DH, Frey M S. Lymphocystis in red drum. J. Aquat. Ani. Health, 1995, 7(3): 231-235
    11. Christian A. Tidona, Gholamreza Darai. The Complete DNA Sequence of Lymphocystis Disease Virus.J.Virology, 1997, 230:207-216
    12. Chisolm GE and Henner DJ. Multiple early transcripts and splicing of the Autographa Californica nuclear polyhedrosis virus IE-1 gene. J Virol., 1992, 62:3193-3200
    13. Colorni A, Diamant A. Splenic and cardiac lymphocystis in the red drum, Sciaenops ocellatus.J. Fish Dis., 1995, 18: 467-471
    14. Darai G, Anders K, koch H G, et al. Analysis of the genome of fish lymphocystis disease virus isolated directly from epidermal tumors of Pleuronected. Virology, 1983, 126: 466-479
    15. Dixon P, Vethaak D, Bucke D, Nicholson M. Preliminary study of the detection of antibodies to lymphocystis disease virus in flounder, Platichthys flesus L., exposed to contaminated harbour sludge. Fish Shellfish immunol., 1996, 6(2): 123-133
    16. Durham P J K, M J Allanson, W Lymphocystis disease in snapper (Pagrus auratus) from Spencer Gulf, South Australia. Australian Veterinnary Journal, 1996, 74: 312-313
    17. Essbauer S, Fischer U, Bergmann S, Ahne W. Investigations on the ORF 167L of Lymphocystis Disease Virus (Iridoviridae). Virus Gene, 2004, 28(1): 19-39
    18. Garcia-Rosado E, Castro D, Cano I, et al. Protein and glycoprotein content of lymphocystis disease virus (LCDV). Inter Micro., 2004, (7):121-126
    19. Garcia-Rosado E, D Castro, S Rodriguez, et al.. Isolation and characterization of lymphocytes virus from gilt-edged sea bream (Sparus aurata, L.) using a new homologous cell line. Bull. Europ. Association fish Pathol. Weymouh, 1999, 19(2): 53-56
    20. García-Rosado, E., Castro, D., Cano, I., Pérez-Prieto, S.I., Serological techniques for detection of lymphocystis virus in fish. Aquat. Living. Resour., 2002,15:179-185
    21. Gholamreza Darai, Hajo Delius, Jill Clarke, et.al.. Molecular Cloning and Physical Mapping of the Genome of Fish Lymphocystis Disease Virus. J. Virology, 1985,146:292-301
    22. Gholamreza Darai, Kerstin Anders, Hans-Georg Koch. , et.al. Analysis of the Genome of Fish Lmphocystis Disease Virus Isolation Directly from Epidermal Tumours of Pleuronectes. J. Virology, 1983,126:466-479
    23. Hu G-B, R-S Cong, T-J Fan, X-G Mei.. Induction of apoptosis in floundergill cell line by lymphocystis disease virus infection. Journal of Fish Disease,2004, 27:657-662
    24. Iwamoto, R., Hasegawa, O.. Isolation and characterization of the Japanese flounder (Paralichthys olivaceus) lymphocystis disease virus. J. Aquat. Anim. Health, 2002, 14: 114-123
    25. LeDeuff R M, Bachere E, Boulo V, et al. Preparation of specific reagents, monoclonal antibodies and nucleic probes, for diagnosis of lymphocystis related virus (Iridoviridae). Aqua. Environ., 1991, 14: 185-186
    26. Ledeuff R M, T Renault Bull. Eur lymphocystis outbreak in farmed sea bream, Sparus aurata, first report on French Mediterranean coast. Fish Pathol., 1993, 13: 130-133
    27. Lipipun V., P. Caswell-Reno, Y..–L, et.al. Antigentic Analysis of Asian Aquatic Birnavirus Isolation Using Monoclonal Antibodies. J. Fish Pathology, 1989, 24(3):155-160
    28. Lorenzen K, C Sades, Anders K. Population dynamics of lymphocystis disease in esturine flounder Platichthys flesus. Dis. Aquat. Organisms, 1991, 11(2): 99-103
    29. Lorenzen.N. Affinity purification of the structural proteins of a fish Rhabdovirus by the use of monoclonal antibodies. J. Journal of Virological Methods, 1992, 38:297-303
    30. Lucy Bunkley-Williams, Ernest H., Williams Jr. Does lymphocystis occur in pacora, Plagioscion surinamensis (Sciaenidae),from Colombia Acta Tropica, 2002,82:7-9
    31. Masoero L, C Ercolini, M Caggiano, A Rosso. Preliminary observation on lymphocystis in an intensive Italian mariculture, Rev. Ital. Piscic Ittiopatol., 1986, 21: 70-74
    32. McCosker JE, Lagios MD, Tucker T. Ultrastructure of lymphocystis virus in the quillback rockfish, Sebastes maliger, with records of infection in other aquariumheld fishes. Trans. Am. Fish. Soc., 1976, 105(2): 333-337
    33. Mellergard, Stig, Else Nielsen. Epidemiology of lymphocystis, epidermal papilloma and skin ulcerations in common dab Limanda along the weat coastal of Denmark, Dis. Aquat. Organism, 1997, 30: 151-163
    34. Menezes J, Ramos A, Pereira T G. Lymphocystis disease: An outbreak in Sparus aurata from Ria Formosa, South coast of Portugal. Aquaculture, 1987, 67(1-2): 222-225
    35. Miyazaki T, S Egusa. On the lymphocystis disease in cultured sea bass (Lateolabrax japonicus, Covier and Valenci), Fish Pathol., 1972, 6: 83-89
    36. Muller M, Schnitzler P, Koonin EV, Darai G.. Identification and properties of the largest subuint of the DNA-denpendent RNA polymerase of fish lymphocystis disease virus; J.General Virol, 1995, 76(5): 1099-1107
    37. Nishida H, M Yoshimizu. Detection of antibody against lymphocystis disease virus in Japanese flounder by enzyme linked immunosorbent assay. Fish Pathol., 1998, 33: 207-212
    38. Paperna, I; Ventura, TM; de Matos, AP. Lymphocystis infection in snakeskin gourami, Trichogaster pectoralis (Regan), (Anabantidae). J. Fish Dis.. Oxford, 1987, 10(1): 11-19
    39. Paperna, Sabnall A I.. An outbreak of lymphocystis in Sparus aurata L. in the Gulf of Aqaba,Red Sea. Journal of Fish Disease,1982, 5: 433-437
    40. Pearce M J, D Humphrey, A D Hyatt, et al. Lymphocystis disease in captive barramundi Lates calcarifer. Aust. Vet. J., 1990, 67: 144-145
    41. Peter N. Formation and disintegration of virion in lymphocystis cells of plaice Pleuronectes platessa. Dis. Aquat. Oranism, 1995, 21: 109-113
    42. Reiersen L. O., K. Fugelli. Annual variation in lymphocystis infection frequency in flounder, Platichthys flesus (L.) Fish Biol.,1984, 24:187–191
    43. Robin J,Laperriere A, Berthiaume L. Identification of the glycoproteins of lymphocystis disease virus (LDV) of fish. Arch Virol, 1986, (87): 297-305
    44. Samalecos, C., Biochemical and structural studies of fish lymphocystis disease virions isolated from skin tumours of Pleuronectes. J. Virol. Methods., 1986,13:197-205
    45. Samalecos. C. P.. Anslysis of the Structure of Fish Lymphocystis Disease Virions from Skin Tumours of Pleuronectes. Arch Virol., 1988, 91:1-10
    46. Schnitzler P, Handermann M, Szepe O, Darai G.. The primary structure of the thymidine kinase gene of fish lymphocystis disease virus. Virology, 1991, 182(2): 835-840
    47. Schnitzler P; Darai G. Identification of the gene encoding the major capsid protein of fish lymphocystis virus. J. General. Virol., 1993, 74(10): 2143-2150
    48. Sindermann C , Bang F , et al. The role and value of pathobiology in pollution effects monitoring programs. Rapp. P.- v. Reun. Commn int. Explor. Mer., 1980, 179: 135-151
    49. Tidona C A, Darai G. The complete DNA sequence of lymphocystis disease virus. Virology, 1997, 230: 207-216
    50. Triantafilou K, Fradelizi D, Wilson K, Triantafilou M. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization [J]. J Virol., 2002 , 76 (2): 633243
    51. Walker D. P., B. J. Hill Studies on the Culture, Assay of Infectivity and Some in vitro Properties of Lmphocystis Virus. J. Journal of General Virolology, 1980,5: 385-395
    52. Williams EH Jr; Grizzle JM; Bunkley-Williams. Lymphocystis in Indian glassfish Chanda ranga imported from Thailand to Puerto Rico. J. Aquat. Animal Health, 1996, 8(2): 173-175
    53. Wolf K. Lymphostis disease, In“Fish Viruses and Fish Viral Diseases”, Cornell University Press. Ithaca. 1988
    54. Valenzuela-Fernandez A, Palanche T, Amara A, Magerus A, Altmeyer R, Delaunay T, Virelizier JL, Baleux F, Galzi JL, Arenzana-Seisdedos F. Optimal inhibition of X4 HIV isolates by the CXC chemokine stromal cell-derived factor 1 alpha requires interaction with cell surface heparan sulfate proteoglycans [J ]. J Biol Chem., 2001,13:276-285
    55. Zhang Q Y, Ruan H M, Li Z Q, et al. Infection and propagation of lymphocystis virus isolated from the cultured flounder Paralichthys olivaceus in grass carp cell lines. Dis. Aquat. Org., 2003, 57: 27-34
    56. Zhang, Q.Y., Xiao. F., Xie, J., Li, Z.Q., Gui, J.F., Complete genome sequence of lymphocystis disease virus isolated form China. J. Virology,2004,.8: 6982-6994
    57. Sheng X Z, Zhan W B. Occurrence, development and histochemical characteristics of lymphocystis in cultured Japanese flounder (Paralichthys olivaceus)[J]. High technol Letters, 2004, 70(2): 92-96
    58. Garcia Rosado E, Castro D, Cano I, et a1. Serological techniques for detection of lymphocystis virus in fish [J]. Aquat Living Resour, 2002, 15: 179-185
    59. Tong S L, Li H, Miao H Z, et al. The establishment and partial characterization of a continuous fish cell line Fg-9307 from the gill of flounder Paralichthys olivaceus. Aquaculture, 1997, 156: 327-333
    60. Xing J, Zhan W B, Zeng X H, et al. Detection of lymphocystis disease virus infection to flounder gill cells in vitro by monoclonal antibodies. High Technol Letters, 2006, 12 (1): 103-108
    61. Development and characterization of monoclonal antibody to the lymphocystis disease virus of Japanese flounder Paralichthys olivaceus isolated from China. Journal of virological methods, 2006, 135:173-180
    62. Shin-Ichi Kitamura, Jin-Yong Ko, Wol-La Lee, et al. Seasonal prevalence of lymphocystis disease virus and aquabirnavirus in Japanese flounder, Paralichthys olivaceus and blue mussel, Mytilus galloprovincialis. Aquaculture, 2007, 266: 26-31
    63. Sandra S. Ristow, Jeanene de Avila, Scott E. Lapatra, et al. Detection and characterization of rainbow trout antibody against infectious hematopoietic necrosis virus. Diseases of aquatic organisms, 1993, 15: 109-114
    64. Socott. T, Sohors B S. Neutralizing antibody of IHNV from Salmogairdneri. Am. J. Vet. Res.,1989, 50(2): 232-235
    65. Iwamoto R, Hasegawa O, LaPatra S, et al. Isolation and characterization of the Japanese flounder (Paralichthys olivaceus) lymphocystis disease virus [J]. Journal of Aquatic Animal Health, 2002, 14: 114-123
    66. Chen Z Y, H Liu, Z Q Li, et al.Development and characterization of monoclonal antibodies to spring viraemia of carp virus. Vet Immunol Immunopathol, 2008
    67. Chang S. F., G. H. Ngoha, L. F. S. Kueha, et al. Development of a tropical marine fish cell line from Asian seabass (Lates calcarifer) for virus isolation. Aquaculture, 2001, 192:133-145
    68. Iwamoto T, Mori K, Arimoto M, et al. High permissivity of the fish cell line SSN-1 for piscine nodaviruses. Dis. Aquat. Organ, 1999, 39 (1):37-47
    69. Ciulli S, Gallardi D, Scagliarini A, et al. Temperature-dependency of Betanodavirus infection in SSN-1 cell line. Dis. Aquat. Organ, 2006, 68: 261-265
    70. Lai Y S, John J A C, Lin C H, et al. Establishment of cell lines from a tropical grouper, Epinephelus awoara (Temminck & Schlegel), and their susceptibility to grouper irido- and nodaviruses. Journal of fish diseases, 2003, 26: 31-42
    71. Qin Q W, Wu T H, J ia T L, et al. Development and characterizeation of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. Journal of Virological Methods, 2006, 131: 58 - 66
    72. Winton J R, C K Arakawa, C N Lannan, et al. neutralizing monoclonal antibodies recognize ntigenic variants among isolates of infections hematopoietic necrosis virus. Disease of Aquatic Organism, 1988, 4: 199-204
    73. Sharon E, Crane, Jeanine Buzy, et al. Identification of cell membrane proteins that bind visna virus. Journal of Virology, 1991, 65:6137-6143
    74. Monique B, D. Bernard, L. Annie, et al. Fish Rhabdovirus Cell Entry Is Mediated by Fibronectin. Journal of Virology, 1999, 73: 7703-7709
    75. Jin Sik Oh, Dae Sub song and Bong Kyun Park. Identification of a putative cellular receptor
    150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes. Journal of Veterinary Science, 2003, 4 (3):269-275
    76. Hui-Yong W, Li-Fang J, Dan-Yun F, et al. Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell suiface polypeptides. Journal of General Virology, 2003, 84:3095-3098
    77. Jose R C, Jose L I, Blance L B, et al. A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. Journal of Neurovirology, 1997, 3:435-440
    78. Lynn C, Kurt Z and John A T. A soluble form of a receptor for subgroup a avian leucosis and sarcoma viruses (AlSV-A) blocks in fection and binds directly to ALSV-A. Journal of Virology, 1994, 68:2760-2764
    79. Phaik H T, Wan W J and Mary J C. Two dimensional VOPBA reveals laminin receptor (LAMRI) interaction with dengue virus serotypes 1, 2 and 3. Virology Journal, 2005, 25doi:10.1186/1743-422X-2-25
    80. Monique Bearzotti. Fish rhabdovirus cell entry is mediated by fibronectin [J]. J Virology , 1999 , 73 (9) :7 703 - 7 709
    81. Masayuki Imajoh, Ken-ichi Yagyu, Syun-ichirou Oshima. 2003. Early interactions of marine birnavirus infection in several fish cell lines. J. General. Virol., 84: 1809-1816
    82. Maria Yazimendoza, Juan Santiago Salas-Benito, et al.,2002. A putative receptor for dengue virus in mosquito tissues: Localization of a 45-kDa glycoprotein. Am. J. Trop. Med. Hyg., 67(1): 76–84
    83. Masayuki I, Ken-ichi Y and Syun-ichirou O. Early interactions of marine birnavirus infection in several fish cell lines. Journal of General virology, 2003, 84: 1809-1816
    84. Joanna M G, Paul B, Harold E V, et al. The receptor for the subgroup a avian Leukosis-Sarcoma viruses bind to subgroup A but not to subgroup C envelope glycoprotein. Journal of virology, 1994, 68: 5623-5628
    85. Wanchai A, Duncan R S and Sakol P. Identification and characterization of a Penaeus monodon lymphoid cell-expressed receptor for the yellow head virus. Journal of Virology, 2006, 80: 262-269
    86. James M F and Marshall E B. Identification of a cell suiface protein from crandell feline kidney cells that specifically binds Aleutian mink disease parvovirus. Journal of virology, 1999, 73: 3835-3842
    87. Jose DE Jesus Martinez-Barragan and Rose M. DEL Angel. Identification of a putative coreceptor on vero cells that participates in dengue 4 virus infection. Journal of Virology, 2001, 75: 7818-7827
    88. Axel K and Thomas C M. Identification of cell suiface molecules that interact with pseudorabies virusl. Journal of Virology, 1996, 70: 2138-2145
    89. Juan S. Salas-benito and Rosa M. DEL Angel. Identification of two suiface proteins from C6/C36 that bind dengue type 4 virus. Journal of virology, 1997, 71: 7246-7252
    90. Chutima T and Duncan R S. serotype-specific entry of dengue virus into liver cells: Identification of the 37-Kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. Journal of Virology, 78: 12647-12656
    91.华斯莱.动物组织培养技术.北京:科学出版社,1982
    92.杨复华.病毒学.长沙:湖南科学技术出版社,1992
    93.谢天恩,胡志红.普通病毒学.北京:科学出版社,2002
    94.颜昌敬.植物组织培养手册.上海:上海科学出版社,1990
    95.郭青,吴泽阳.海水鱼淋巴囊肿病的初步研究.鱼类病害研究.1992,4:7-8
    96.刘允坤,孙修勤,黄捷,张进兴.牙鲆淋巴囊肿病的PCR诊断方法研究.高技术通讯.2002,11,87-89
    97.刘允坤,孙修勤,黄捷.牙鲆(Paralichthys olivaceus)淋巴囊肿病毒的分离.高技术通讯.2002,6,92-95
    98.吕宏旭,汪岷,李红岩,郭华荣,张士璀,包振民,周丽.利用牙鲆鳃细胞系分离及培养淋巴囊肿病毒.青岛海洋大学学报.2003,33(2):233-239
    99.曲径,江育林,沈海平,王浩等.牙鲆鱼淋巴囊肿病初报.中国动物检疫.1998,15(2):1-3
    100.马广勇,吕宏旭,林晓婷等.牙鲆淋巴囊肿病毒在体外培养细胞中感染循环的初步研究[C].浙江,舟山:第一届海洋生物高技术论坛论文集,2003:197-204
    101.曲径,潘雁甲,王作佳等.养殖牙鲆淋巴囊肿病病防治的初步研究.青岛海洋大学学报.2002,32(5):707-712
    102.曲凌云,孙修勤,张进兴.养殖牙鲆淋巴囊肿病的电镜观察.青岛海洋大学学报,2000,30(6):105-110
    103.曲凌云,张进兴,孙修勤.养殖牙鲆淋巴囊肿病流行情况与组织病理学研究.黄渤海海洋,1999,17(2):43-47
    104.宋晓玲,黄倢,杨冰等.牙鲆淋巴囊肿病的病理和病原分离.中国水产科学.2003,10(2):117-120
    105.孙修勤,洪旭光,张进兴,张士璀,汪敏,童尚亮.牙鲆淋巴囊肿病毒在牙鲆鳃细胞系FG-9307中的增殖.高技术通讯.2002,12:94-96
    106.孙修勤,曲凌云,张进兴.牙鲆淋巴囊肿病毒的病原性与免疫原性.高技术通讯.2000,9:19-21
    107.吴兴安,胡刚,李继业等.淋巴囊肿病病毒主要衣壳蛋白基因片段原核载体的构建及表达.高技术通讯.2003,6:78-80
    108.张启亚,李正秋.胭脂鱼弹状病毒包涵体在培养细胞中的形成.中国兽医学报,2001,21:38-41
    109.李霞,福田颖惠.金鱼疱疹病毒敏感细胞的体外培养.上海水产大学学报,2003,12:12-18
    110.陈晓燕,何建国.斜带石斑鱼神经坏死病毒主衣壳蛋白抗体的制备.中国水产科学,2006,13(5):841-844
    111.徐宋娟,邢婧,程顺峰等.应用免疫技术检测牙鲆组织内的淋巴囊肿病毒.水产学报,2004,28(增刊):101-105
    112.薛良义,王国良,徐兴林等.海水网箱养殖鲈鱼淋巴囊肿病的初步研究.海洋科学,1998,2:54-55
    113.殷震,刘景华,动物病毒学.第二版.北京.1997年
    114.张奇亚.我国水生动物病毒病研究概况.水生生物学报.2002,26:89-100
    115.张永嘉.海水鱼淋巴囊肿病的初步研究.鱼类病理研究,1992,14:7-8
    116.战文斌.水产动物病害学[M].北京:中国农业出版社,2004
    117.绳秀珍,战文斌.鱼类淋巴囊肿病毒靶器官的组织病理研究.中国海洋大学学报,2006,36(5):749-753
    118.程顺峰,战文斌,绳秀珍.淋巴囊肿病毒结构蛋白及其抗原性分析.中国水产科学,2006,13(3):415-420
    119.汪岷,马广勇.鱼淋巴囊肿病毒研究进展.中国海洋大学学报,2006,36(5):693-698.
    120.孙修勤,洪旭光等.牙鲆淋巴囊肿病毒在牙鲆鳃细胞系FG-9307中的增殖.高技术通讯,2002,12:94-96
    121.吕宏旭,汪岷,李红岩等.利用牙鲆鳃细胞系分离和培养淋巴囊肿病毒[J ].青岛海洋大学学报,2003,33 (2):233-239
    122.余传霖,叶天星,陆德源等.现代医学免疫学.上海医科大学出版社,1998
    123.殷震,刘景华.动物病毒学.第二版.北京:科学出版社,1997
    124.王炜,赵桃英等.草鱼出血病病毒多肽的免疫原性.中国病毒学,1995,10(2):166-168
    125.杨先乐等.草鱼出血病细胞培养灭活疫苗的研究-生产性试验.水产科技情报,1992,19 (1):10-14
    126.叶雪平等.细胞生物反应器大规模培养草鱼细胞和病毒研究.水产学报,1992,16 (1):1-5
    127.许淑英等.草鱼出血病细胞培养弱毒疫苗的制备及其免疫效果.水产学报,1994,18 (2):110-117
    128.范志强,夏咸柱等.检测犬冠状病毒中和抗体的方法与应用.中国畜禽传染病,1998,20(6):357-360
    129.姜有声,战文斌,王世表等.WSSV感染中国对虾血细胞及其单抗中和力的比较.青岛海洋大学学报,2002,32(Sup.):257-261
    130.陈怀青,陆承平.从比较免疫学看鱼类的免疫特性.动物学杂志,1994,29(4):56-60
    131.李亚南,陈全震,邵健忠等.鱼类免疫学研究进展.动物学研究,1995,16(1):83-94
    132.刘美德,赵彤言,董言德等.登革2型病毒在C6/36细胞上受体蛋白的鉴定.寄生虫与医学昆虫学报,2003,10(4):233-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700