无定形碳纤维增强超硬铝复合材料阻尼性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以研制和开发功能结构一体化的高阻尼复合材料为目的,研究了采用粉末冶金和热挤压工艺制备的Meso-10超硬铝合金和XN-05无定形碳纤维增强的Meso-10铝基复合材料的力学与阻尼性能。利用金相显微镜(OM)和扫描电子显微镜(SEM)对复合材料中纤维的分布及拉伸断口进行微观组织观察,利用透射电子显微镜(TEM)对复合材料的界面结构和位错组态进行了分析;通过拉伸试验和硬度试验评价材料的力学性能;采用动态机械分析仪(DMA-Q800)研究材料的低频阻尼性能随应变振幅和温度的变化规律;确定材料的固溶时效工艺并研究固溶时效对材料力学和阻尼性能的影响;采用有限元法对多纤维增强铝基复合材料的室温阻尼性能进行数值模拟,并且对本文中的低模量碳纤维增强铝基复合材料的阻尼机制进行综合分析。揭示了超硬铝基复合材料低频阻尼行为的变化规律及其影响因素,为开发高阻尼、高性能铝基复合材料奠定了良好的基础。
     研究结果表明,碳纤维均匀地分布在Meso-10Al基体中,并且在增强体与基体之间没有发现界面反应,铝合金与碳纤维是弱界面结合。随着碳纤维体积分数的增加,复合材料力学性能逐渐下降,但由于基体材料为超硬铝合金,体积分数为10%与15%的复合材料的力学性能仍能满足工程应用的需要。
     对室温下挤压态材料的阻尼-应变曲线研究表明,铝合金及复合材料的阻尼性能对应变振幅表现出独立和依赖两个方面,符合G-L位错阻尼机制,频率对复合材料的阻尼-应变谱影响不大;10%和15%的复合材料具有比基体合金好的阻尼性能,25%复合材料的阻尼性能反而比基体合金的差。对阻尼-温度-频率曲线的研究表明,铝基复合材料的阻尼性能随温度的升高而增加,随频率的降低而增加,复合材料在250℃左右,均出现界面内耗峰。
     对固溶时效后的材料进行力学和阻尼性能测试,发现140℃时效的材料力学性能和阻尼性能改善最明显,力学性能提高35%,阻尼值增加1倍;固溶时效后复合材料在150℃(P1)和250℃(P2)左右均出现峰值,认为P1是由位错拖拽点缺陷运动造成的,P2是由晶界和界面滑移引起的,具有热激活特征。
     采用有限元法对多纤维增强复合材料的室温阻尼性能进行数值模拟,发现室温阻尼是基体材料在外加循环载荷的作用下,发生局部塑性变形,消耗能量造成的,符合G-L位错阻尼机制,模拟数据与试验结果很好的相符。数值模拟结合试验手段综合分析材料的微观阻尼机制发现,低温时,XN-05C/Meso-10Al复合材料以位错阻尼和增强纤维的本征阻尼为主导机制,高温时,以合金的本征阻尼和界面滑移机制为主导机制。
On the purpose to research and develop structural-functional high damping composites, mechanical properties and damping capacities of superhard Meso-10 aluminum alloy and composites reinforced by amorphous carbon fibers XN-05C were investigated in the paper. The XN-05C/Meso-10Al composites and aluminum alloy were fabricated by powder metallurgy, followed by hot extrusion. The distribution of the fiber in composites and the tensile fracture were observed by Optical Micrograph (OM) and Scanner Electron Microscope (SEM).The microstructure of the reinforcement/matrix interface and the configuration of dislocations in the composites were investigated by Transmission Electron Microscope (TEM). The mechanical properties were examined by tensile and hardness tests. The strain dependent and temperature dependent low frequency damping capacities of these composites and alloys were studied by dynamic mechanical thermal analyzer (DMA-Q800). The process of solution and aging was maded and the influences on mechanical properties and damping capacities were studied after solutiont and aging treatment. The room damping capacity was simulated by FEM and damping mechanism was fully analyzed for low modul amorphous carbon fiber reinforced superhard aluminum composites. This paper revealed the low frequency damping behaviors and their influence factors of Meso-10Al alloys and composites, established a good foundation to develop high damping aluminum matrix composites.
     The results showed that carbon fibers were uniformly distributed in the Meso-10Al matrix. Meanwhile, no apparent reaction is found at interface between fiber and matrix, fiber and matrix were linked by weak interface. As the volume fraction increases, the mechanical property of composites decreases, but because matrix alloy was superhard aluminum alloy, so the mechanical properties of 10% and 15% composites were fulfilled for engineer application.
     The investigation of the curve of damping-strain amplitude at room temperatrue indicated that the curve showed strain amplitude dependent and independent regions, the curves were well interpreted by G-L dislocation model, and frequency has slight influence on the damping capacity. Compare with matrix alloy 10% and 15% composites had the better damping capacity, otherwise 25% composite had worse damping capacity. The investigation of the temperature dependent damping capacity showed that the damping capacity increased when the temperature increased or the frequency decreased. The damping peaks induced by interface slippage around 250℃were found in composites.
     The mechanical property and damping capacity of material were tested after solution and aging treatment, and found mechanical property and damping capacity improved best when material aging at 140oC.The mechanical property improved 30% and the damping value was two times of extruded material when material aging at 140℃Two damping peaks at 150℃and 250℃were found in composites after solution and aging treatment. It is thought that the first peak was formed by the dislocation movement dragging the point defects, and the second peak was formed by slippage of interface, and the two peaks were heat-activate.
     The damping capacity of multi-fiber reinforced superhard aluminum composites XN-05C/Meso-10Al was simulated dynamically by finite element method. The room damping capacity was induced by the plastic deform of matrix under cyclic outside force, and it is in good accordance with G-L theory of dislocation intemal friction, and the simulation results were in good accordance with the experiments. Through examination and simulation the damping mechanism analysis was carried out, and found that at low temperature the dominant damping mechanisms are dislocation damping and internal damping of carbon fiber, at high temperature the dominant damping mechanisms are internal damping of superhard aluminum alloy and interface sliding
引文
1赵稼祥.加强发展军用功能材料.材料工程. 1995, 3: 32~35
    2李沛勇,戴圣龙,刘大博.材料阻尼及阻尼合金的研究现状.材料工程. 1999, 8: 44~48
    3刘棣华.粘弹阻尼减振降噪应用技术.宇航出版社, 1990: 53~65
    4江东亮,闻建勋,陈国民.新材料.上海科学技术出版社, 1994: 25~30
    5 I.G.Ritchie and Z.L.Pan. High Damping Metals and Alloys. Metall. Trans. A. 1991, 22A: 607~622
    6机械工程手册电机工程手册编辑委员会.机械工程手册.工程材料.机械工业出版社, 1996: 138~142
    7李思远,杨伟,杨鸣波.降噪高分子材料及其应用.工程塑料应用. 2004, 32: 70~73
    8杨亦权,杜淼,郑强.新型高聚物阻尼材料研究进展.功能材料. 2002, 33(3): 234~236
    9赵宗桂.碳纤维及其复合材料的发展与应用.甘肃科技. 2002, (05): 12~21
    10葛庭燧.晶界驰豫研究50年.物理. 1999, 28(9): 529~540
    11葛庭隧.固体内耗理论基础-晶界弛豫与晶界结构.科学出版社, 2000: 69~92
    12张迎元,乐永康,高灵清.喷射沉积SiCp增强6061Al MMC的阻尼性能及位错阻尼机制.中国有色金属学报. 1999, 12(9): 91~96
    13冯端.金属物理学.第三卷金属力学性能.科学出版社, 1999: 13~16
    14方前锋,朱震刚,葛庭燧.高阻尼材料的阻尼机理及性能评估.物理. 2000, 29(9): 541~545
    15田莳,李秀臣,刘正堂.金属物理性能.航空工业出社, 1994: 143~156
    16张小农.金属基复合材料的阻尼行为研究.上海交通大学博士学位论文. 1997: 1~89
    17过梅丽.高聚物与复合材料的动态力学热分析.化学工业出版社, 2002: 79~160
    18 M. Vogelsang, R. J. Aisenault, and R. M. Fisher. An In Situ HVEM Study of Disloeation Generation at Al/SiC interfaces in Metal Matrix Composites. Metall. Trans. 1986: 379~389
    19 D. W. James. High Damping Metals for Engineering Application. Mater Sci Eng.1969, 4: 1~8
    20 J. Zhang, R. J. Perez, E. J. Lavernia. Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials. Journal of Materials Science. 1993, 28(9): 23~95
    21 I. G. Ritchie. High Damping Metals and Alloys Metall. Trans. A. 1992, 22A: 607~616
    22杉本孝一.铁と钢. 1974, 60(14): 220~223
    23顾敏. SiCp/Gr颗粒混杂增强6061铝基复合材料中的内耗峰及其阻尼机制.中国有色金属学报. 2003: 41~44
    24张小农,吴仁洁,张荻.金属基复合材料的阻尼机制与性能.机械工程材料. 1996, 20(6): 34~67
    25 T. A. Read. The Internal Friction of Single Metal Crystals. Phys. Rev. 1940, 58: 371~380
    26 A. Granato, K. Lüker. Theroy of Mechanical Damping Due to Dislocation. Appl. Phys. 1956, 27 (6): 583~593
    27 A. Granato, K. Lüker. Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies. Appl. Phys. 1956, 27 (7): 789~805
    28 T. Hinton, J. G. Rider. Dislocation Damping in Dilute Lead Alloys. Appl. Phys. 1966, 37(2): 582~592
    29 F. F. Nicholas, L. B. Pittsburgh. Dislocation Damping in Dilute Cu-Ge Alloys. Appl. Phys. 1964, 35(7): 2242~2247
    30 R. R. Hasiguti, N. I gata, K.Tanaka. Amplitude Dependent Internal Friction of an Aluminum Single Crystal. Acta Metall. 1965, 13: 1083~1084
    31 N. Ide, T. Atsumi, Y. Nishino. Effect of Frequency on Amplitude-dependent Internal Friction in Niobium. Mater. Sci. Eng. A. 2006, 442: 156~159
    32易宏坤,刘兆婷,李飞虎,张荻. Al-17Si-xLa合金室温阻尼-应变振幅行为研究.功能材料. 2003, 34(5): 525~529
    33 D. H. Rogers. An Extension of a Theory of Mechanical Damping Due to Dislocation. Appl. Phys. 1962, 33(3): 781~792
    34 T. S. Ke. Anomalous Internal Friction Associated with the Precipitation of Copper in Cold-Worked Al-Cu Alloys. Phys. Rev. 1950, 78: 420~423
    35 J. Weertman. Dislocation Damping at High Temperature. Appl. Phys. 1957, 28 (2): 193~196
    36 G. Schoeck. Friccion Interna Debido A La Interaccion Entre Dislocaciones Y Atomos Solutos. Acta Metall. 1963, 6: 617~622
    37葛庭燧.晶界驰豫研究50年.物理. 1999, 28(9): 516~534
    38 Ting Sui Ke. Stress Relaxation across Grain Boundaries in Metals. Physical Review. 1947, 72(1): 41~46
    39李沛勇,戴圣龙,刘大博,柴世昌,李裕仁.材料阻尼及阻尼合金的研究现状.材料工程. 1999, 8:36~42
    40 I. G. Ritchie and Z. L.Pan. High Damping Metals and Alloys. Metallurgical. Transactions. A. 1991: 607~616
    41 P. L. Ratnaparkhi and J. M. Howe. Structure and Mechanical of Bonding at Diffusion-Bonded Al/SiC Interface. Acta Metall. Mater. No.3, 1994: 811~823
    42柏振海. 6061Al/SiCp复合材料弹性模量内耗及加工制备的研究.中南大学博士学位论文. 2006: 31~56
    43 Zhang J, Perez R. J, Wong C. R and Lavernia E. J. Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials. Mater. Sci. Eng.R , 1994 , 13 ( 8 ) : 3~25
    44张永琨.碳化硅晶须增强镁基复合材料阻尼性能研究.哈尔滨工业大学硕士学位论文. 2006: 6~54
    45顾金海. 6061Al/ SiCp淬火后残余应力对阻尼性能影响的模拟.郑州大学学报. 2004: 16~19
    46 E. Hunt. P. D. Pitcher, P. J. Gregson. Dry aging of beef in a bag highly permeable to water vapour. Scripta Metall. Mater. 1990, 24: 937~941
    47李莎莎.低模量Cf/6061Al复合材料的阻尼性能和力学性能的研究.哈尔滨工业大学毕业设计. 2006: 27~31
    48徐惠娟.高阻尼铝基材料及其发展趋势.湖南冶金. 1996:45~46
    49徐东辉. Al/SiC复合材料室温下阻尼特性的数值模拟.中国有色金属学报. 1999: 12~13
    50王锦程. SiCp/Al室温阻尼性能与应变振幅的相关性.中国有色金属学报. 2000: 4~7
    51 S Schmauder. The plastic energy dissipation in metal matrix composites during cyclic loading. Comput. Mater. Sci. 1999, 15: 96~100.
    52 Z Zhang, G Yang. The dependence of damping capacity of PMMCs on strain amplitude. Comput. Mater. Sci. 2000, 18: 205~211
    53胡小石.热处理和变形对镁合金低频阻尼性能的影响及机理研究.哈尔滨工业大学博士学位论文. 2007: 10~53
    54 T.S. Ke. Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals. Phys. Rev. 1947, 71 (8): 533~546
    55 T.S. Ke. Stress Relaxation across Grain Boundaries in Metals. Phys. Rev. 1947, 72 (1): 49~52
    56 T.S.Ke, Q.Tan, Q.F.Fang. Further Experiments on the Anomalously Amplitude-Dependent Internal Friction Peaks in Polycrystalline and Single-Crystal Al-Mg. Phys. Stat. Sol. 1987, 103(2): 421~429
    57 Q. Tan, T.S. Ke. Double Amplitude Internal Friction Peaks in Al-0.02 wt% Mg Single Crystals. Phys. Stat. Sol. 1987, 104 (2): 723~729
    58 O. Mercier, K.N. Melton. The Influence of an Anisotrophic Elastic Medium on the Motion of Dislocations: Application to the Martensitic Transformation. Scripta Metall. 1976, 10 (12): 1075~1080
    59 C. Mayencourt, R. Schaller. A Theoretical Approach to the Thermal Transient Mechanical Loss in Mg Matrix Composite. Acta Mater. 1998, 46(17): 6103~6114
    60 J.N. Wei, D.Y. Wang, W.J. Xie, J.L. Luo, F.S. Han. Effects of Macroscopic Graphite Particulates on the Damping Behavior of Zn-Al Eutectoid Alloy. Phys. Lett. A. 2007, 366: 134~136
    61 R. Schaller. Mechanical Spectroscopy of Interface Stress Relaxation in Metal-matrix Composites. Mater. Sci. Eng. A. 2006, 442: 423~428
    62 ?. Bremnes, B. Carreno-Morelli, G. Gremaud. Influence of the Interaction between Dislocations and Mobile Point-defects on the Damping Spectrum of Aluminium. Alloys Compd. 2000, 310: 62~67
    63 R.R. Mulyukov, A.I. Pshenichnyuk. Structure and Damping of Nanocrystalline Metals and Alloys Prepared by High Plastic Deformation Techniques. Alloys Compd. 2003, 355: 26~30
    64 I. Aaltio, M. Lahelin, O. S?derberg, O. Heczko, B. L?fgren. Temperature Dependence of the Damping Properties of Ni-Mn-Ga Alloys. Mater. Sci. Eng. A. 2007: 61~72
    65 C. Mayencourt, R. Schaller. A Theoritical Approach to the Thermal Transient Mechanical Loss in Mg Matrix Composite. Acta Mater. 1998, 46(17):6123~6134
    66 T.S. Ke. Internal Friction of Metals at Very High Temperature. Appl. Phys. 1950, 21 (5): 414~419
    67吴爽登. 7050铝合金时效强化行为研究.哈尔滨工业大学工学硕士学位论文. 2006: 36~42
    68许虹宇. Al 2 O3 .SiO2/Al合金复合材料基体成份设计及耐磨性能研究.哈尔滨工业大学博士学位论文. 2007: 50~69
    69 K.C. Chen and C. G. Chao, Effect ofδalumina fibers on the aging characteristics of 2024-based metal-matrix composites. Metall. Mater. Trans. A 1995, 26(5): 1035~1043
    70 J. H. Hsieh, C. G. Chao, Effect of magnesium on mechanical properties of Al203/Al-Zn-Mg-Cu metal matrix composites formed by squeeze casting, Mater. Sci. Eng. A 1996, 214: 133~138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700