纤维素模板法制备SERS基底及在鼻咽癌诊断中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是导致人们死亡的第一位疾病,诊断是攻克肿瘤的关键一步,表面增强拉曼光谱技术已被广泛应用于肿瘤诊断的研究中,但SERS活性基底的制备是获得SERS信号的前提,以竹浆为原料,开发新型的碱水体系为溶剂,并以均相法制备取代位置可控、均一性好的纤维素衍生物,以纤维素衍生物为模板制备SERS用纳米银,并将SERS基底应用于鼻咽癌的早期诊断中,对于鼻咽癌的早期准确诊断具有重要的理论和实际意义。
     论文系统地研究了碱水溶剂体系对竹浆的溶解情况,开发出竹浆溶解的新的溶剂体系,在低温-7℃下,竹浆粕在NaOH/尿素、NaOH/硫脲、NaOH/羟乙基脲等二元体系中具有较好的溶解率,NaOH/硫酸钠对竹浆粕没有溶解作用;二元体系溶剂的最佳组成分别为,NaOH7.6%/尿素11.4%、NaOH7.6%/硫脲8%、NaOH7.6%/羟乙基脲6%,对竹浆粕的溶解度分别为70.50%、79.64%、84.66%;三元体系的对竹浆粕溶解的最佳组成为NaOH7.6%/尿素11.4%/羟乙基脲3.5%、NaOH7.6%/N素11.4%/硫脲5%、NaOH7.6%/尿素11.4%/硫酸钠2.5%、NaOH7.6%/羟乙基脲6%/硫酸钠2%、NaOH7.6%/羟乙基脲6%/尿素4%、NaOH7.6%/羟乙基脲6%/硫脲4.5%,对竹浆粕的溶解度分别为85.88%、83.06%、75.95%、88.58%、92.07%、93.08%;羟乙基脲的氢键供体数量(为3)与氢键受体数量(为2)均比硫脲、尿素的氢键供体数量(均为2)与氢键受体数量(均为1)来得多,拓扑分子极性表面积(TPSA)为75.4,介于硫脲(84.1)与比尿素的拓扑分子极性表面积(69.1)之间,而疏水参数计算参考值(-1.7)均比尿素(-1.4)与硫脲(-0.8)来得低,羟乙基脲比尿素、硫脲更容易形成氢键,在NaOH协同作用下,很容易与纤维素大分子中的羟基形成分子间氢键能有效地破坏聚多糖分子间和分子内氢键,从而使纤维素溶解于该溶剂体系中,NaOH/羟乙基脲溶剂体系再生后的竹浆为纤维素Ⅱ型。
     NaOH/羟乙基脲水溶液为溶剂,在均相体系中制备了羟乙基尿素、甲基纤维素、羧甲基纤维素、羟丙基甲基纤维素,并利用IR、核磁共振等仪器对制备的纤维素衍生物进行了表征,测定了各纤维素衍生物的取代度。
     利用CMC为模板制备的纳米银,对罗丹明具有很好的拉曼增强效果,其增强效果受温度、模板浓度、还原剂浓度及时间等反应条件的影响;模板法制备纳米银的最佳实验条件为:CMC的质量浓度0.15%,反应温度75℃,柠檬酸三钠的质量浓度为1.2%,采用25mmol·L-1硝酸银溶液作为银源,不调节模板溶液的pH值,反应时间1.25h。CMC水溶液粘度随着质量分数的增大而增大,曲线向上弯曲呈二次函数型的非线性增大。CMC水溶液质量分数低于0.7%时,随着溶液浓度的增加其粘度呈线性增加,此时溶液表现近似为牛顿流体;当质量分数超过0.7%时,溶液表现为非牛顿流体;CMC溶液浓度在一定范围内,溶液中极性亲水基团随CMC质量分数增大而增大,当CMC溶液浓度大到一定程度后,溶液中可利用的亲水基团反而减少。CMC质量分数为0.70%-0.80%时,CMC溶液显示出比较独特的性质。
     利用HPMC为模板合成纳米银,探讨了温度、时间、模板浓度等反应条件对制备纳米银增强罗丹明效果的影响;结果表明以HPMC为模板制备的纳米银是一种很好的SERS基底,对罗丹明的增强效果受纳米银制备条件的影响很大,SERS用纳米银的最佳制备条件为:将50mL10mmol·L-1AgNO3溶液滴入到50mL质量浓度为0.1%的HPMC溶液中,其中含质量浓度为0.1%柠檬酸三钠,保持温度为75℃反应150min时制备的纳米银溶胶。以HPMC为模板合成的纳米银主要是由平均粒径60-70nm的类球型颗粒组成,该溶胶常温避光下保存,保存期超过12个月,各项性能指标稳定。没有用HPMC作模板反应得到的纳米银溶液,保存期不超过15天;粘度实验表明HPMC溶液属于非牛顿流体,随着溶液质量浓度的增加,溶液中的分子易形成分子间氢键使得溶液粘度增加;在一定浓度范围内,HPMC溶液中极性亲水基团随HPMC质量浓度增大而增大。
     利用MC为模板成功合成了SERS基底用的纳米银,探讨了温度、时间、MC浓度等反应条件对制备纳米银增强罗丹明效果的影响;结果表明以MC为模板制备的纳米银是一种很好的SERS基底,对罗丹明的增强效果受纳米银制备条件的影响很大,当模板浓度为0.2%,银氨溶液浓度10mmol·L-1,温度75℃,还原剂为柠檬酸三钠,且浓度为0.2%,反应时间120min时,制备的纳米银具有很好SERS增强效果;以MC为模板合成的纳米银主要是由平均粒径80nm的类球型、棒状等颗粒组成,该溶胶常温避光下保存,保存期超过12个月,各项性能指标稳定;MC水溶液浓度较低时,随着溶液浓度的增加其粘度呈线性增加,此时溶液表现近似为牛顿流体。
     以HEC为模板合成的纳米银对罗丹明6G具有很好的拉曼增强效果,纳米银对罗丹明6G的增强效果受反应因素的影响较大,对罗丹明6G增强效果最好的纳米银的制备条件为:以50mL质量分数0.075%的HEC与50mL15mmol·L-1的硝酸银在质量分数0.1%二水合柠檬酸三钠中于75℃水浴条件下反应150min,该条件下制备的纳米银主要为粒径大小介于60~70nm的球形;该溶胶常温避光下保存,保存期超过12个月,各项性能指标稳定;HEC水溶液质量分数低于0.275%时,溶液表现近似为牛顿流体;当质量分数超过0.275%时,溶液的粘度与浓度之间的线性关系遭到破坏,曲线向上弯曲呈非线性增大,且粘度与浓度呈二次函数关系,此时溶液表现为非牛顿流体。
     以纤维素模板法合成的纳米银溶胶为基底,对血浆具有很好的增强作用,血浆样品的拉曼信号获得极大的增强,同时很好地抑制了生物分子中荧光的干扰;鼻咽癌患者与正常健康人血浆的表面增强拉曼光谱上存在明显差异,正常人血浆的表面增强拉曼光谱在495,591,636,812和1134cm-1处的5个吸收谱峰的强度比相对应的鼻咽癌患者血浆的表面增强拉曼光谱的谱峰强;而在725,1338,1447,1572和1653cm-1处的5个吸收谱峰位置,鼻咽癌患者血浆的表面增强拉曼光谱比相对应的正常健康人血浆的表面增强拉曼光谱的强度大;通过PCA分析后,以纤维素模板法制备纳米银溶胶为基底检测血浆样品的表面增强拉曼光谱的方法,对鼻咽癌的诊断灵敏度与特异性分别达到90.9%和97.5%;经PCA-LDA分析后,以纤维素模板法制备纳米银溶胶为基底检测血浆样品的表面增强拉曼光谱的方法,对鼻咽癌的诊断灵敏度与特异性分别为93.65%和98.72%;通过表面增强拉曼光谱的谱峰强度比较表明,鼻咽癌患者血浆与正常健康人血浆在生化成分的结构与含量上存在明显差异,鼻咽癌病人血液中核酸、苯基丙氨酸、胶原、磷脂、腺嘌呤等成分的含量高于正常健康人,氨基酸与糖类等成分的含量相对较低;以纤维素模板法合成的纳米银溶胶为基底,利用表面增强拉曼光谱技术对血浆样品进行测试,并结合PCA-LDA分析方法对鼻咽癌进行诊断,可发展为一种无损检测与筛查鼻咽癌的临床诊断工具。
Malignant tumor is a leading cause of death in patients and diagnosis is a key step to conquer cancer. Surface enhanced Raman spectroscopy technology has been widely used in diagnosis of tumor. SERS active substrate is the premise of SERS signal. The homogeneous synthesis of cellulose derivatives in alkaline solvent, with bamboo pulp as raw material, was investigated in this work. The SERS ability of silver nanoparticles prepared by using cellulose derivatives as template was studied. And the silver nanoparticles have been used as SERS substrates application in early diagnosis of nasopharyngeal carcinoma, which has important theoretical and practical significance upon rapid and accurate diagnosis of nasopharyngeal carcinoma.
     The solubility of bamboo pulp in alkaline solvent was investigated in this work. The new solvent system for bamboo pulp was developed. Bamboo pulp can be dissolved in NaOH/thiourea, NaOH/hydroxyethyl urea and NaOH/urea aqueous solution under-7℃. NaOH/Na2SO4aqueous solution can not dissolve bamboo pulp. The optimum composition of binary system was NaOH7.6%/thiourea8%, NaOH7.6%/hydroxyethyl urea6%and NaOH7.6%/urea11.4%aqueous solution, respectively. The solubility of bamboo pulp in NaOH7.6%/urea11.4%, NaOH7.6%/thiourea8%and NaOH7.6%/hydroxyethyl urea6%aqueous solution under-7℃was70.50%,79.64%,84.66%, respectively. The optimum composition of three component system was NaOH7.6%/urea11.4%/hydroxyethyl urea3.5%, NaOH7.6%/urea11.4%/thiourea5%, NaOH7.6%/urea11.4%/Na2SO42.5%, NaOH7.6%/hydroxyethyl urea6%/Na2SO42%, NaOH7.6%/hydroxyethyl urea6%/urea4%, NaOH7.6%/hydroxyethyl urea6%/thiourea4.5%, in which the solubility of bamboo pulp was85.88%,83.06%,75.95%,88.58%,92.07%,93.08%, respectively. Both hydrogen bond donor (3) and hydrogen bond acceptor (2) of hydroxyethyl urea were more than that of thiourea (hydrogen bond donor was2and hydrogen bond acceptor was1) and urea (hydrogen bond donor was2and hydrogen bond acceptor was1). Topological molecular polar surface area of hydroxyethyl urea was75.4, which was between84.1(the TPSA of thiourea) and69.1(the TPSA of urea). Calculation values of hydrophobic parameter (CVHP) of hydroxyethyl urea was-1.7, which was lower than that of thiourea (-0.8) and urea (-1.4). It was able to be understood that the intermolecular hydrogen bonds of bamboo pulp were destroied by NaOH, urea, thiourea or hydroxyethyl urea. Hydrogen bonds of bamboo pulp can be destroyed by hydroxyethyl urea easier than others. Cellulose was dissolved completely in NaOH/hydroxyethyl urea and that cellulose I changed to cellulose II during regeneration.
     Cellulose derivatives (hydroxypropyl methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and methyl cellulose) were homogeneous synthesized in NaOH7.6%/hydroxyethyl urea6%aqueous solution. The cellulose derivatives were characterized by FTIR and Nuclear magnetic resonance. And the substituting degrees of cellulose derivatives were determined.
     The silver nanoparticles prepared with carboxymethyl cellulose (CMC) as a template have more remarkable enhancements in the SERS spectrum of R6G, which can be used as a good Ag-based SERS substrates in the analytical environment for routine measurements. The applicability of these silver nanoparticles as optical enhancers for SERS strongly relies on the preparing conditions of temperature, concentration of CMC, concentration of sodium citrate and duration time. The optimum conditions for preparing Ag-based SERS substrates were as follows:0.15%CMC,25mM silver nitrate at75℃, then reducing in1.2%sodium citrate at1.25h. The silver nanoparticles prepared with CMC as a template can be stored for more than12months away from light at room temperature. However, the silver nanoparticles prepared without CMC as a template can not stored for more than15days. Viscosity experiments indicated the CMC solution was a non-newtonian fluid when the concentration of CMC was more than0.7%, the viscosity increased with the concentration of CMC.
     Silver nanoparticles were prepared with hydroxypropyl methyl cellulose (HPMC) as a template. Effects of HPMC concentration, silver nitrate solution concentration, reaction duration, temperature and reducing agent on silver nanoparticles were discussed. The SERS enhancement of these silver nanoparticles was tested by using Rhodamine6G (R6G) as a probe molecule. The results show that the preparing conditions play a crucial role in the performance of nanoparticles. The silver nanoparticles prepared with HPMC as a template have been shown to provide strong enhancements in the SERS spectrum of R6G. The optimum conditions for preparing Ag-based SERS substrates were as follows:0.1%HPMC,10mM silver nitrate at75℃, then reducing in0.1%reducing agent at150min. TEM studies reveals that particles are mostly near-spherical in shape with an average size of60-70nm. The silver nanoparticles prepared with HPMC as a template can be stored for more than12months away from light at room temperature. However, the silver nanoparticles prepared without HPMC as a template can not stored for more than15days. Viscosity experiments indicated the HPMC solution was a non-newtonian fluidwhen the concentration of HPMC was more than0.4%, the viscosity increased with the concentration of HPMC.
     Methyl cellulose (MC) was used as a template to prepare silver nanoparticles. Effects of methyl cellulose concentration, silver ammonia solution concentration, reaction duration, reducing agent on the performance of silver nanoparticles were discussed. The results show that the reducing agent and MC concentration play a crucial role in the performance of silver nanoparticles. The silver nanoparticles prepared with MC as a template have been shown to provide strong enhancements in the SERS spectrum of R6G. The optimum conditions for preparing Ag-based SERS substrates were as follows:10mM silver ammonia at75℃, then reducing in0.2%reducing agent at120min. TEM studies reveals that particles are mostly spherical, rod in shape with an average size of80nm. The silver nanoparticles prepared with MC as a template can be stored for more than12months away from light at room temperature. Viscosity experiments indicated the MC solution was a nearly-newtonian fluid, the viscosity increased with the concentration of MC.
     Silver nanoparticles prepared with hydroxyethyl cellulose (HEC) as a template have more remarkable enhancements in the SERS spectrum of R6G, which can be used as a good Ag-based SERS substrates. The applicability of these silver nanoparticles as optical enhancers for SERS strongly relies on the preparing conditions of temperature, concentration of HEC, concentration of sodium citrate and duration time. The optimum conditions for preparing Ag-based SERS substrates were50ml0.075%HEC,50ml15mM of silver nitrate,0.1%tri-sodium citrate,75℃,150min. TEM studies reveals that particles are mostly near-spherical in shape with an average size of60-70nm. The silver nanoparticles prepared with HEC as a template can be stored for more than12months away from light at room temperature. Viscosity experiments indicated the HEC solution was a nearly-newtonian fluid when the concentration of HEC was less than0.275%, a non-newtonian fluid when the concentration of HEC was more than0.275%, the viscosity increased with the concentration of HEC.
     Raman signals of blood plasma samples were greatly enhanced by using the silver nanoparticles prepared with cellulose derivatives as templates as SERS substrates. Moreover, the intensity of the fluorescence background of blood plasma samples was decreased and the signals of blood plasma samples were reduced. There were significant differences in the Raman spectra of blood plasma from healthy subjects and nasopharyngeal cancer subjects. SERS peaks at495,591,636,725,812,1134,1338,1447,1572and1653cm-1can be observed in both normal and nasopharyngeal cancers blood plasmas. The normalized intensities of SERS peaks at495,591,636,812and1134cm-1were more intense for normal plasma than for nasopharyngeal cancers plasma, while SERS peaks at725,1338,1447,1572and1653cm-1were greater in nasopharyngeal cancer plasma sample.Using silver nanoparticle based SERS spectroscopy combined with PCA multivariate analysis we were able to differentiate the blood plasma of nasopharyngeal cancer patients from that of healthy subjects with high diagnostic sensitivity (90.9%) and specificity (97.5%). LDA based on the PCA generated features differentiated the nasopharyngeal cancer SERS spectra from normal SERS spectra with high sensitivity (93.65%) and specificity (98.72%). Raman signals of the measured SERS spectra suggested interesting cancer specific biomolecular differences, including an increase in the relative amounts of nucleic acid, collagen, phospholipids and phenylalanine and a decrease in the percentage of amino acids and saccharide contents in the blood plasma of nasopharyngeal cancer patients as compared to that of healthy subjects. Using the nanoparticles prepared with cellulose derivatives as templates as SERS substrates, SERS spectroscopy of combined with PCA-LDA analysis method was developed for blood plasma analysis into a clinical tool for non-invasive detection and screening of nasopharyngeal cancers.
引文
[1]Bu H, Kj(?)niksen A-L, Nystrom B. Rheological Characterization of Photochemical Changes of Ethyl (hydroxyethyl) cellulose Dissolved in Water in the Presence of an Ionic Surfactant and a Photosensitizer[J]. Biomacromolecules 2004,5(2):610-17
    [2]张黎明.新型水溶性纤维素衍生物的研究[J].高分子材料科学与工程2001,17(1):16-19
    [3]任天瑞,沈斌,李永红,万俊杰.纤维素的均相化学反应[J].化学进展2004,16(6):948-53
    [4]李倩.氰乙基纤维素的均相合成,结构及其溶液性质研究[D].武汉大学,2012.
    [5]Heinze T. New ionic polymers by cellulose functionalization[J]. Macromolecular Chemistry and Physics 1998,199(11):2341-64
    [6]Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M. Homogeneous acetylation of cellulose in a new ionic liquid[J]. Biomacromolecules 2004,5(2):266-68
    [7]Klemm D, Heublein B, Fink HP, Bohn A. Cellulose:fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition 2005,44(22):3358-93
    [8]Kim J, Yun S, Ounaies Z. Discovery of cellulose as a smart material[J]. Macromolecules 2006,39(12):4202-06
    [9]Inamoto M, Miyamoto I, Hongo T, Iwata M, Okajima K. Morphological formation of the regenerated cellulose membranes recovered from its cuprammonium solution using various coagulants[J]. Polymer journal 1996,28(6):507-12
    [10]Matsui T, Sano T, Yamane C, Kamide K, Okajima K. Structure and morphology of cellulose films coagulated from novel cellulose/aqueous sodium hydroxide solutions by using aqueous sulfuric acid with various concentrations[J]. Polymer journal 1995,27(8):797-812
    [11]吕昂,张俐娜.纤维素溶剂研究进展[J].高分子学报2007,10:937-44
    [12]Laus G, Bentivoglio G, Schottenberger H, et al. Ionic liquids:current developments, potential and drawbacks for industrial applications[J]. Lenzinger Berichte 2005,84:71-85
    [13]Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization[J]. Macromolecular Bioscience 2005,5(6):520-25
    [14]Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates[J]. Green chemistry 2008,10(6):696-705
    [15]Aaltonen O, Jauhiainen O. The preparation of lignocellulosic aerogels from ionic liquid solutions[J]. Carbohydrate Polymers 2009,75(1):125-29
    [16]Zhang H, Wu J, Zhang J, He J. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:a new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules 2005,38(20):8272-77
    [17]Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids[J]. Cellulose 2008,15(1):59-66
    [18]朱虎.棉纤维素在离子液体中的溶解行为及均相接枝改性研究[D].华南理工大学,2012.
    [19]Conte P, Maccotta A, De Pasquale C, Bubici S, Alonzo G. Dissolution mechanism of crystalline cellulose in H3PO4 as assessed by high-field NMR spectroscopy and fast field cycling NMR relaxometry[J]. Journal of agricultural and food chemistry 2009,57(19):8748-52
    [20]张景强,李清春,林鹿,刘世界,欧阳平凯.微晶纤维素溶解于磷酸的动力学方程[J].陕西科技大学学报:自然科学版2010,28(005):7-12
    [21]CELL 57-Dissolution of cellulose with ZnC12 aqueous solution. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY; 2006. AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA.
    [22]Rasikow KG, Tjagai E, Larin P, Ussmanow GU. BP Morin, RM Liwschitz und SA Rogowin:Untersuchungen uber die Struktur und die Eigen-schaften der Cellulose und ihrer Derivate.227. Mitt. Uber die Effektivitat der Reaktion der Pfropfcopolymerisation von Cellulose. Chem[J].
    [23]Fischer S, Leipner H, Thummler K, Brendler E, Peters J. Inorganic molten salts as solvents for cellulose[J]. Cellulose 2003,10(3):227-36
    [24]Lu X, Shen X. Solubility of bacteria cellulose in zinc chloride aqueous solutions[J]. Carbohydrate Polymers 2011,86(1):239-44
    [25]Kim TH, Jeon YJ, Oh KK, Kim TH. Production of furfural and cellulose from barley straw using acidified zinc chloride [J]. Korean Journal of Chemical Engineering 2013:1-8
    [26]熊犍,叶君,赵星飞.纤维素在ZnCl2水溶液中的溶解性能及其再生结构[J].
    [27]Grinshpan D, Lushchik L, Tsygankova N, Voronkov V, Irklei V, Chegolya A. Process of preparing hydrocellulose fibres and films from aqueous solutions of cellulose in zinc chloride[J]. Fibre Chemistry 1989,20(6):365-69
    [28]Gao SS, Wang JQ, Jin ZW. Phase Transformation Conditions on the Structures and Properties of Cellulose Packaging Films in LiCl/DMAc[J]. Advanced Materials Research 2011,174:502-05
    [29]LI Z, SHI J-z, Liao B, Pang H. Research and Application on Cellulose/LiCl/DMAc Solution System[J]. Polymer Bulletin 2010,10:005
    [30]Mamat H. Preparation and stability of cellulose LiCl/DMAc solution[J]. Journal of Textile Research 2010,8:004
    [31]Ishii D, Tatsumi D, Matsumoto T. Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc[J]. Carbohydrate research 2008,343(5):919-28
    [32]McCormick CL, Callais PA. Derivatization of cellulose in lithium chloride and< i>N-< i> N-dimethylacetamide solutions[J]. Polymer 1987,28(13):2317-23
    [33]Tosh B, Saikia CN, Dass NN. Homogeneous esterification of cellulose in the lithium chloride-< i> N,< i> N-dimethylacetamide solvent system:effect of temperature and catalyst[J]. Carbohydrate research 2000,327(3):345-52
    [34]McCormick CL, Callais PA, Hutchinson Jr BH. Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide[J]. Macromolecules 1985,18(12):2394-401
    [35]Seymour RB, Johnson EL. Acetylation of DMSO:PF solutions of cellulose[J]. Journal of Polymer Science:Polymer Chemistry Edition 1978,16(1):1-11
    [36]Miyagi Y, Shiraishi N, Yokota T, Yamashita S, Hayashi Y. Preparation and thermal properties of acetates derived from cellulose dissolved in DMSO-PF[J]. Journal of Wood Chemistry and Technology 1983,3(1):59-78
    [37]Nicholson MD. Reactions of cellulose in the dimethyl sulfoxide/paraformaldehyde (DMSO/PF) solvent[J].1976
    [38]Chunju H, Qingrul W. The Rheological Property of Cellulose Solution in PF/DMSO[J]. JOURNAL-CHINA TEXTILE UNIVERSITY-ENGLISH EDITION-2000,17(3):43-46
    [39]陈广美,李兵兵,黄毅萍.纤维素氨基甲酸酯的合成研究[J].精细化工2000,17(6):356-57
    [40]徐明双.竹纤维素氨基甲酸酯的制备及其溶解性和成膜性研究[D].燕山大学,2011.
    [41]Young RA, Rowell RM. Cellulose:structure, modification and hydro lysis[J]. Cellulose:structure, modification and hydrolysis.1986
    [42]Hong W, Li Q, Di Y, et al. Preliminary Study on the Preparation of Bamboo Cellulose Carbamate[J]. Journal of nanoscience and nanotechnology 2013,13(10):6741-47
    [43]Li JB, Zhang MY, Xiu HJ, Li XP. Rheological Characteristics on Solution of NMMO/Cellulose with Different Degree of Polymerization and its Combination[J]. Advanced Materials Research 2012,568:396-99
    [44]Biganska O, Navard P. Kinetics of precipitation of cellulose from cellulose-NMMO-water solutions[J]. Biomacromolecules 2005,6(4):1948-53
    [45]Laszkiewicz B. Liquid crystal phenomena in cellulose-NMMO-H2O system[J]. Molecular Crystals and Liquid Crystals 2000,353(1):127-31
    [46]Buijtenhuijs F, Abbas M, Witteveen A. The degradation and stabilization of cellulose dissolved in N-methylmorpholine-N-oxide (NMMO)[J]. Papier 1986,40(12):615-19
    [47]Niekraszewicz B, Czarnecki P. Modified cellulose fibers prepared by the N methylmorpholine-N-oxide (NMMO) process[J]. Journal of applied polymer science 2002,86(4):907-16
    [48]高秋英,沈新元,王哲惟.细菌纤维素在NMMO·H2O中的溶解性能[J].高分子材料科学与工程2011,27(6):80-83
    [49]Dogan H, Hilmioglu ND. Dissolution of cellulose with NMMO by microwave heating[J]. Carbohydrate Polymers 2009,75(1):90-94
    [50]林珊.纤维素抗菌膜的制备及其深度水处理研究[D].福建农林大学,2013.
    [51]Cuculo J, Smith C, Sangwatanaroj U, Stejskal E, Sankar S. A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system. Ⅰ[J]. Journal of Polymer Science Part A:Polymer Chemistry 1994,32(2):229-39
    [52]Cuculo J, Smith C, Sangwatanaroj U, Stejskal E, Sankar S. A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system. Ⅱ[J]. Journal of Polymer Science Part A:Polymer Chemistry 1994,32(2):241-47
    [53]Liu Ck, Cuculo JA, Smith B. Coagulation studies for cellulose in the ammonia/ammonium thiocyanate (NH3/NH4SCN) direct solvent system[J]. Journal of Polymer Science Part B:Polymer Physics 1989,27(12):2493-511
    [54]Frey MW, Cuculo JA, Spontak RJ. Morphological characteristics of the lyotropic and gel phases in the cellulose/NH3/NH4SCN system[J]. Journal of Polymer Science Part B:Polymer Physics 1996,34(12):2049-58
    [55]Cho JJ, Hudson SH, Cuculo JA. The coagulation of cellulose from anisotropic solutions in the NH3/NH4SCN solvent system[J]. Journal of Polymer Science Part B: Polymer Physics 1989,27(8):1699-719
    [56]Isogai A, Atalla R. Dissolution of cellulose in aqueous NaOH solutions[J]. Cellulose 1998,5(4):309-19
    [57]Roy C, Budtova T, Navard P. Rheological properties and gelation of aqueous cellulose-NaOH solutions[J]. Biomacromolecules 2003,4(2):259-64
    [58]徐诚,叶菊娣,李小保,杨健,洪建国.低温NaOH溶液中低聚合度纤维素的溶解与析出[J].造纸科学与技术2012,2:003
    [59]Sescousse R, Gavillon R, Budtova T. Wet and dry highly porous cellulose beads from cellulose-NaOH-water solutions:influence of the preparation conditions on beads shape and encapsulation of inorganic particles[J]. Journal of Materials Science 2011,46(3):759-65
    [60]Cai J, Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions[J]. Macromolecular bioscience 2005,5(6):539-48
    [61]Sescousse R, Budtova T. Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose-NaOH-water solutions[J]. Cellulose 2009,16(3):417-26
    [62]邓海波,李中石,吴真,刘德桃,林鹿,龙柱.4种天然纤维素在氢氧化钠/尿素/水体系中的溶解差异[J].中国造纸学报2012,27(3):43-47
    [63]Qi H, Yang Q, Zhang L, Liebert T, Heinze T. The dissolution of cellulose in NaOH-based aqueous system by two-step process[J]. Cellulose 2011,18(2):237-45
    [64]Cai J, Zhang L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution[J]. Biomacromolecules 2006,7(1):183-89
    [65]Zhou J, Zhang L, Cai J, Shu H. Cellulose microporous membranes prepared from NaOH/urea aqueous solution[J]. Journal of membrane science 2002,210(1):77-90
    [66]Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H. Novel fibers prepared from cellulose in NaOH/urea aqueous solution[J]. Macromolecular rapid communications 2004,25(17):1558-62
    [67]Zhang L, Ruan D, Zhou J. Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution[J]. Industrial & engineering chemistry research 2001,40(25):5923-28
    [68]Zhang L, Ruan D, Gao S. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution[J]. Journal of Polymer Science Part B:Polymer Physics 2002,40(14):1521-29
    [69]Ruan D, Lue A, Zhang L. Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature[J]. Polymer 2008,49(4):1027-36
    [70]Lue A, Zhang L, Ruan D. Inclusion complex formation of cellulose in NaOH-thiourea aqueous system at low temperature[J]. Macromolecular Chemistry and Physics 2007,208(21):2359-66
    [71]Chen X, Burger C, Fang D, et al. X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions[J]. Polymer 2006,47(8):2839-48
    [72]Ruan D, Zhang L, Lue A, et al. A Rapid Process for Producing Cellulose Multi-Filament Fibers from a NaOH/Thiourea Solvent System[J]. Macromolecular rapid communications 2006,27(17):1495-500
    [73]Ruan D, Zhang L, Mao Y, Zeng M, Li X. Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution[J]. Journal of membrane science 2004,241(2):265-74
    [74]Weng L, Zhang L, Ruan D, Shi L, Xu J. Thermal gelation of cellulose in a NaOH/thiourea aqueous solution[J]. Langmuir 2004,20(6):2086-93
    [75]张莉,徐建国,张龙.NaOH-硫脲-H20溶剂体系对木质纤维素的溶解及组分分离[J].过程工程学报2013,13(003):385-90
    [76]Ruan D, Zhang L, Zhou J, Jin H, Chen H. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution[J]. Macromolecular bioscience 2004,4(12):1105-12
    [77]Zhang L, Ruan D, Gao S. Manufacture of cellulose film from cellulose in NaOH/thiourea aqueous solution[J]. Patent CN 2003,12448
    [78]Yang G, Xiong X, Zhang L. Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution[J]. Journal of membrane science 2002,201(1):161-73
    [79]Almeida E, Frollini E, Castellan A, Coma V. Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution[J]. Carbohydrate Polymers 2010,80(3):655-64
    [80]Mentasti E, Sarzanini C, Gennaro M, Porta V. Nitrilotriacetic acid, thiourea and cysteine ligands immobilized on cellulose for the uptake of trace metal ions[J]. Polyhedron 1987,6(6):1197-202
    [81]Morgado D, Frollini E, Castellan A, Rosa D, Coma V. Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose[J]. Cellulose 2011,18(3):699-712
    [82]Zhang L, Guo J, Du Y. Morphology and properties of cellulose/chitin blends membranes from NaOH/thiourea aqueous solution[J]. Journal of applied polymer science 2002,86(8):2025-32
    [83]Chen Y, Zhang L. Blend membranes prepared from cellulose and soy protein isolate in NaOH/thiourea aqueous solution[J]. Journal of applied polymer science 2004,94(2):748-57
    [84]Jin H, Zha C, Gu L. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution[J]. Carbohydrate research 2007,342(6):851-58
    [85]WANG H-f, ZHU P, ZHANG C-j. Dissolution of Cellulose in NaOH/urea/thiourea Aqueous Solution [J][J]. Synthetic Fiber in China 2008,7:011
    [86]李荣超,郭宪英.纤维素在NaOH[/尿素/硫脲复合溶剂体系中的溶解性能研究[J].科学技术与工程2011,11(10):2372-75
    [87]赵晓霞,朱平,王敏,沈悦.再生细菌纤维素在NaOH[/尿素/硫脲溶剂体系中的溶解性能研究[J].天津工业大学学报2008,27(5):28-32
    [88]王怀芳,朱平,张传杰.氢氧化钠/尿素/硫脲溶剂体系对纤维素溶解性能研究[Jr].合成纤维2008,37(7):28-32
    [89]Li H, Li HF, Zhong X, et al. Dissolution Behaviour and the Solution Property of Cellulose in NaOH/Urea/Thiourea Aqueous Solvent[J]. Advanced Materials Research 2012,581:73-76
    [90]LI R-c, GUO X-y. Study the Performance of Cellulose Dissolution in NaOH/urea/thiourea Compound Resolver System[J]. Science Technology and Engineering 2011,10:052
    [91]仵君粉,江峰,李倩,尹翠玉.棉浆粕在NaOE[/硫脲/尿素溶剂体系中的溶解及流变性能[J].合成纤维2012,41(4)
    [92]ZHU P, ZHOU X-d, ZHANG L, DONG C-h. Study on the rheological behavior of cellulose/NaOH-urea-thiourea solution system [J][J]. Textile Auxiliaries 2008,1:005
    [93]张帅,李发学,俞建勇.LiOH复合溶剂体系直接溶解法制备新型再生纤维素纤维[J].国际纺织导报2010,2:001
    [94]Zhang S, Li F, Yu J, Gu L. Novel fibers prepared from cellulose in NaOH/thiourea/urea aqueous solution[J]. Fibers and Polymers 2009,10(1):34-39
    [95]唐莉纯,李燕华,刘彩明,王成云,褚乃清.氢氧化钠/硫脲/尿素溶解法定量 分析棉/再生纤维素纤维产品[J].上海纺织科技2011,39(002):47-48
    [96]赵地顺,李贺,刘猛帅,付林林,张娟.尿素/己内酰胺/氢氧化钠/水溶剂体系对纤维素的溶解和再生性能[J][J].高等学校化学学报2011,32(7):1629-163
    [97]Vieira M, Liebert T, Heinze T. New ionic polymers by subsequent functionalization of cellulose derivatives[J]. Recent Advances in Environmentally Compatible Polymers 2001:53
    [98]辛婷婷,何静,杨俊锡.阳离子絮凝剂在纤维素/离子液体中的均相合成[J].化学试剂2011,33(6):540-.44
    [99]张佳珺,林春香,詹怀宇,付时雨.球形纤维素吸附剂对亚甲基蓝的吸附热力学研究[J].造纸科学与技术2010(004):76-80
    [100]陈世雄,李丹,戴林,王杰,何静.纤维素均相接枝丙烯酸球形吸附剂的制备与性能[J].精细与专用化学品2013,21(10)
    [101]Satge C, Verneuil B, Branland P, et al. Rapid homogeneous esterification of cellulose induced by microwave irradiation[J]. Carbohydrate polymers 2002,49(3):373-76
    [102]Rahn K, Diamantoglou M, Klemm D, Berghmans H, Heinze T. Homogeneous synthesis of cellulose p-toluenesulfonates in N, N-dimethylacetamide/LiCl solvent system[J]. Die Angewandte Makromolekulare Chemie 1996,238(1):143-63
    [103]陈婧,张金明,陈韦韦,丰晔,张军.纤维素萘甲酸酯在离子液体中的均相合成[J].高分子学报2013(10):1235-40
    [104]路婷,何静,王岩.LiCl/DMAc非水溶液中纤维素均相接枝制备絮凝剂材料[J].精细与专用化学品2006,14(6):23-25
    [105]Wang Z-M, Li L, Xiao K-J, Wu J-Y. Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity [J]. Bioresource technology 2009,100(4):1687-90
    [106]臧洪俊,张勇,臧亚萍,et a1.纤维素在离子液体[AMMor] Cl/[AMIm] Cl混合溶剂中的均相乙酰化反应研究[J].化学学报2010,68(03):283-87
    [107]叶代勇,姚雷.纤维素与丙烯酸在氯化锌水溶液中的均相接枝[J].华南理工大学学报(自然科学版)2012,5:012
    [108]Kinstle JF, Irving NM. Homogeneous chemical modifications of cellulose: further studies on the DMSO-PF solvent system. Modification of Polymers:Springer, 1983:221-27.
    [109]Guthrie JT, Robinson GM. The grafting of acrylonitrile onto methylol cellulose in the methylol cellulose/DMSO/acrylonitrile homogeneous system[J]. Polymer Photochemistry 1983,3(3):189-202
    [110]Morooka T, Norimoto M, Yamada T. Cyanoethylated cellulose prepared by homogeneous reaction in paraformaldehyde-DMSO system[J]. Journal of applied polymer science 1986,32(2):3575-87
    [111]MEN S, WANG W-j, SHAO Z-q, ZHU Y-c, XU Y-q. Homogeneous Preparation in DMAc/LiCl and Characterization of Long-Chain Cellulose Esters [J][J]. Polymer Materials Science & Engineering 2008,12:014
    [112]Kurata IIS, Suzuki K. Homogeneous esterification and acetalization of cellulose in LiCl/DMAC[J]. Cellulose:structural and functional aspects 1989:219
    [113]Erler U, Klemm D, Nehls I. Homogeneous synthesis of diphenylmethyl ethers of cellulose in N, N-dimethylacetamide/LiCl solvent system[J]. Die Makromolekulare Chemie, Rapid Communications 1992,13(4):195-201
    [114]LU T, HE J, WANG Y. Preparing Flocculant Based on Cellulose via Homogeneous Graft Copolymerization in Non-aqueous LiCl/DMAc System [J][J]. Fine and Specialty Chemicals 2006,6:006
    [115]Chen FS, Sun ZH. Preparation and characterization of homogeneous grafted cellulose in DMAc/LiCl system[J]. Applied Mechanics and Materials 2013,312:332-36
    [116]Zhou Q, Zhang L, Li M, Wu X, Cheng G. Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution[J]. Polymer Bulletin 2005,53(4):243-48
    [117]Song Y, Sun Y, Zhang X, Zhou J, Zhang L. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers[J]. Biomacromolecules 2008,9(8):2259-64
    [118]Song Y, Zhou J, Zhang L, Wu X. Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions[J]. Carbohydrate polymers 2008,73(1):18-25
    [119]Zhou J, Li Q, Song Y, Zhang L, Lin X. A facile method for the homogeneous synthesis of cyanoethyl cellulose in NaOH/urea aqueous solutions[J]. Polymer Chemistry 2010,1(10):1662-68
    [120]Nagel MC, Koschella A, Voiges K, Mischnick P, Heinze T. Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H< sub> 2 O[J]. European Polymer Journal 2010,46(8):1726-35
    [121]Homogenous carboxymethylation of cellulose in the new alkaline solvent LiOH/urea aqueous solution. Macromolecular symposia; 2010. Wiley Online Library.
    [122]Li Q, Wu P, Zhou J, Zhang L. Structure and solution properties of cyanoethyl celluloses synthesized in LiOH/urea aqueous solution[J]. Cellulose 2012,19(1):161-69
    [123]You J, Hu H, Zhou J. Synthesis, structure and solution properties of the novel polyampholytes based on cellulose[J]. Cellulose 2013,20(3):1175-85
    [124]Fleischmann M, Hendra P, McQuillan A. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters 1974,26(2):163-66
    [125]Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry:Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977,84(1):1-20
    [126]Corni S, Tomasi J. Theoretical evaluation of Raman spectra and enhancement factors for a molecule adsorbed on a complex-shaped metal particle[J]. Chemical physics letters 2001,342(1):135-40
    [127]Lopez-Tocon I, Centeno S, Otero J, Marcos J. Selection rules for the charge transfer enhancement mechanism in SERS:dependence of the intensities on the L-matrix[J]. Journal of Molecular Structure 2001,565:369-72
    [128]骆智训,方炎.表面增强拉曼散射光谱的应用进展[J].光谱学与光谱分析2006,26(2):358-64
    [129]Schlegel VL, Cotton TM. Silver-island films as substrates for enhanced Raman scattering:effect of deposition rate on intensity[J]. Analytical chemistry 1991,63(3):241-47
    [130]于建勇.表面增强拉曼活性基底制备方法研究[J].大学物理实验2006,19(2):15-18
    [131]Ren B, Lin X-f, Yan J-w, Mao B-w, Tian Z-q. Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry B 2003,107(4):899-902
    [132]Zeman EJ, Schatz GC. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium[J]. Journal of Physical Chemistry 1987,91(3):634-43
    [133]高敏侠.均匀的强表面增强拉曼光谱基底的制备及表征[D].厦门大学,2007.
    [134]Xu H, Bjerneld EJ, Kall M, Borjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters 1999,83(21):4357
    [135]姚建林.新型纳米级粗糙基底的表面增强拉曼光谱研究[J].2001
    [136]黄陟峰.金属钴的表面增强拉曼光谱应用及其增强机理的初步探索[J].2003
    [137]Van Duyne RP, Haushalter JP. Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces:tris (bipyridine) ruthenium (II) adsorbed on silver-modified n-gallium arsenide (100)[J]. The Journal of Physical Chemistry 1983,87(16):2999-3003
    [138]Loo B. In situ identification of halide complexes on gold electrode by surface-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry 1982,86(4):433-37
    [139]Alsmeyer YW, McCreery RL. Surface-enhanced Raman spectroscopy of carbon electrode surfaces following silver electrodeposition[J]. Analytical chemistry 1991,63(13):1289-95
    [140]Dick LA, McFarland AD, Haynes CL, Van Duyne RP. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss[J]. The Journal of Physical Chemistry B 2002,106(4):853-60
    [141]Yang C, Xie Y-T, Yuen MM, Xiong X, Wong C. A facile chemical approach for preparing a SERS active silver substrate[J]. Physical Chemistry Chemical Physics 2010,12(43):14459-61
    [142]ZHANG J-r, ZHAO H-t, GAO D-y, et al. The Review of the Preparation of the Nano Silver and Its Application in SERS[J]. Chemistry and Adhesion 2012,1:017
    [143]Rivas L, Sanchez-Cortes S, Garcia-Ramos J, Morcillo G. Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor[J]. Langmuir 2001,17(3):574-77
    [144]Leopold N, Lendl B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride[J]. The Journal of Physical Chemistry B 2003,107(24):5723-27
    [145]Perevedentseva E, Treschev S, Wang J-B, Cheng C-L. Using nano-structured silver photo reduced from AgNO3 by visible-light activated TiO2 as SERS-active substrate for observing the surface enhanced Raman scattering from nanodiamond powder[J].2009
    [146]Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available:UV-VIS spectra of silver nanorods. See http://www. rsc. org/suppdata/cc/bl/b10052li[J]. Chemical Communications 2001(7):617-18
    [147]Perez-Juste J, Liz-Marzan L, Carnie S, Chan DY, Mulvaney P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions[J]. Advanced Functional Materials 2004,14(6):571-79
    [148]Bakken P, Blagoi YP, Boo D, et al. Gribov, LA,241 [J]. Journal of Molecular Structure 1990,216
    [149]Sanchez-Cortes S, Garcia-Ramos JV. Surface-enhanced Raman spectroscopy of 1,5-dimethylcytosine on silver and copper sols[J]. Journal of Raman Spectroscopy 1990,21(10):679-82
    [150]Single molecule detection using SERS study in PVP functionalized Ag nanoparticles. SOLID STATE PHYSICS:PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012; 2013. AIP Publishing.
    [151]Tang X-L, Jiang P, Ge G-L, Tsuji M, Xie S-S, Guo Y-J. Poly (N-vinyl-2-pyrrolidone)(PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect[J]. Langmuir 2008,24(5):1763-68
    [152]Pastoriza-Santos I, Liz-Marzan LM. Formation of PVP-protected metal nanoparticles in DMF[J]. Langmuir 2002,18(7):2888-94
    [153]鄧金培,牟中原Effect of Pyrene Additive on the Growth of Gold Nanoparticles in Aqueous Sodium Alkyl Sulfate Micellar Solutions[J].2006
    [154]Deng JP, Mou CY. Effect of pyrene additive on the growth of gold nanoparticles in aqueous sodium alkyl sulfate micellar solutions[J]. Journal of the Chinese Chemical Society 2006,53(6):1263-68
    [155]Zhang L, Wang X, Gong Q, et al. Dilational Properties of Tri-substituent Sodium Alkyl Benzene Sulfonates with Different Structures at the Air/Water and Decane/Water Interfaces[J]. ACTA PHYSICOCHIMICA SINICA 2007,23(12):1881
    [156]ANYL 134-CTAB stabilized cubic and spherical gold nanoparticles as highly sensitive extrinsic Raman labels (ERLs) for SERS readout in sandwich immunoassays. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY; 2008. AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA.
    [157]SERS substrates of Ag nanoparticles for CTAB capped Ag LB films. International conference on Raman spectroscopy (ICORS)-2012; 2012.
    [158]Tran CD. Subnanogram detection of dyes on filter paper by surface-enhanced Raman scattering spectrometry[J]. Analytical Chemistry 1984,56(4):824-26
    [159]Sanchez-Cortes S, Garcia-Ramos J, Morcillo G. Morphological study of metal colloids employed as substrate in the SERS spectroscopy[J]. Journal of colloid and interface science 1994,167(2):428-36
    [160]Orendorff CJ, Gole A, Sau TK, Murphy CJ. Surface-enhanced Raman spectroscopy of self-assembled monolayers:sandwich architecture and nanoparticle shape dependence[J]. Analytical chemistry 2005,77(10):3261-66
    [161]PERUMAL J, Kong KV, Bakker RM, Olivo M. Design and Fabrication of Random Silver Films as substrate for SERS based Nano-Stress sensing of Proteins[J]. RSC Advances 2014
    [162]Baia M, Baia L, Astilean S. Gold nanostructured films deposited on polystyrene colloidal crystal templates for surface-enhanced Raman spectroscopy[J]. Chemical physics letters 2005,404(1):3-8
    [163]HUANG Q. SERS Spectra of Xanthomonas Oryzae pv. Oryzae (Xoo) on Nano Silver Film Prepared by Electrolysis Method[J]. Spectroscopy and Spectral Analysis 2010,30(2):372-75
    [164]Haynes CL, Van Duyne RP. Plasmon-sampled surface-enhanced Raman excitation spectroscopy[J]. The Journal of Physical Chemistry B 2003,107(30):7426-33
    [165]Haynes CL, Van Duyne RP. Nanosphere lithography:a versatile nano fabrication tool for studies of size-dependent nanoparticle optics[J]. The Journal of Physical Chemistry B 2001,105(24):5599-611
    [166]段涛,彭同江,唐永建.表面增强拉曼光谱技术在纳米材料研究中的新进展[J].材料导报2008,22(11):93-97
    [167]Felidj N, Truong SL, Aubard J, et al. Gold particle interaction in regular arrays probed by surface enhanced Raman scattering[J]. The Journal of chemical physics 2004,120(15):7141-46
    [168]Laurent G, Truong S, Felidj N, et al. Optical properties of gold nanoparticle arrays:application to surface enhanced Raman scattering[J]. Science Access,2(1):260-61
    [169]Lu L, Sun G, Zhang H, et al. Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate[J]. J. Mater. Chem. 2004,14(6):1005-09
    [170]丁松园,吴德印,杨志林,任斌,徐昕,田中群.表面增强拉曼散射增强机理的部分研究进展[J].2008
    [171]李菊梅.聚合物/纳米银复合微球的制备,SERS性能及其应用研究[D].复旦大学,2012.
    [172]Gong J-L, Liang Y, Huang Y, et al. Ag/SiO< sub> 2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools[J]. Biosensors and Bioelectronics 2007,22(7):1501-07
    [173]Michaels AM, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules[J]. The Journal of Physical Chemistry B 2000,104(50):11965-71
    [174]Kneipp J, Kneipp H, Kneipp K. SERS-a single-molecule and nanoscale tool for bioanalytics[J]. Chemical Society Reviews 2008,37(5):1052-60
    [175]Otto A. The'chemical'(electronic) contribution to surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy 2005,36(6-7):497-509
    [176]Otto A, Billmann J, Eickmans J, Ertuerk U, Pettenkofer C. The "adatom model" of SERS (Surface Enhanced Raman Scattering):The present status[J]. Surface science 1984,138(2):319-38
    [177]任斌,田中群.表面增强拉曼光谱的研究进展[J].2004
    [178]Rapid fabrication of silver nanowires through photoreduction from silver nitride in anodic aluminum oxide template. Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),2010 Conference on; 2010. IEEE.
    [179]Lin Y-H, Chen K-T, Ho J-R. Fast Fabrication of Silver Nanowires Using Photothermal Reduction from an Anodic Aluminum Oxide Template[J]. Electrochemical and Solid-State Letters 2010,13(6):K60-K62
    [180]Zhang L, Zhang P, Fang Y. Magnetron sputtering of silver nanowires using anodic aluminum oxide template:A new active substrate of surface enhanced Raman scattering and an investigation of its enhanced mechanism[J]. Analytica chimica acta 2007,591(2):214-18
    [181]Sun X-Y, Xu F-Q, Li Z-M, Zhang W-H. Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template[J]. Materials Chemistry and Physics 2005,90(1):69-72
    [182]YANG R, DONG G-c, SHAO C. Silver nanowires prepared by AAO template method[J]. Journal of Molecular Science 2008,6:014
    [183]Yan-minga C, Xiao-weib Z, Zheng-zhengb L, San-xib L. Preparation of silver nanoparticles using hydroxylated SBS block copolymer as template[J]. Journal of Shenyang University of Technology 2009,6:010
    [184]Jana S, Ghosh SK, Nath S, et al. Synthesis of silver nanoshell-coated cationic polystyrene beads:A solid phase catalyst for the reduction of 4-nitrophenol[J]. Applied Catalysis A:General 2006,313(1):41-48
    [185]Zhu J, Liao X, Chen H-Y. Electrochemical preparation of silver dendrites in the presence of DNA[J]. Materials research bulletin 2001,36(9):1687-92
    [186]Molotsky T, Tamarin T, Moshe AB, Markovich G, Kotlyar AB. Synthesis of Chiral Silver Clusters on a DNA Template(?)[J]. The Journal of Physical Chemistry C 2010,114(38):15951-54
    [187]Latorre A, Somoza A. DNA-Mediated Silver Nanoclusters:Synthesis, Properties and Applications[J]. ChemBioChem 2012,13(7):951-58
    [188]Lan G-Y, Chen W-Y, Chang H-T. Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence[J]. RSC Advances 2011,1(5):802-07
    [189]Yeh H-C, Sharma J, Han JJ, Martinez JS, Werner JH. A DNA-Silver Nanocluster Probe That Fluoresces upon Hybridization[J]. Nano letters 2010,10(8):3106-10
    [190]Ji YT, Qu CQ, Cao BY. An optimal method of DNA silver staining in polyacrylamide gels[J]. Electrophoresis 2007,28(8):1173-75
    [191]Zhao K, Chang Q, Chen X, Zhang B, Liu J. Synthesis and application of DNA-templated silver nanowires for ammonia gas sensing[J]. Materials Science and Engineering:C 2009,29(4):1191-95
    [192]Dai S, Zhang X, Li T, Du Z, Dang H. Preparation of silver nanopatterns on DNA templates[J]. Applied surface science 2005,249(1):346-53
    [193]Shang L, Wang Y, Huang L, Dong S. Preparation of DNA-silver nanohybrids in multilayer nanoreactors by in situ electrochemical reduction, characterization, and application[J]. Langmuir 2007,23(14):7738-44
    [194]Wei G, Wang L, Zhou H, Liu Z, Song Y, Li Z. Electrostatic assembly of CTAB-capped silver nanoparticles along predefined λ-DNA template[J]. Applied surface science 2005,252(5):1189-96
    [195]Wei G, Zhou H, Liu Z, et al. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network[J]. The Journal of Physical Chemistry B 2005,109(18):8738-43
    [196]Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire[J]. Nature 1998,391 (6669):775-78
    [197]Jiang X, Xie Y, Lu J, Zhu L, He W, Qian Y. Oleate vesicle template route to silver nanowires[J]. J. Mater. Chem.2001,11(7):1775-77
    [198]Andersson M, Pedersen JS, Palmqvist AE. Silver nanoparticle formation in microemulsions acting both as template and reducing agent[J]. Langmuir 2005,21(24):11387-96
    [199]Fan L, Guo R. Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions[J]. Crystal Growth and Design 2008,8(7):2150-56
    [200]He X, Zhao X, Chen Y, Feng J. The evidence for synthesis of truncated triangular silver nanoplates in the presence of CTAB[J]. Materials Characterization 2008,59(4):380-84
    [201]In situ Investigation of the Silver-CTAB system. MRS Proceedings; 2007. Cambridge Univ Press.
    [202]Shang L, Dong S. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template[J]. Chem. Commun.2008(9):1088-90
    [203]Jin R-H, Yuan J-J. Fabrication of silver porous frameworks using poly (ethyleneimine) hydrogel as a soft sacrificial template[J]. Journal of Materials Chemistry 2005,15(42):4513-17
    [204]Liu JH, Hsieh FM. Fabrication of polycrystalline silver nanowires via reversed micelle with amphiphilic diblock copolymer and aluminum oxide template at controlled temperature[J]. Polymer Composites 2010,31(8):1352-59
    [205]Yang D-P, Chen S, Huang P, et al. Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate[J]. Green Chem.2010,12(11):2038-42
    [206]Kim JH, Min BR, Lee KB, Won J, Kang YS. Coordination structure of various ligands in crosslinked PVA to silver ions for facilitated olefin transport[J]. Chemical Communications 2002(22):2732-33
    [207]He D, Hu B, Yao Q-F, Wang K, Yu S-H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity:electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles[J]. ACS nano 2009,3(12):3993-4002
    [208]Kim H-S, Lee K-H, Kim S-G. Growth of monodisperse silver nanoparticles in polymer matrix by spray pyrolysis[J]. Aerosol science and technology 2006,40(7):536-44
    [209]Faraji N, Younus WMM, Kharazmi A, Saion E, Shahmiri M, Tamchek N. Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites[J]. Journal of the European Optical Society-Rapid publications 2012,7
    [210]Abdul Kareem T, Anu Kaliani A. Synthesis and thermal study of octahedral silver nano-plates in polyvinyl alcohol (PVA)[J]. Arabian Journal of Chemistry 2011
    [211]Wu C, Mosher BP, Lyons K, Zeng T. Reducing ability and mechanism for polyvinylpyrrolidone (PVP) in silver nanoparticles synthesis[J]. Journal of nanoscience and nanotechnology 2010,10(4):2342-47
    [212]Khanna P, Singh N, Charan S, Subbarao V, Gokhale R, Mulik U. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method[J]. Materials Chemistry and Physics 2005,93(1):117-21
    [213]Yu D-G, Lin W-C, Lin C-H, Chang L-M, Yang M-C. An in situ reduction method for preparing silver/poly (vinyl alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates[J]. Materials chemistry and physics 2007,101(1):93-98
    [214]Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X. Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles[J]. Journal of applied polymer science 2007,103(1):125-33
    [215]Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP)[J]. Journal of chemical biology 2011,4(4):185-91
    [216]Zaiza Z, Mariatti M, Lockman Z, Kim J. Synthesis of silver nanowires in the presence of Ag seeds and PVP capping agent by polyol method[J].2012
    [217]Samanta S, Sarkar P, Pyne S, Sahoo GP, Misra A. Synthesis of silver nanodiscs and triangular nanoplates in PVP matrix:photophysical study and simulation of UV-vis extinction spectra using DDA method[J]. Journal of Molecular Liquids 2012,165:21-26
    [218]蔡培,吴伟卿,戎亮.拉曼光谱及其在癌症检测中的应用[J].宁波化工2009,1:011
    [219]凌晓锋,徐怡庄,徐智,吴瑾光,周孝思,徐端夫.恶性肿瘤早期诊断的傅立叶变换红外光谱研究[J].中国微创外科杂志2004,3(3):271-73
    [220]黄伟,潘建基,陈荣,et al.鼻咽癌离体组织拉曼光谱的测量[J].光谱学与光谱分析2009,29(5):1304-07
    [221]刘刚,刘剑虹,张林,俞帆,孙世中.人体不同组织的拉曼光谱研究[J].光谱学与光谱分析2005,25(5):723-25
    [222]凌晓锋,吴瑾光.胃癌组织的拉曼光谱初探[J].光谱学与光谱分析2000,20(5):692-93
    [223]Yamazaki H, Kaminaka S, Kohda E, Mukai M, Hamaguchi H. The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy[J]. Radiation medicine 2002,21(1):1-6
    [224]高泽红.高泽红,胡波2,丁超,于晶宫21.大连大学生物工程学院,辽宁大连1166222.大连大学附属医院病理科,辽宁大连116021[J].
    [225]高泽红,于晶功,刘福祥,胡波.结直肠癌组织中脂类伸缩振动的拉曼光谱[J].中国激光2010(2):605-08
    [226]Huang Z, McWilliams A, Lui H, McLean DI, Lam S, Zeng H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer[J]. International journal of cancer 2003,107(6):1047-52
    [227]冯尚源,潘建基,伍严安,et al.基于SERS技术结合多变量统计分析胃癌患者血浆拉曼光谱[J].中国科学:生命科学2011,41(7):550-57
    [228]冯尚源.基于表面增强拉曼光谱技术的鼻咽癌与胃癌检测方法研究[D].福 建师范大学,2011.
    [229]Feng S, Lin D, Lin J, et al. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer[J]. Analyst 2013,138(14):3967-74
    [230]Feng S, Chen R, Lin J, et al. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light[J]. Biosensors and Bioelectronics 2011,26(7):3167-74
    [231]Feng S, Chen R, Lin J, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis [J]. Biosensors and Bioelectronics 2010,25(11):2414-19
    [232]Feng S, Pan J, Wu Y, et al. Study on gastric cancer blood plasma based on surface-enhanced Raman spectroscopy combined with multivariate analysis[J]. Science China Life Sciences 2011,54(9):828-34
    [233]林多.结直肠癌患者血液表面增强拉曼光谱研究[D].福建师范大学,2012.
    [234]Lin D, Feng S, Huang H, et al. Label-Free Detection of Blood Plasma Using Silver Nanoparticle Based Surface-Enhanced Raman Spectroscopy for Esophageal Cancer Screening[J]. Journal of Biomedical Nanotechnology 2014,10(3):478-84
    [235]Gonzalez-Solis JL, Martinez-Espinosa JC, Torres-Gonzalez LA, Aguilar-Lemarroy A, Jave-Suarez LF, Palomares-Anda P. Cervical cancer detection based on serum sample Raman spectroscopy[J]. Lasers in medical science 2013:1-7
    [236]GUO L, ZHANG Y, Lu J-y. Multivariate Statistical Analysis of Serum from Breast Cancer Patients Using Surface Enhanced Raman Spectrum[J]. Spectroscopy and Spectral Analysis 2013,33(6):1553-56
    [237]Wang G, Lipert RJ, Jain M, et al. Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering[J]. Analytical chemistry 2011,83(7):2554-61
    [238]Serum fluorescence and Raman spectra for diagnosis of cancer. European Conference on Biomedical Optics; 2001. International Society for Optics and Photonics.
    [239]高泽红,于晶,林均岫,丁建华.细胞癌变代谢产物的光谱检测分析[J].中国光学学会2006年学术大会论文摘要集2006
    [240]高泽红,董峰.人体血清可见拉曼光谱与DNA紫外共振拉曼光谱的检测[J].中国激光医学杂志1999,8(4):207-10
    [241]Zheng F, Qin Y, Chen K. Sensitivity map of laser tweezers Raman spectroscopy for single-cell analysis of colorectal cancer[J]. Journal of biomedical optics 2007,12(3):034002-02-9
    [242]Yan X-L, Dong R-x, Zhang L, Zhang X-J, Zhang Z-W. Raman spectra of single cell from gastrointestinal cancer patients[J]. World Journal of Gastroenterology 2005,11(21):3290
    [243]Yan X-L, Dong R, Wang Q, et al. [Raman spectra of cell from breast cancer patients][J]. Guang pu xue yu guang pu fen xi= Guang pu 2005,25(1):58-61
    [244]叶代勇,黄洪,傅和青,陈焕钦.纤维素化学研究进展[J].化工学报2006,57(8):1782-91
    [245]李翠珍,胡开堂.纤维素的新溶剂体系[J].纤维素科学与技术2002,10(4):60-64
    [246]李冬娜,马晓军,乔华.天然纤维素新溶剂体系的研究现状及展望[J].中国包装工业,2012,15:007
    [247]程锋伟.一种新型溶剂的制备及其对纤维素溶解性能研究[D].东华大学,2007.
    [248]许冬生.纤维素衍生物:北京:化学工业出版社,2001.
    [249]付飞飞,邓宇,孙娜娜,肖早早.纤维素在离子液体中的溶解与降解[J].杭州化工 2010(1):18-21
    [250]查纯喜,金华进,顾利霞.纤维素在氢氧化钠/硫脲/尿素/水溶液中的溶解和溶液特性[J].东华大学学报:自然科学版2008,34(1):20-23
    [251]Roy C, Budtova T, Navard P, Bedue O. Structure of cellulose-soda solutions at low temperatures[J]. Biomacromolecules 2001,2(3):687-93
    [252]Nelson ML, O'Connor RT. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II[J]. Journal of Applied Polymer Science 1964,8(3):1325-41
    [253]朱平,周晓东,张林,董朝红.纤维素/NaOH-尿素-硫脲溶液体系流变性能的研究[J].印染助剂2008,25(1):24-26
    [254]周晓东,朱平,王炳,张建波.纤维素的活化对其溶解性能的影响[J].现代纺织技术2008,16(5):4-7
    [255]俐娜.天然高分子改性材料及应用:化学工业出版社,2006.
    [256]周金平.纤维素新溶剂及再生纤维素功能材料的研究[D][J].武汉:武汉大学博士学位论文2001:1-121
    [257]Cao Y, Tan H. Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction[J]. Enzyme and Microbial Technology 2005,36(2):314-17
    [258]Heinze T, Liebert T, Klufers P, Meister F. Carboxymethylation of cellulose in unconventional media[J]. Cellulose 1999,6(2):153-65
    [259]Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites:a review of preparation, properties and applications[J]. Polymers 2010,2(4):728-65
    [260]Heinze U, Wagenknecht W. Comprehensive cellulose chemistry: functionalisation of cellulose:Wiley-VCH, Weinheim,1998.
    [261]Liebert TF, Heinze T. Tailored cellulose esters:synthesis and structure determination[J]. Biomacromolecules 2005,6(1):333-40
    [262]Zhou J, Zhang L, Deng Q, Wu X. Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions[J]. Journal of Polymer Science Part A:Polymer Chemistry 2004,42(23):5911-20
    [263]Qi H, Liebert T, Meister F, Heinze T. Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution[J]. Reactive and Functional Polymers 2009,69(10):779-84
    [264]Zhou J, Qin Y, Liu S, Zhang L. Homogenous synthesis of hydroxyethylcellulose in NaOH/urea aqueous solution[J]. Macromolecular bioscience 2006,6(1):84-89
    [265]花影,李发学,胡盼盼,刘兆峰,俞建勇.碱溶性羟乙基纤维素的合成,表征及溶解性能[J].东华大学学报:自然科学版2012,38(4):377-80
    [266]!!! INVALID CITATION!!!
    [267]Jensen L, Zhao LL, Schatz GC. Size-Dependence of the Enhanced Raman Scattering of Pyridine Adsorbed on Ag n (n= 2-8,20) Clusters[J]. The Journal of Physical Chemistry C 2007,111(12):4756-64
    [268]Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva J, Avalos-Borja M, Castillon-Barraza F, Posada-Amarillas A. Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol[J]. Materials Research Bulletin 2008,43(1):90-96
    [269]Misra N, Biswal J, Dhamgaye V, Lodha G, Sabharwal S. A comparative study of gamma, electron beam, and synchrotron X-ray irradiation method for synthesis of silver nanoparticles in PVP[J]. Advanced Materials Letters 2013,4(6)
    [270]Li X, Shen J, Du A, et al. Facile synthesis of silver nanoparticles with high concentration via a CTAB-induced silver mirror reaction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012,400:73-79
    [271]Huang C-M, Cheng K-W, Pan G-T, Chang W-S, Yang TC-K. CTAB-assisted hydrothermal synthesis of silver vanadates and their photocatalytic characterization[J]. Chemical Engineering Science 2010,65(1):148-52
    [272]Study on Synthesis of PVA Stabilized Silver Nanoparticles using Green Synthesis and Their Application for Catalysis. MRS Proceedings; 2013. Cambridge Univ Press.
    [273]Patil RS, Kokate MR, Jambhale CL, Pawar SM, Han SH, Kolekar SS. One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application[J]. Advances in Natural Sciences:Nanoscience and Nanotechnology 2012,3(1):015013
    [274]Hebeish A, El-Rafie M, Abdel-Mohdy F, Abdel-Halim E, Emam H. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles[J]. Carbohydrate Polymers 2010,82(3):933-41
    [275]Chen J, Wang J, Zhang X, Jin Y. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate[J]. Materials Chemistry and Physics 2008,108(2):421-24
    [276]Vysotsky V, Uryupina OY, Roldughin V, Plachev YA. Formation of silver nanoparticles in aqueous carboxymethyl cellulose solutions and the evolution of their sizes[J]. Colloid journal 2009,71(2):156-62
    [277]Park J-S, Kuang J, Lim Y-M, Gwon H-J, Nho Y-C. Characterization of silver nanoparticle in the carboxymethyl cellulose hydrogel prepared by a gamma ray irradiation[J]. Journal of nanoscience and nanotechnology 2012,12(1):743-47
    [278]Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL. Optical absorption spectra of nanocrystal gold molecules[J]. The Journal of Physical Chemistry B 1997,101(19):3706-12
    [279]Das R, Pal S. Hydroxypropyl methyl cellulose grafted with polyacrylamide: Application in controlled release of 5-amino salicylic acid[J]. Colloids and surfaces. B, Biointerfaces 2013,110:236-41
    [280]Sievens-Figueroa L, Bhakay A, Jerez-Rozo JI, et al. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS Class II drug nanoparticles for pharmaceutical applications[J]. International journal of pharmaceutics 2012,423(2):496-508
    [281]Khan IA, Anjum K, Koya PA. Effect of inorganic salts on the clouding behavior of hydroxypropyl methyl cellulose in presence of amphiphilic drugs[J]. Colloids and Surfaces B:Biointerfaces 2013,103:496-501
    [282]Das R, Panda A, Pal S. Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide[J]. Cellulose 2012,19(3):933-45
    [283]Das R, Ghorai S, Pal S. Flocculation characteristics of polyacrylamide grafted hydroxypropyl methyl cellulose:An efficient biodegradable flocculant[J]. Chemical Engineering Journal 2013,229:144-52
    [284]Hayakawa K, Kawaguchi M, Kato T. Protective colloidal effects of hydroxypropyl methyl cellulose on the stability of silicone oil emulsions[J]. Langmuir 1997,13(23):6069-73
    [285]田径.羟丙基甲基纤维素水溶液黏度特性[J].四川兵工学报2008,29(5):148-49
    [286]马红娟,王敏,蒲长永,张敬,赵君,姚思德.偶氮类染料刚果红水溶液的辐射降解[J].2009
    [287]Kato T, Yokoyama MM, Takahashi A. Melting temperatures of thermally reversible gels IV. Methyl cellulose-water gels[J]. Colloid and Polymer Science 1978,256(1):15-21
    [288]Takahashi SI, Fujimoto T, Miyamoto T, Inagaki H. Relationship between distribution of substituents and water solubility of O-methyl cellulose[J]. Journal of Polymer Science Part A:Polymer Chemistry 1987,25(4):987-94
    [289]Kundu P, Kundu M. Effect of salts and surfactant and their doses on the gelation of extremely dilute solutions of methyl cellulose[J]. Polymer 2001,42(5):2015-20
    [290]Gotoh Y, Fujimura K, Koike M, et al. Synthesis of titanium carbide from a composite of TiO< sub> 2 nanoparticles/methyl cellulose by carbothermal reduction[J]. Materials Research Bulletin 2001,36(13):2263-75
    [291]Hotchin J. Use of methyl cellulose gel as a substitute for agar in tissue-culture overlays[J].1955
    [292]Tunc S, Duman O. Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films[J]. Applied Clay Science 2010,48(3):414-24
    [293]Zhang Y, Gao C, Li X, et al. Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion[J]. Carbohydrate polymers 2014,101:171-78
    [294]Zhang J, Li X, Sun X, Li Y. Surface enhanced Raman scattering effects of silver colloids with different shapes[J]. The Journal of Physical Chemistry B 2005,109(25):12544-48
    [295]Potara M, Maniu D, Astilean S. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan[J]. Nanotechnology 2009,20(31):315602
    [296]Tian Z, Ren B. Li,].-F., and Yang, Z.-L.(2007) Expanding generality ofsurface-enhanced Raman spectroscopy with borrowing SERS activity strategy[J]. Chem. Commun,34:3514-34
    [297]田中群,任斌,吴德印,毛秉伟,徐云峰.激光拉曼光谱研究电化学界面的新进展[J].2001
    [298]Kastner U, Hoffmann H, Donges R, Ehrler R. Interactions between modified hydroxyethyl cellulose (HEC) and surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996,112(2):209-25
    [299]Kastner U, Hoffmann H, Donges R, Ehrler R. Hydrophobically and cationically modified hydroxyethyl cellulose and their interactions with surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects 1994,82(3):279-97
    [300]Nel AM, Smythe SC, Habibi S, Kaptur PE, Romano JW. Pharmacokinetics of 2 dapivirine vaginal microbicide gels and their safety vs. hydroxyethyl cellulose-based universal placebo gel[J]. JAIDS Journal of Acquired Immune Deficiency Syndromes 2010,55(2):161-69
    [301]Wang K, Ye L. Solution behavior of hydrophobic cationic hydroxyethyl cellulose[J]. Journal of Macromolecular Science, Part B 2014,53(1):149-61
    [302]Sau AC, Landoll LM. Synthesis and solution properties of hydrophobically modified (hydroxyethyl) cellulose[J]. Adv. Chem. Ser 1989,223:343-63
    [303]LI W, XU H, CHEN L, YU J-r, ZHU J, HU Z-m. The Dynamic Viscous Character of Hydroxyethyl Cellulose/NaOH Solution System [J][J]. Journal of Donghua University (Natural Science) 2009,3:005
    [304]CHEN Q-h, ZHAO J-l, WANG H-s, HU Z-y, WANG W-s, CAO D-l. Study on the viscosity of cation hydroxyethyl cellulose in aqueous solution[J]. Fine and Specialty Chemicals 2011,12:023
    [305]罗明灯,张少怡,杨文,郝文涛,何建波.HEC溶液中光催化还原金纳米粒子的制备与表征[J].合肥工业大学学报:自然科学版2010,33(3):437-40
    [306]El-Sheikh M, El-Rafie S, Abdel-Halim E, El-Rafie M. Green Synthesis of Hydroxyethyl Cellulose-Stabilized Silver Nanoparticles[J]. Journal of Polymers 2013,2013
    [307]Liu W, Zhang Z, Liu H, He W, Ge X, Wang M. Silver nanorods using HEC as a template by y-irradiation technique and absorption dose that changed their nanosize and morphology[J]. Materials Letters 2007,61(8):1801-04
    [308]和俊,司民真.纳米银的制备及其应用[J].光散射学报2008,20(1):42-46
    [309]李永增.鼻咽癌组织及细胞的拉曼光谱检测与分析[D].福建师范大学,2012.
    [310]潘建基,陈奇松,黄伟,et al.血清拉曼光谱检测在鼻咽癌早期诊断中的应用价值研究[J].中国癌症杂志2012,21(9):708-12
    [311]Lin J, Chen R, Feng S, et al. Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection[J]. Journal of Raman Spectroscopy 2012,43(4):497-502
    [312]Ou L, Chen Y, Su Y, Huang Y, Chen R, Lei J. Application of silver nanoparticle-based SERS spectroscopy for DNA analysis in radiated nasopharyngeal carcinoma cells[J]. Journal of Raman Spectroscopy 2013,44(5):680-85
    [313]张文霖.主成分分析在SPSS中的操作应用[J].市场研究2006(12):31-34
    [314]叶双峰.关于主成分分析做综合评价的改进[J].数理统计与管理2001,20(2):52-55
    [315]姜明辉,姜磊,王雅林.线性判别式分析在个人信用评估中的应用[J].管理科学2003,1:53-55
    [316]Han H, Yan X, Dong R, Ban G, Li K. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)[J]. Applied Physics B 2009,94(4):667-72
    [317]Lyandres O, Shah NC, Yonzon CR, Walsh JT, Glucksberg MR, Van Duyne RP. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer[J]. Analytical chemistry 2005,77(19):6134-39
    [318]Liu C-H, Das B, Glassman W, et al. Raman, fluorescence, and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media[J]. Journal of Photochemistry and Photobiology B:Biology 1992,16(2):187-209
    [319]Banki F, Yacoub WN, Hagen JA, et al. Plasma DNA is more reliable than carcinoembryonic antigen for diagnosis of recurrent esophageal cancer[J]. Journal of the American College of Surgeons 2008,207(1):30-35
    [320]Plum PS, Bollschweiler E, Holscher AH, Warnecke-Eberz U. Novel diagnostic and prognostic biomarkers in esophageal cancer[J]. Expert opinion on medical diagnostics 2013,7(6):557-71
    [321]Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The Clinical Utilization of Circulating Cell Free DNA (CCFDNA) in Blood of Cancer Patients[J]. International journal of molecular sciences 2013,14(9):18925-58
    [322]Ramachandran K, Speer CG, Fiddy S, Reis IM, Singal R. Free Circulating DNA as a Biomarker of Prostate Cancer:Comparison of Quantitation Methods[J]. Anticancer research 2013,33(10):4521-29
    [323]Stone N, Stavroulaki P, Kendall C, Birchall M, Barr H. Raman spectroscopy for early detection of laryngeal malignancy:preliminary results[J]. The Laryngoscope 2000,110(10):1756-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700