静电纺微纳米多级结构纤维制备及其在油水分离中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究着眼于经济社会发展过程中频繁发生的危及生态环境和人类健康的油污泄漏问题,针对目前水面油污吸附材料吸油量小、选择性差、回收难的问题,从材料本体结构性能与吸附质间的关系出发,从材料的微纳米多级结构设计入手,研究和开发具有吸油倍率高、吸附速度快、易于回收、并可重复使用的水面油污吸附材料。水面漏油的有效控制与回收,既解决了油污带来的危害,有效保护了生态环境,使相应的产业资源和人类生活免受危害,又能避免能源浪费,减小经济损失,具有巨大的现实意义和经济意义。
     自然界中生物体经过长期的演化创造出了丰富多样的微纳米多级结构,这些独特的结构赋予了生物体特殊、新颖的功能,如超疏水、结构色、隔热、高粘附特性等,为人类设计并制造新材料以满足应用需求提供了新的思路和学习途径。近年来,静电纺丝技术作为一种制备微纳米纤维的有效方法,具有可纺原料范围广、纤维结构可调性强、多元技术结合性强、制备工艺可扩展等优势,越来越受到广泛的关注,研究人员正试图利用这种纤维制备技术来调控所制备的纤维的微纳米结构,以期获得新颖的功能,满足应用领域对材料功能和性能的要求。
     本文首先回顾了自然界中广泛存在的微纳米多级结构现象以及这些现象为新材料发展与应用带来的契机,总结了基于静电纺丝技术的微纳米多级结构研究现状,以利用高压静电场制备具有三维立体结构的纤维膜材料为主线,通过聚合物溶液性质、加工参数及环境湿度的调控,不经过后处理工艺,一步获得了不仅传统纺丝技术无法得到的微纳米纤维,而且赋予了纤维本身多级结构,如表面凸起、褶皱、孔洞以及内部孔隙等,大幅度提高了纤维的比表面积和孔体积,从而使其具有传统纤维所不具备的结构特征,综合采用场发射扫描电镜、氮气吸附分析仪、同步辐射小角散射等表征手段研究了纤维的微纳米多级结构,揭示了微纳米多级结构的形成机理及调控机制,为规模化制备具有高比面积、高孔体积的多级结构纤维奠定了基础;在此基础上,研究了纤维本体结构及微纳米多级结构对其表面润湿性的影响,并将获得的纤维应用于油水分离,探讨了纤维吸油机理与过程,研究了纤维结构与吸油性能之间的关系;通过多喷头混合纺丝技术和核—壳纺丝技术来调控纤维膜结构、单纤维结构,以改善和优化纤维的吸油性能。论文取得的主要成果和结论如下:
     采用静电纺丝技术一步制备出具有微纳米多级结构的聚苯乙烯纤维,其比表面积比相同情况下无微纳米多级结构的纤维的比表面积高出约67倍。研究表明:所制备的纤维是一种孔径尺寸在介孔(2~50nm)和大孔(>50nm)范围内的微纳米多级结构材料;纤维的表面形貌和内部孔隙结构可以通过改变溶液中高、低挥发性溶剂的比例来调控;单一高挥发性溶剂,易形成塌陷的、表面多孔球粒或表面多孔的带状纤维,随着低挥发性溶剂比例的提高,球粒变成圆形或椭圆形,表面多孔纤维的截面变成圆形,表面变成褶皱,再变成光滑;纤维多级孔结构的形成主要是由溶液射流在高速运动过程中发生的相分离(热诱导相分离、非溶剂诱导相分离)与固化之间的竞争关系决定的,并随着溶剂组成、环境湿度的改变而变化;纺丝过程中加工参数如溶液注射速度、电压和纤维接收距离等,对单纤维的形貌具有一定的影响,为了宏量制备可以在一定范围内调控;环境湿度是获得具有高比表面积、高孔体积、微纳米多结构纤维的重要条件之一,一般维持在40%左右即可。
     通过在溶液中添加无机纳米颗粒,制备出具有多级结构的有机/无机杂化聚苯乙烯纤维,研究表明:无机纳米颗粒在纤维中的分布可以通过改变混合溶剂中的高、低挥发性溶剂的组成比例来调控;对于含有一定量纳米颗粒的杂化纤维,在高挥发性溶剂体系下,纳米颗粒主要包埋于纤维内部,表层分布较少,随着低挥发性溶剂在混合体系中含量的增加,纳米颗粒逐渐由纤维的中心向其表层迁移,表层颗粒分布量逐渐增加;同一溶剂体系下,随着纳米颗粒添加量的增加,纤维表层分布的颗粒也增加;对于不同溶剂体系,高挥发性溶剂体系中纳米颗粒对纤维的微纳多级结构几乎没有影响,随着低挥发性溶剂含量的增加,杂化纤维膜的比表面积和总孔体积大幅度增加;单一低挥发性溶剂时,纤维膜的孔体积增加,孔尺寸不改变,混合溶剂时,纤维膜的孔尺寸和孔体积均增加;少量的纳米颗粒几乎不影响纤维的起始热分解温度,添加量较大时,会降低纤维的起始热分解温度。
     通过对纤维集合体表面润湿性及其吸油性能的研究,获得了影响纤维膜表而润湿性的因素,阐明了相应的调控机制,实现了纤维膜表面亲—疏水性能的转变,揭示了纤维的吸油机理及影响因素。研究表明:聚合物中所含基团的性质和纤维成形以后的表面形貌结构决定着纤维表面的润湿性,纤维表面的微纳米多级结构,即表面的粗糙度,对表面的润湿性或非润湿性具有促进作用;具有微纳米多级结构的聚苯乙烯纤维因其非极性、低表面能特性,具有良好的疏水—亲油性,对机油的吸附量可达113.87g/g;吸油过程是一个渐进的动态过程,即油先润湿纤维表面,被吸附到纤维可触及的外壁上,填充整个纤维之间的孔隙,然后在毛细作用下,向纤维内部的孔隙铺展,最终填满这些孔结构;纤维的直径、多孔结构、比表面积和孔隙率等是影响纤维吸油量的主要因素;纤维之间堆积而产生孔隙对纤维膜的整体吸油量具有主导作用,并大于纤维本身多级结构对总吸油量的贡献。
     利用多喷头混合纺丝技术在具有微纳米多级结构的聚苯乙烯纤维膜中混入一定量具有良好回弹性和力学性能的聚氨酯纤维,获得了具有良好机械性能和可重复使用的吸油材料,并得到了复合纤维膜结构对吸油性能的影响规律,为制备高吸油、可重复使用吸油材料奠定了基础。研究表明:聚氨酯纤维的混入使复合纤维膜的蓬松性降低,纤维集合体由棉花状变成薄膜状,纤维膜的比表面积、孔体积、表面与水的接触角值、吸油量都随着复合纤维膜中聚氨酯纤维含量的增加而减小,但纤维膜的机械性能提高;复合纤维膜的吸油量随着重复使用次数的增加而降低,第一次重复使用降低幅度较大,但第二次以后纤维膜吸油量降低的幅度较小
     通过核—壳静电纺丝技术制备出了具有微纳米多级结构的聚氨酯增强聚苯乙烯复合纤维,在一定程度上克服了纯聚苯乙烯纤维重复使用性能差、复合纤维膜吸油量低的问题,揭示了纺丝过程中溶液性质、加工参数对纤维形貌结构的影响规律及纤维膜吸油性能的影响因素。结果表明:在纺丝条件一定的情况下,随着核层溶液浓度的降低,纤维逐渐由扁平带状向近似圆形转变,其比表面积和孔体积均增加,纤维具有了核—壳结构,但纤维膜的蓬松性降低,堆积密度变大,导致了其吸油量降低;对于高浓度核层溶液,高电压纺丝获得纤维表面具有纳米孔,比表面积和孔体积比低电压下纺丝获得的表面光滑的纤维大,因而吸油量也大;在核、壳层溶液浓度一定的情况下,壳层中溶剂组成对复合纤维的结构也具有一定的影响,但是鉴于纤维之间孔隙结构对吸油量的影响程度大于单纤维结构对吸油量的影响,此时纤维膜的吸油量变化不大;与纯聚苯乙烯纤维膜相比,该纤维膜的断裂伸长率提高约10~50倍,达50%以上,断裂强度提高约3-5倍,纤维膜使用5次以后,还具有传统聚丙烯纤维无纺布的吸油量,相当于羊毛基无纺布吸油量的3~5倍。
     本文采用简单的一步法,直接制备出具有微纳米多级结构和高比表面积的纤维,获得了微纳米多结构纤维的可控制备方法及调控规律,结合同步辐射光源软X射线表征技术,首次使用元素追踪法研究了单根纤维的微纳米结构对纤维吸油量的影响,从材料应用需求与结构性能之间的关系从发,通过多喷头混合纺丝技术和核—壳纺丝技术解决了高吸油量纤维机械性能差的问题,获得了具有高弹性聚氨酯纤维增强微纳米多结构聚苯乙烯纤维的复合膜和具有高弹性聚氨酯增强的聚苯乙烯/聚氨酯复合纤维,在收集水面油污及油水分离中具有广阔的应用前景和实际应用价值。
This work focused on the problem of oil spillage often occurred during the economic and social developments which have posed great threats both on ecological environment and human health. In view of relationship between the structures of sorbent and sorbate, we will develop an oil sorbent with a high oil sorption capacity, a high uptake capacity, an excellent recyclablity and reusability based upon the hierarchical structures of materials to overcome the low oil sorption capacity, poor oil/water selectivity and recyclablity existing in current oil sorbents. Efficient oil cleanup from water surface can not only solve the problems caused by oil spillage to protect ecological environment and avoid damages to relevant industry resources and human life but also save energy source reducing the economical losses immensely, which shows a great practical and realistic significance.
     Many hierarchical structures with micro-and nanoscales have been created by nature during its evolution throughout the millennia, enabling the living body to exhibit unique and novel functions such as superhydrophobicity, structural colors, thermal insulation, and high adhesion, which provides new ideas and learning ways for human beings to develop new materials to meet the application demands. Recently, electrospinning as an efficient method for generation of polymeric fibers with diameters both on micro-and nanoscales has gained increasing attention due to its unique advantages, such as a widely materials can be electrospun into fibers, fine structures both of fibers and their assembles are regulable, multivariate techniques can be combined with electrospinning, process for fiber preparation are extendable. Researchers are trying to prepare fibers with controllably hierarchical structures to endow themselves with novel properties, thus meet the requirements of function and performance in application areas.
     Hierarchical structures with micro-and nanoscales widely existed in nature and the new opportunities offered by inspiration arising from these structures for creation of new materials were reviewed firstly. Subsequently, we showed a brief review of the present research on fabrication of hierarchical structures via electrospinning. In this work, the fibers with hierarchical structures, such as rough surfaces with numerous papillae, wrinkled surfaces, porous surfaces, porous cores, etc., were fabricated via electrospinning directly. The fiber assembles exhibits a three dimensional porous structure, which have a high specific surface area (SSA) and pore volume due to the introduction of hierarchical structures. These typical structures can not be obtained via conventional spinning techniques, which were characterized by a field emission scanning electron microscopy, nitrogen adsorption measurement analyzer, and synchrotron radiation small-angle X-ray scattering. The formation of hierarchical structures as well as their regulation rules was presented. These results laid a fundamental support to fabrication of electrospun fibers with a high SSA and a high pore volume. Base on these studies, we investigated the effects of intrinsic property and hierarchical structures of the fibers on their wettability. Then we used these fibers to soak up oil on water surface and made analysis on the oil sorption mechanism and process. Subsequently, the structures both of fibrous mats and single fiber were regulated and optimized via multi-nozzles electrospinning and core-shell electrospinning to improve the oil sorption performance. The main results and conclusions of this thesis are presented as following.
     Polystyrene (PS) fibers with hierarchical structures and a high SSA were prepared via electrospinning directly. The SSA of as-prepared fibers was about67times magnitude larger than that of fibers without hierarchical structures. The results demonstrated that the as-prepared fibers were porous materials with mesopores and macropores. These porous structures and fiber surface morphologies can be controlled via tuning the weight ratio of a solvent with a high volatility to a solvent with a low volatility. The sole solvent with a high volatility enables the resultant fibers to show a flat-shape with porous surface or collapsed beads with porous surface. As increasing of low volatility solvent in co-solvent, the collapsed beads change into elliptical or circular shape and the fibers show wrinkled surfaces or smooth surfaces. The hierarchical structures of electrospun fibers are governed by the competition between phase separation (thermally induced phase separation and non-solvent induced phase separation) and solidification of the fluid jet in electrospinning, which is affected by the variation of solvent composition and relative humidity. Additionally, the processing parameters such as solution feed rate, applied voltage, and work distance can also affect the fiber morphology to some extent, which can be varied for large scale preparation in a specific range. Relative humidity plays a key role in the fabrication of PS fibers with hierarchical structures and a high SSA, usually it can be maintained around40%.
     Hybrid PS fibers with hierarchical structures were obtained via electrospinning PS solution with an addition of inorganic nanoparticles. It has been demonstrated that the distribution of nanoparticles within PS fibers can be regulated via tuning the solvent composition. For a given amount of nanoparticles, the nanoparticles was imbedded inside the fibers and only a small amount was present on fiber surfaces when a high volatility solvent used, as the low volatility solvent increased in mixed solvent, the nanoparticles began to come out from the inside of fibers to their surfaces. For a given solvent system, the nanoparticles on fibers surfaces were increased as the increasing of nanoparticles. For the different solvent systems, the hierarchical structures of hybrid PS fibers were almost not affected by the addition of nanoparticles when a high volatility solvent used. As increasing of low volatility solvent increased in mixed solvent, the SSA and total pore volume of as-spun fibers were increased immensely. The nanoparticles can increase total pore volume of as-spun fibers instead of change the pore size as low volatility solvent used, but as the mixed solvent used, both pore size and pore volume were increased. A small amount of nanoparticles does not change the initial thermal decomposition temperature, but a higher amount does.
     The wettability and oil sorption capacity of as-prepared PS fibers with hierarchical structures were investigated. The influence factors of wettability as well as corresponding regulation rules were also elucidated. The fibrous mat with a conversion of hydrophobicity and hydrophilicity was obtained and we also provided an elucidation on oil sorption mechanism and process as well as their influence factors. It shows that the wettability of as-prepared fibrous mats was governed by the intrinsic properties of group in polymer molecular chain and surface morphology of fibrous mats. The hierarchical structures can boost the hydrophobicity or hydrophilicity of the fibrous mats. The electrospun PS fibers with hierarchical structures exhibit an oleophilictiy-hydrophobictiy due to their nonpolarity and low surface energy, which shows an oil sorption capacity of113.87g/g for motor oil. The oil sorption process is a dynamic process. The oil wetted fiber surface firstly and absorbed by fiber surface, filling in the voids among fibers, and then diffused into the pores within fibers by capillary action. The oil sorption capacity of fibrous mats was overwhelmingly influenced by interfibre voids instead of intrafibre porosity, which mainly depended on fiber diameters, porous structures, SSA, porosity, etc.
     Reusable oil sorbent with good mechanical properties can be obtained by adding a certain amount of polyurethane (PU) fibers with good mechanical properties into PS fibrous mats via multi-nozzles electrospinning. Moreover, it also revealed the effects of structures of composite fibrous mats on oil sorption, which laid a solid foundation for preparation of reusable oil sorbent with a high oil sorption capacity. The results show that the bulkiness of composite fibrous mats becomes poorer with the addition of PU fibers, showing a mats-like instead of cotton-shape. With the increasing of PU fibers in composite fibrous mats, the SSA, pore size, water contact angle, oil sorption capacity of as-prepared fibrous mats decreased, however, the mechanical properties improved a lot and oil sorption capacity decreased with the increase of reusable times. The drop of oil sorption capacity for the first reusable time is larger while that for the second time is quite small.
     PU reinforced composite PS/PU fibers with hierarchical structures can be obtained via core-shell electrospinning, which overcomes the inefficiency of pure PS fibers in reusable property and low oil sorption capacity of composite fibrous mats. The effects of solution properties and processing parameters in electrospinning on fiber morphology and that on oil sorption capacity were elucidated. Results show that the fiber gradually changes from flat-shape with a high concentration of core solution into almost circle, meanwhile, the SSA and total pore volume increased thus the fiber shows core-shell structure, but lower bulkiness of fibrous mats and much larger density of fiber assemblies result in a lower oil sorption capacity. For a given high concentration of core solution, a high applied voltage results in the formation of nanopores on the composite fiber surface showing a larger SSA and pore volume compared with a low applied voltage in electrospinning, exhibiting a higher oil sorption capacity. For a given core solution, solvent composition in shell has a certain influence on fiber structures, however, it shows a little influence on oil sorption capacity. Compared with pure PS fibrous mats, the mechanical properties of composite fibrous mats have a substantial improvement, the break elongation and break stress has raised about10~15times reaching up to more than50%and3~5times, respectively. After5times reuse, the fibrous mats still show a high oil sorption capacity comparable with traditional polypropylene nonwoven, approximately3~5times that of wool-based nonwoven.
     In this thesis, we have prepared electrospun fibers with hierarchical structures and high SSA controllably via one-step, and we also obtained regulation rules of the typical structures. For the first time, we investigated the effects of hierarchical structures of as-prepared single fiber on its oil sorption capacity via element trace method with the help of soft X-ray spectromicroscopy beamline. According to the relationship between the demands from materials in application and their structural properties, we improved the mechanical properties of oil sorption fibers with a relative high sorption capacity via multi-nozzles electrospinning and core-shell electrospinning. Consequently, we obtained the composite fibrous mats composed of PS fibers with hierarchical structures and PU fibers with a high elacticity as well as the high elastic PU reinforced composite PS/PU fibers. These fibers exhibit a wide application prospect and practical value both in oil cleanup from water surfaces and oil/water separation.
引文
[1]Liu K S, Jiang L. Multifunctional integration:From biological to bio-inspired materials[J]. ACS Nano,2011,5(9):6786-6790.
    [2]刘克松,江雷.仿生结构及其功能材料研究进展[J].科学通报,2009,54(18):2261-2687.
    [3]Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8.
    [4]Bhushan B. Biomimetics:lessons from nature-an overview[J]. Phil.Trans. R. Soc. A,2009,367(1893):1445-1486.
    [5]Miyauchi Y, Ding B, Shiratori S. Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning[J]. Nanotechnology,2006,17(20):5151-5156.
    [6]Lin J Y, Cai Y, Wang X F, Ding B, Yu J Y, Wang M R. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf[J]. Nanoscale,2011,3(3):1258-1262.
    [7]邱宇辰,刘克松,江雷.花生叶表面的高黏附超疏水特性研究及其仿生制备[J].中国科学:化学,2011,41(2):403-408.
    [8]ZiJ, Yu X, Li Y, Hu X, Xu C, Wang X, Liu X, Fu R. Coloration strategies in peacock feathers[J]. PNAS,2003,100(22):12576-12578.
    [9]李家文,生物结构色机理及仿生构色研究[D],中国科学技术大学,博士学位论文,2011.
    [10]Zhao Y, Xie Z, Gu H, Zhu C, GuZ. Bio-inspired variable structural color materials[J]. Chem Soc Rev,2012,41(8),3297-3317.
    [11]廖广兰,左海波,曹艳波,史铁林.仿Morpho蝴蝶鳞翅微纳结构的光学特性研究[J].中国科学:E辑,2010,40(1):14-20.
    [12]Eadie L, Ghosh T K. Biomimicry in textiles:past, present and potential. An overview[J]. J. R. Soc. Interface.,2011,8(59):761-775.
    [13]Grojean R, Sousa J, Henry M. Utilization of solar radiation by polar animals: an optical model for pelts[J]. Appl. Opt.,1980,19(3):339-346.
    [14]Wu H, Zhang R, Sun Y, Lin D, Sun Z, Pan W, Downs P. Biomimetic nanofiber patterns with controlled wettability[J]. Soft Matter,2008,4(12):2429.
    [15]Ma M, Hill R. Superhydrophobic surfaces [J]. Curr. Opin. Colloid Interface Sci.,2006,11(4):193-202.
    [16]Feng X J, Jiang L. Design and Creation of Superwetting/antiwetting surfaces[J]. Adv. Mater.,2006,18(23):3063-3078.
    [17]Lee Y W, Park S H, Kim K B, Lee J K. Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces[J]. Adv. Mater., 2007,19(17):2330-2335.
    [18]Zhou W, Wang Z L. "Three-dimensional Nanoarchitectures:Designing Next-generation Devices", Springer Verlag,2011.
    [19]Gu Z Z, Uetsuka H, Takahashi K, Nakajima R, Onishi H, Fujishima A, Sato O. Structural color and the lotus effect[J]. Angew. Chem.-Int. Edit.,2003,42(8): 894-897.
    [20]Liu Z, Zhang Q, Wang H, Li Y. Structural colored fiber fabricated by a facile colloid self-assembly method in micro-space[J]. Chem. Commun.,2011,47(48): 12801-12803.
    [21]Sen R, Zhao B, Perea D, Itkis M E, Hu H, Love J, Bekyarova E, Haddon R C. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning[J]. Nano Lett.,2004, 4(3):459-464.
    [22]Bartlett M D, Croll A B, King D R, Paret B M, Irschick D J, Crosby A J. Looking beyond fibrillar features to scale gecko-like adhesion[J]. Adv. Mater., 2012,24(8):1078-1083.
    [23]ZelenyJ. Instability of electrified liquid surfaces[J]. Phys. Rev.,1917,10: 1.
    [24]丁彬,俞建勇.静电纺丝与纳米纤维[M],中国纺织出版社,北京,2011.
    [25]Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Mater. Lett.,2004,58(3-4):493-497.
    [26]Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40:4585-4592.
    [27]Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly (vinyl alcohol) mats[J]. Eur. Polym. J.,2005,41(3):423-432.
    [28]Li D, XiaYN. Electrospinning of nanofibers:Reinventing the wheel? [J]. Adv. Mater.,2004,16(14):1151-1170.
    [29]Shin Y, Hohman M, Brenner M, Rutledge G. Experimental characterization of electrospinning:the electrically forced jet and instabilities[J]. Polymer,2001, 42(25):09955-09967.
    [30]Kessick R, Fenn J, Tepper G. The use of AC potentials in electrospraying and electrospinning processes[J]. Polymer,2004,45(9):2981-2984.
    [31]Deitzel J M, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001,42(1):261-272.
    [32]Buchkoa C J, Chena L C, Shena Y, Martina D C. Processing and microstructural characterization of porous biocompatible protein polymer thin films[J]. Polymer,1999,40:7397-7407.
    [33]Ramakrishna S. An introduction to electrospinning and nanofibers[M], World Scientific Pub Co Inc,2005.
    [34]Li J, He A, Zheng J, Han C C. Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions [J]. Biomacromolecules,2006,7(7):2243-2247.
    [35]Demir M M, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers[J]. Polymer,2002,43(11):3303-3309.
    [36]Baumgarten P K. Electrostatic spinning of acrylic microfibers[J]. J. Colloid Interface Sci.,1971,36(1):71-79.
    [37]Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres[J]. Nanotechnology,2001,12(3):384-390.
    [38]Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Compos. Sci. Technol,2003,63(15):2223-2253.
    [39]Bormashenko E, Bormashenko Y, Stein T, Whyman G, Bormashenko E. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition[J]. J. Colloid Interface Sci.,2007,311(1):212-216.
    [40]Yan G, Yu J, Qiu Y, Yi X, Lu J, Zhou X, Bai X. Self-assembly of electrospun polymer nanofibers:a general phenomenon generating honeycomb-patterned nanofibrous structures [J]. Langmuir,2011,27(8):4285-4289.
    [41]Roberts W J. Honeycomb geometry:Applied mathematics in nature[J]. Mathematics Teacher,1984,77(3):188-190.
    [42]Lutolf M P, Hubbell J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering[J]. Nat. Biotechnol., 2005,23(1):47-55.
    [43]Sell S, Barnes C, Smith M, McClure M, Madurantakam P, Grant J, McManus M, Bowlin G. Extracellular matrix regenerated:tissue engineering via electrospun biomimetic nanofibers[J]. Polym. Int.,2007,56(11):1349-1360.
    [44]Matthews J A, Wnek G E, Simpson D G, Bowlin G L. Electrospinning of collagen nanofibers[J]. Biomacromolecules,2002,3(2):232-238.
    [45]Mo X M, Xu C Y, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation[J]. Biomaterials,2004,25(10):1883-1890.
    [46]Li X R, Xie J W, Yuan X Y, Xia Y N. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering[J]. Langmuir,2008,24(24): 14145-14150.
    [47]Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface:A porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angew. Chem.-Int. Edit.,2004,43(33):4338-4341.
    [48]LiXH, Ding B, LinJY, Yu JY, Sun G. Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers[J]. J. Phys. Chem. C,2009,113(47):20452-20457.
    [49]Godinho M H, Canejo J P, Feio G, Terentjev E M. Self-winding of helices in plant tendrils and cellulose liquid crystal fibers[J]. Soft Matter,2010,6(23):5965.
    [50]Kessick R, Tepper G. Microscale polymeric helical structures produced by electrospinning[J]. Appl. Phys. Lett.,2004,84(23):4807-4809.
    [51]Xin Y, Huang Z H, Yan E Y, Zhang W, Zhao Q. Controlling poly(p-phenylene vinylene)/poly(vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning[J]. Appl. Phys. Lett.,2006,89(5):053101.
    [52]Lin T, Wang H X, Wang X G. Self-crimping bicomponent nanoribers efectrospun from polyacrylonitrile and elastomeric polyurethane[J]. Adv. Mater., 2005,17(22):2699-2703.
    [53]Wang X F, Ding B, Yu J Y, Si Y, Yang S B, Sun G. Electro-netting:fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing[J]. Nanoscale,2011,3(3):911-915.
    [54]Yang S, Wang X, Ding B, Yu J, Qian J, Sun G. Controllable fabrication of soap-bubble-like structured polyacrylic acid nano-nets via electro-netting[J]. Nanoscale,2011,3(2):564-568.
    [55]林金友,丁彬,俞建勇.静电纺丝制备高比表面积纳米多孔纤维的研究进展[J].产业用纺织品,2009(011):1-5.
    [56]Li X S, Nie G Y. Nano-porous ultra-high specific surface ultrafine fibers[J]. Chin. Sci. Bull.,2004,49(22):2368-2371.
    [57]Zhang L F, Hsieh Y L. Nanoporous ultrahigh specific surface polyacrylonitrile fibres[J]. Nanotechnology,2006,17(17):4416-4423.
    [58]Zhang Y Z, Feng Y, Huang Z M, Ramakrishna S, Lim C T. Fabrication of porous electrospun nanofibres[J]. Nanotechnology,2006,17(3):901-908.
    [59]You Y, Youk J H, Lee S W, Min B M, Lee S J, Park W H. Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers[J]. Mater. Lett.,2006,60(6):757-760.
    [60]Moon S, Choi J, Farris R J. Highly porous polyacrylonitrile/polystyrene nanofibers by electrospinning[J]. Fiber. Polym.,2008,9(3):276-280.
    [61]Han SO, Son W K, Cho D W, Youk J H, Park W H. Preparation of porous ultra-fine fibres via selective thermal degradation of electrospun polyetherimide/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibres[J]. Polym. Degrad. Stab.,2004,86(2):257-262.
    [62]Lyoo W S, Youk J H, Lee S W, Park W H. Preparation of porous ultra-fine poly(vinyl cinnamate) fibers[J]. Mater. Lett.,2005,59(28):3558-3562.
    [63]Jun L, Zhang Y, Hao Y, Cheng L, Zhang J J. Preparation of porous electro-spun UPM fibers via photocrosslinking[J]. J. Appl. Polym. Sci.,2009,112(4):2247-2254.
    [64]Gupta A, D.Saquing C, Afshari M, E.Tonelli A, A.khan S, Kotek R. Porous nylon-6 fibers via a novel salt-induced electrospinning method[J]. Macromolecules, 2009,42(3):709-715.
    [65]Ma G, Yang D, Nie J. Preparation of porous ultrafine polyacrylonitrile(PAN) fibers by electrospinning[J]. Polym. Adv. Technol.,2009,20(2):147-150.
    [66]Peng M, Li D S, Shen L, Chen Y, Zheng Q, Wang H J. Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends[J]. Langmuir,2006,22(22):9368-9374.
    [67]Kim C, Ngoc B T N, Yang K S, Kojima M, Kim Y A, Kim Y J, Endo M, Yang S C. Self-sustained thin webs consisting of porous carbon nano fibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride[J]. Adv. Mater.,2007,19:2341.
    [68]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff J H. Nanostructured fibers via electrospinning[J]. Adv. Mater.,2001, 13(1):70-72.
    [69]Casper C L, Stephens J S, Tassi N G, Chase D B, Rabolt J F. Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process[J]. Macromolecules,2004,37(2): 573-578.
    [70]Han S O, SonWK, Youk J H, Lee T S, Park W H. Ultrafine porous fibers electrospun from cellulose triacetate[J]. Mater. Lett.,2005,59(24-25):2998-3001.
    [71]Megelski S, Stephens J S, Chase D B, Rabolt J F. Micro- and nanostructured surface morphology on electrospun polymer fibers[J]. Macromolecules,2002, 35(22):8456-8466.
    [72]Qi Z H, Yu H, Chen Y M, Zhu M F. Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(L-lactic acid)[J]. Mater. Lett.,2009,63(3-4):415-418.
    [73]Kim C H, Jung Y H, Kim H Y, Lee D R, Dharmaraj N, Choi K E. Effect of collector temperature on the porous structure of electrospun fibers[J]. Macromol. Res.,2006,14(1):59-65.
    [74]Wu Y, Yu JY, Ma C. Electrospun nanoporous fiber[J]. Text. Res. J.,2008, 78(9):812-815.
    [75]McCann J T, Marquez M, Xia Y N. Highly porous fibers by electrospinning into a cryogenic liquid[J]. J. Am. Chem. Soc.,2006,128(5):1436-1437.
    [76]Dayal P, Liu J, Kumar S, Kyu T. Experimental and theoretical investigations of porous structure formation in electrospun fibers[J]. Macromolecules,2007,40: 7689-7694.
    [77]Kongkhlang T, Kotaki M, Kousaka Y, Umemura T, Nakaya D, Chirachanchai S. Electrospun polyoxymethylene:Spinning conditions and its consequent nanoporous nanofiber[J]. Macromolecules,2008,41(13):4746-4752.
    [78]Pai C L, Boyce M C, Rutledge G C. Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide[J]. Macromolecules,2009, 42(6):2102-2114.
    [79]Fingas M. Oil spill science and technology:prevention, response, and clean up[M], Gulf Professional Publishing,2010.
    [80]姬钰.浅析船舶油污水的危害及处理方法[J].船舶,2009,20(002):31-37.
    [81]Karan C P, Rengasamy R S, Das D. Oil spill cleanup by structured fiber assembly[J]. Indian J. Fibre Text. Res.,2011,36(2):190-200.
    [82]Deschamps G, Caruel H, Borredon M E, Bonnin C, Vignoles C. Oil removal from water by selective sorption on hydrophobic cotton fibers.1. Study of sorption properties and comparison with other cotton fiber-based sorbents[J]. Environ. Sci. Technol.,2003,37(5):1013-1015.
    [83]Lim T T, Huang X. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup[J]. Chemosphere,2007,66(5):955-963.
    [84]Choi H M, Kwon H J, Moreau J P. Cotton nonwovens as oil spill cleanup sorbents[J]. Text. Res. J.,1993,63(4):211-218.
    [85]Moriwaki H, Kitajima S, Kurashima M, Hagiwara A, Haraguchi K, Shirai K, Kanekatsu R, Kiguchi K. Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water[J]. J. Hazard. Mater.,2009,165(1-3):266-270.
    [86]Wei Q. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery[J]. Mar. Pollut. Bull.,2003,46(6):780-783.
    [87]Yuan J, Liu X, Akbulut O, Hu J, Suib S L, Kong J, Stellacci F. Superwetting nanowire membranes for selective absorption[J]. Nat. Nanotechnol.,2008,3(6): 332-336.
    [88]Korhonen J T, Kettunen M, Ras R H A, Ikkala O. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents[J]. ACS Appl. Mater. Interfaces,2011,3(6):1813-1816.
    [89]Zhu Q, Pan Q, Liu F. Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges[J]. J. Phys. Chem. C,2011, 115(35):17464-17470.
    [1]Pethrick R A. Polymer structure characterization:from nano to macro organization [M], Royal Society of Chemistry,2007.
    [2]Koombhongse S, Liu W X, Reneker D H. Flat polymer ribbons and other shapes by electrospinning[J]. J. Polym. Sci. Pt. B-Polym. Phys.,2001,39(21):2598-2606.
    [3]Megelski S, Stephens J S, Chase D B, Rabolt J F. Micro- and nanostructured surface morphology on electrospun polymer fibers[J]. Macromolecules,2002, 35(22):8456-8466.
    [4]Casper C L, Stephens J S, Tassi N G, Chase D B, Rabolt J F. Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process[J]. Macromolecules,2004,37(2):573-578.
    [5]Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers:preliminary study on polystyrene[J]. Polym. Int.,2004,53(11):1851-1859.
    [6]Jarusuwannapoom T, Hongroijanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers[J]. Eur. Polym. J.,2005,41(3): 409-421.
    [7]Liu J, Kumar S. Microscopic polymer cups by electrospinning[J]. Polymer,2005, 46(10):3211-3214.
    [8]Fantini D, Zanetti M, Costa L. Polystyrene microspheres and nanospheres produced by electrospray[J]. Macromol. Rapid Commun.,2006,27(23):2038-2042.
    [9]Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker D H, Wang P. Enzyme-carrying polymeric nano fibers prepared via electrospinning for use as unique biocatalysts[J]. Biotechnol. Prog.,2002,18(5):1027-1032.
    [10]Sun T, Mai S M, Norton D, Haycock J W, Ryan A J, MacNeil S. Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds[J]. Tissue Eng.,2005,11(7-8):1023-1033.
    [11]Sun T, Norton D, McKean R J, Haycock J W, Ryan A J, MacNeil S. Development of a 3D cell culture system for investigating cell interactions with electrospun fibers[J]. Biotechnol. Bioeng.,2007,97(5):1318-1328.
    [12]Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface:A porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angew. Chem.-Int. Edit.,2004,43(33):4338-4341.
    [13]Miyauchi Y, Ding B, Shiratori S. Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning[J]. Nanotechnology,2006,17(20):5151-5156.
    [14]Shin C, Chase G G, Reneker D H. Recycled expanded polystyrene nanofibers applied in filter media[J]. Colloids Surf. Physicochem. Eng. Aspects,2005,262(1-3): 211-215.
    [15]Zhang C, Wang X, Lin J, Ding B, Yu J, Pan N. Nanoporous polystyrene fibers functionalized by polyethyleneimine for enhanced formaldehyde sensing[J]. Sensor. Actuat. B-Chem.,2011,152(2):316-323.
    [16]An H, Shin C, Chase G G. Ion exchanger using electrospun polystyrene nanofibers[J]. J. Membr. Sci.,2006,283(1-2):84-87.
    [17]McCann J T, Marquez M, Xia Y N. Highly porous fibers by electrospinning into a cryogenic liquid[J]. J. Am. Chem. Soc.,2006,128(5):1436-1437.
    [18]Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T. Reporting physisoiption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl. Chem,1985,57(4): 603-619.
    [19]徐如人,庞文琴,于吉红.分子筛与多孔材料化学[M],科学出版社,北京,2004.
    [20]孟昭富.小角X射线散射理论及应用[M],吉林科学技术出版社,长春,1996.
    [21]丁彬,俞建勇.静电纺丝与纳米纤维[M],中国纺织出版社,北京,2011.
    [22]Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40:4585-4592.
    [23]Flory P. Principles of polymer chemistry[M], Cornell University Press, Ithaca, New York,1953.
    [24]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff J H. Nanostructured fibers via electrospinning[J]. Adv. Mater.,2001, 13(1):70-72.
    [25]Ziabicki A. Fundamentals of fiber formation:the science of fibre spinning and drawing[M], Wiley, New York,1976.
    [26]Pai C L, Boyce M C, Rutledge G C. Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide[J]. Macromolecules,2009, 42(6):2102-2114.
    [27]Reneker D H, Yarin A L. Electrospinning jets and polymer nanofibers[J]. Polymer,2008,49(10):2387-2425.
    [28]Van de Witt e P, Dijkstra P J, vandenBerg J W A, Feijen J. Phase separation processes in polymer solutions in relation to membrane formation[J]. J. Membr. Sci. 1996,117(1-2):1-31.
    [29]Kruk M, Antochshuk V, Jaroniec M, Sayari A. New approach to evaluate pore size distributions and surface areas for hydrophobic mesoporous solids[J]. J. Phys. Chem. B,1999,103(48):10670-10678.
    [30]Groen J C, Peffer L A A, Perez-Ramirez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous Mesoporous Mater.,2003,60(1-3):1-17.
    [31]Munir M M, Suryamas A B, Iskandar F, Okuyama K. Scaling law on particle-to-fiber formation during electrospinning[J]. Polymer,2009,50(20): 4935-4943.
    [32]Buchkoa C J, Chena L C, Shena Y, Martina D C. Processing and microstructural characterization of porous biocompatible protein polymer thin films[J]. Polymer, 1999,40:7397-7407.
    [33]Tripatanasuwan S, Zhong Z X, Reneker D H. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution[J]. Polymer,2007,48(19):5742-5746.
    [34]Ding B, Li C R, Miyauchi Y, Kuwaki O, Shiratori S. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology,2006,17(15): 3685-3691.
    [1]Novak B M, Ellsworth M, Wallow T, Davies C. Simultaneous interpenetrating networks of inorganic glasses and organic polymers[J]. Polymer Preprints,1990, 31(2):698-699.
    [2]李旭华,袁荞龙.杂化材料的制备、性能及应用[J].功能高分子学报,2000,13(2): 211-218.
    [3]丁彬,俞建勇.静电纺丝与纳米纤维[M],中国纺织出版社,北京,2011.
    [4]Jo S M, Song M Y, Ahn Y R, Park C R, Kim D Y. Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells[J]. J. Macromol. Sci. Part A-Pure Appl. Chem.,2005,42(11):1529-1540.
    [5]潘超,基于静电纺丝技术的纳米纤维制备及其应用[D],东南大学,博士学位论文,2007.
    [6]Sundaray B, Subramanian V, Natarajan T S. Preparation and characterization of polystyrene-multiwalled carbon nanotube composite fibers by electrospinning[J]. J. Nanosci. Nanotechnol.,2007,7(6):1793-1795.
    [7]Ji Y, Li B Q, Ge S R, Sokolov J C, Rafailovich M H. Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers[J]. Langmuir,2006,22(3):1321-1328.
    [8]Kim J K, Ahn H. Fabrication and characterization of polystyrene/gold nanoparticle composite nanofibers[J]. Macromol. Res.,2008,16(2):163-168.
    [9]Rojas O J, Montero G A, Habibi Y. Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers[J]. J. Appl. Polym. Sci.,2009,113(2):927-935.
    [10]吴刚,材料.材料结构表征及应用[M],化学工业出版社,2002.
    [11]倪星元,沈军,张志华.纳米材料的理化特性与应用[M],化学工业出版社,2006.
    [12]Chen D, Liu T X, Zhou X P, Tjiu W C, Hou H Q. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes[J]. J. Phys. Chem. B,2009,113(29):9741-9748.
    [13]Sen R, Zhao B, Perea D, Itkis M E, Hu H, Love J, Bekyarova E, Haddon R C. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning[J]. Nano Lett.,2004, 4(3):459-464.
    [1]于伟东,储才元.纺织物理[M],东华大学出版社,2009.
    [2]Kawase T, Sekoguchi S, Fuj T, Minagawa M. Spreading of Liquids in Textile Assemblies:Part Ⅰ:Capillary Spreading of Liquids[J]. Text. Res. J..1986,56(7): 409-414.
    [3]李小红.静电纺纤维膜的疏水性能和拉伸性能的研究[D],东华大学,硕士学位论文,2010.
    [4]Cassie A, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc.,1944, 40:546-551.
    [5]Wenzel R. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936,28(8):988-994.
    [6]Nakajima A, Hashimoto K, Watanabe T, Takai K, Yamauchi G, Fujishima A. Transparent superhydrophobic thin films with self-cleaning properties[J]. Langmuir,2000,16(17):7044-7047.
    [7]Wang X F, Ding B, Yu J Y, Wang M R. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials[J]. Nano Today,2011,6(5): 510-530.
    [8]丁彬,俞建勇.静电纺丝与纳米纤维[M],中国纺织出版社,北京,2011.
    [9]Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface:A porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angew. Chem.-Int. Edit.,2004,43(33):4338-4341.
    [10]Miyauchi Y, Ding B, Shiratori S. Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning[J]. Nanotechnology,2006,17(20):5151-5156.
    [11]Bernett M, Zisman W. Relation of wettability by aqueous solutions to the surface constitution of low-energy solids[J]. J. Phys. Chem.,1959,63(8):1241-1246.
    [12]王曙中,王庆瑞,刘兆峰.高科技纤维概论[M],中国纺织大学出版社,1999.
    [13]Liu W X, Graham M, Evans E A, Reneker D H. Poly(meta-phenylene isophthalamide) nanofibers:Coating and post processing[J]. J. Mater. Res.,2002, 17(12):3206-3212.
    [14]Morton W, Hearle J. Physical properties of textile fibres[M], Technomic Pub Co, Manchester,1993.
    [15](日)近藤精一,石川达雄,安部郁夫.吸附科学[M],化学工业出版社, 2006.
    [16]Unsal E, Schwartz P, Dane J H. Role of capillarity in penetration into and flow through fibrous barrier materials[J]. J. Appl. Polym. Sci.,2005,95(4):841-846.
    [1]L.Simons H. Process and apparatus for producing patterned non-woven fabrics[P]. US 3280229,1966.
    [2]Wu D, Chen Q D, Xia H, Jiao J, XuBB, Lin X F, Xu Y, Sun H-B. A facile approach for artificial biomimetic surfaces with both superhydrophobicity and iridescence[J]. Soft Matter,2010,6(2):263.
    [3]Zhang D M, Chang J. Patterning of electro spun fibers using electroconductive templates[J]. Adv. Mater.,2007,19(21):3664-3667.
    [4]Martin G E. Fibriller product of electrostatically spun organic material[P]. US 4043331,1977.
    [5]Martin G E. Fibrillar lining for prosthetic device[P]. US 4044404,1977.
    [6]Ding B, Kimura E, Sato T, Fujita S, Shiratori S. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning[J]. Polymer, 2004,45(6):1895-1902.
    [7]LiXH, Ding B, Lin J Y, Yu J Y, Sun G. Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers[J]. J. Phys. Chem. C,2009,113(47):20452-20457.
    [8]Fingas M. Oil spill science and technology:prevention, response, and clean up[M], Gulf Professional Publishing,2010.
    [9]Morton W, Hearle J. Physical properties of textile fibres[J]. New York,1993,
    [10]于伟东,储才元.纺织物理[M],东华大学出版社,2009.
    [11]朱育平.小角X射线散射[M],化学工业出版社,北京,2008.
    [12]Munir M M, Suryamas A B, Iskandar F, Okuyama K. Scaling law on particle-to-fiber formation during electrospinning[J]. Polymer,2009,50(20): 4935-4943.
    [13]Deitzel J M, Kleinmeyer J, Harris D, Tan N C B. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001,42(1):261-272.
    [14]Greiner A, Wendorff J H. Electrospinning:A fascinating method for the preparation of ultrathin fibres [J]. Angew. Chem. Int. Ed.,2007,46(30):5670-5703.
    [1]Loscertales I, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo A. Micro/nano encapsulation via electrified coaxial liquid jets[J]. Science,2002, 295(5560):1695-1698.
    [2]Sun Z, Zussman E, Yarin A L, Wendorff H, Greiner A. Compound core-shell polymer nanofibers by co-electrospinning[J]. Adv. Mater.,2003,15(22):1929-1932.
    [3]何创龙,黄争鸣,韩晓建,刘玲,胡影影,张彦中.同轴射流技术制备纳米复合材料研究进展[J].复合材料学报,2005,22(6):1-8.
    [4]Moghe A K, Gupta B S. Co-axial electrospinning for nanofiber structures: preparation and applications[J]. Polymer Reviews,2008,48(2):353-377.
    [5]Di az J E, Barrero A, Mdrquez M, Loscertales I G. Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning[J]. Adv. Funct. Mater.,2006,16(16):2110-2116.
    [6]Shin Y M, Hohman M M, Brenner M P, Rutledge G C. Experimental characterization of electrospinning:the electrically forced jet and instabilities[J]. Polymer,2001,42(25):9955-9967.
    [7]Deitzel J M, Kleinmeyer J, Harris D, Tan N C B. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001,42(1):261-272.
    [8]Ziabicki A. Fundamentals of fiber formation:the science of fibre spinning and drawing[M], Wiley, New York,1976.
    [9]Megelski S, Stephens J S, Chase D B, Rabolt J F. Micro- and nano structured surface morphology on electrospun polymer fibers[J]. Macromolecules,2002, 35(22):8456-8466.
    [10]Koombhongse S, Liu W X, Reneker D H. Flat polymer ribbons and other shapes by electrospinning[J]. J. Polym. Sci. Pt. B-Polym. Phys.,2001,39(21):2598-2606.
    [11]Koch K, Barthlott W. Superhydrophobic and superhydrophilic plant surfaces:an inspiration for biomimetic materials[J]. Phil. Trans. R. Soc. A,2009,367(1893): 1487-1509.
    [12]Karan C P, Rengasamy R S, Das D. Oil spill cleanup by structured fibre assembly[J]. Indian J. Fibre Text. Res.,2011,36(2):190-200.
    [13]Radetic M, Ilic V, Radojevic D, Miladinovic R, Jocic D, Jovancic P. Efficiency of recycled wool-based nonwoven material for the removal of oils from water[J]. Chemosphere,2008,70(3):525-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700