氦光泵磁测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氦光泵磁测是以氦原子能级在磁场中的塞曼效应为基础,利用光泵作用实现氦原子的光学取向,通过光学检测磁共振的方法实现对被测磁场的测量。在应用于磁场测量的各种磁测设备中,氦光泵磁力仪因其良好的性能受到广泛关注,并已成功应用于地球物理研究、油气和矿产勘查、军事国防及地质调查等各个领域。目前,我国氦光泵磁力仪的升级改造较为缓慢,仪器体积大、重量大,性能较国外先进的数字化仪器还有不小的差距。因此,本文以数字化氦光泵磁力仪的研制为主要研究内容,从氦原子的特性、氦原子在外磁场中的塞曼效应、氦的光泵作用及磁共振作用几个方面深入研究了氦光泵磁测的理论基础,为氦光泵磁力仪的研制打好理论基础;对氦光泵磁力仪中的光学系统进行研究及构建,通过对光学系统中各部件的分析和设计,完成了对氦光泵磁力仪光学系统的实际搭建;针对传统氦光泵磁力仪失锁后重新定位磁共振点耗时较长,难以实现快速连续测量的问题,提出了一种基于同时应用基波信号和二次谐波信号进行磁共振检测的方案,设计并制作了氦光泵磁力仪的数字化检测系统,其关键技术主要包括数字调频技术、锁相放大技术、高精度ADC采样技术、数字PID控制技术以及电磁屏蔽技术与接地技术;分别从系统的关键模块和仪器整机两个方面完成了对所研制的数字化氦光泵磁测实验样机的测试及分析,给出了仪器的最终灵敏度和整机响应速度,测试结果表明所研制的数字化氦光泵磁测样机性能优良,能够满足高精度测磁的需要。
     磁场测量领域的不断发展为氦光泵磁力仪性能的提升提出了更高的要求,本文研制的数字化氦光泵磁力仪就是以此为任务,并在国家863计划《航空地球物理勘查系统》重大项目的资助下完成,它的实现必将为我国磁场测量技术的发展提供帮助。
Magnetic field measurement technique plays an increasingly important role in thedevelopment of modern society, and among the magnetic field measurement equipments,helium optically pumped magnetometer wins a wide range of concerns due to its goodperformance, which is successfully applied in the various fields of geophysical research, oiland gas resource, mineral deposit prospecting, military affairs and geological prospecting,etc.. Helium optically pumped magnetometer is on the basis of Zeeman Effect of heliumatomic energy levels in magnetic field, measuring the magnetic field by use of opticalpumping effect for realizing optical orientation of the helium atom, and through the methodof the optical detection of magnetic resonance. In view of the slow upgrade of heliumoptically pumped magnetometer in our country and the wide gap in comparison withadvanced digitized equipments in foreign countries, this paper completes development ofdigitized helium optically pumped magnetometer funded by the major project of thenational863plans of “Airborne geophysical survey systems”, and the main research workand results are as follows:
     1. In-depth studies of theory basis of helium optically pumped magnetometer fromseveral aspects of characteristics of helium atom, Zeeman Effect of helium atom in amagnetic field, optical pumping effect and magnetic resonance. Helium atom orientationlaw is derived by equation of atomic density changes over time on energy levels, with theinterpretation of implementation process of optical pumping effect from phenomena andtheoretical aspects. The inner mechanism and realization condition of magnetic resonance isalso studied with solutions of the equation of helium atom magnetization vector motionunder inferred in the RF field, laying a theoretical foundation for the development of heliumoptically pumped magnetometer.
     2. Lighting system for helium optically pumped magnetometer is researched andconstructed. Simultaneously, the implementation mechanism of magnetic resonance opticaldetection is also studied, giving out the derived expression of the optical signal in thelighting system and its characteristic analysis. For lighting system components,achievements are made for the excitations of helium lamp and helium absorption chamber,the installation and debugging of lens and polarized components, the selection ofphotosensitive device, design of photoelectric conversion circuit, design and assembly ofRF coil and lighting system shell in order to complete the actual building of the heliumoptical pumping magnetometer lighting system.
     3. Development of digitized measurement and control system for helium opticalpumping magnetometer. Point at the problem of long time relocation of magnetic resonancepoint after loss of locks and the difficulties to achieve fast and continuous measurement fortraditional helium optically pumped magnetometer, studies on changing characteristics ofthe fundamental and second harmonic amplitude signal for modulated signal near themagnetic resonance region are made, with model curves set up, magnetic resonancedetection schemes proposed applying both of fundamental and second harmonicmodulated signal. Besides, digitized detection and control system for helium opticalpumping magnetometer is designed. Major accomplishments are:
     (1) Precise extraction of fundamental modulated amplitude signal is achieved byadopting high precision balanced modulator, which improves system accuracy. By usingdigital lock-in technology, extraction of second harmonic amplitude signal fordistinguishing signal entering the resonance region is also developed, which improvessystem integration and performance.
     (2) By applying digital frequency modulation technology based on direct digitalfrequency synthesis, RF frequency is modulated, which solves the insufficiency when usingthe analog FM. Digital frequency modulation(Frequency-shift keying) is also realizedthrough the use of reconfigurable high-speed high-performance FPGA chip, which meetsthe design requirements of high-sensitivity digitized helium optically pumpedmagnetometer in aspects of frequency stability, frequency resolution and modulationperformance. Ultimately, drive for RF coil is completed.
     (3) In view of the lock-in amplifier output for extracting fundamental modulatedamplitude signal in helium optically pumped magnetometer inspection and control system has characteristics of slow changing direct-current when tracking the magnetic field value,approximately zero near its magnetic resonance point and bipolar changing fundamentalamplitude signal within entire sweep frequency range, high precision and high resolutionΣ-Δ type ADC is adopted as the judgment basis of system locking and magnetic tracking fordata acquisition.
     (4) By using incremental digital PID control method, zero point tracking for magneticfield changes is realized via FPGA, and the fundamental amplitude signal is maintained tozero by using it as PID input and adjusting the center frequency of the RF coil, whichrealizes the tracking of external magnetic field changes.
     (5) Electromagnetic interferences are effectively suppressed by using the method ofshield in the noise source and sensitive components at the same time, in which highfrequency excitation system is set as the noise source and the lock-in detecting module aswell as other digital components are set as sensitive components, consequently, instrumentoperating reliability is guarantied. Meanwhile, power consumption, cost and portability areunder full consideration in the design process, which realizes the miniaturization of thesystem.
     4. Testing and analysis for the developed digitized helium optically pumpedmagnetometer are completed.
     (1) Critical modules and functions of system are tested. Effective optical pumpingaffect production to the system is verified through the method of absorption ratio detectionfor helium absorption chamber. For digital FM system modules, demodulation circuit isspecifically designed to perform demodulation test and verify the effectiveness of its workin the system. By using swept frequency method to sweep the measured magnetic field, theswept magnetic resonance curve prove the production of magnetic resonance effect of thesystem, moreover, the availability of RF coil design is proved.
     (2) The whole instrument is tested. Amplitude curves of second harmonic signal andfundamental modulated signal perfectly fit the theoretical model curves, which prove thefeasibility of this proposed options by using the second harmonic signal and fundamentalmodulated signal to lock magnetic resonance point together. Experiments of measuring thevalues of space-stable magnetic field and spatial variation magnetic field reflect the bettermagnetic measuring effect of the instrument. Actual sensitivity indicator of the instrument isgiven through analysis and inference of classical sensitivity definition of optical pumpingmagnetometer. The alternating magnetic field produced by Helmholtz coils is used to test the response speed of the instrument.
     Innovation points of this article:
     1. According to the changing characteristics of second harmonic and fundamentalmodulated amplitude signals near the area magnetic resonance, a magnetic resonancedetection scheme based on applying both second harmonic signal and fundamentalmodulated signal is proposed with model curves set up. That is large-step mode is used tosearch magnetic resonance region outside the resonance region, then resonance point withinthe tracking area is precisely positioned and tracked by the use of digital PID controltechnology and the characteristics of fundamental signal being zero at magnetic resonancepoint. Thus the quick locking and tracking measurements to the measured magnetic field arecompleted.
     2. Problems of low linearity and frequency stability for analog modulator, narrowoutput frequency range, fixed parameters as well as the introduced additional measuringfrequency errors when frequency counter is used to measure the output frequency of VCOare solved by applying the digital FM technology based on direct digital frequencysynthesis to the development of helium optically pumped magnetometer. Simultaneously, itimproves the magnetic measuring precision of the instrument, brings convenience toinstrument debugging and lays technical foundation for the further development of laserexcited helium optically pumped magnetometer.
     3. The second harmonic amplitude signal is extracted by using digital lock-intechnology, and the signal is used as the distinguishing signal of a system entered theresonance region, which improves system integration and measurement speed.Accurateextraction for fundamental modulated amplitude signal is realized by adopting dedicatedhigh precision balanced modulator, which improve precision and sensitivity of the systemand solve the problems of the poor performance of the amplifier style switchphase-sensitive detector build by separated components and operating amplifier intraditional helium optically pumped magnetometer, the same gain of both inverting andnon-inverting amplifiers and the similar dynamic characteristics.
引文
[1]姜智鹏,赵伟,屈凯峰.磁场测量技术的发展及应用[J].电测与仪表,2008,45(508):1-6.
    [2]丁鸿佳,刘士杰.我国弱磁测量研究的进展[J].地球物理学报,1997,40(Supp):238-248.
    [3]潘启军,马伟明,赵治华,康军.磁场测量方法的发展及应用[J].电工技术学报,2005,20(3):7-12.
    [4]姚远.弱磁场的检测与应用技术研究[D].湖北:武汉理工大学,2001.
    [5]张昌达,董浩斌.重力和磁力勘探进入新时期[J].物探与化探,2010,34(1):1-7.
    [6]肖胜红,肖振坤,边少锋,金际航.弱磁场检测方法与仪器研究[J].船舶电子工程.2006,26:158-162.
    [7]李曙光.原子磁力仪的研究[D].浙江:浙江大学,2009.
    [8]张昌达,董浩斌.量子磁力仪评说[J].工程地球物理学报.2004,1:499-507.
    [9]尚先旗,马君钊,王建国等.数字地磁资料在地震预测中应用研究[J].防灾科技学院学报,2006,8(3):34-36.
    [10]邹润莉.地球电场与地球磁场的形成机理[J].地球物理学进展,2008,23(4):1071-1084.
    [11]徐文耀.我国地磁观测研究的发展[J].地球物理学报,1997,40(Supp):217-229.
    [12]管志宁.地磁场与磁力勘探[M].北京:地质出版社,2005.
    [13]张毅,顾左文,顾春雷,朱志春等.地震地磁监测试验区研究进展[J].西北地震学报,2009,31(4):393-402.
    [14]丁鉴海,申旭辉,潘威炎,张晶等.地震电磁前兆研究进展[J].电波科学学报,2006,21(5):791-801.
    [15]毛桐恩,席继楼,王燕琼,尹淑芝.地震过程中的大地电场变化特征[J].地球物理学报,1999,42(4):520-528.
    [16] B.B.费登斯基;卢家仁.地球物理勘探法[J].物理通报.1955,(6):329-338.
    [17]林君.地球物理勘探仪器及其发展趋势[J].中国仪器仪表.1995,(5):9-11.
    [18]张作伦,曾庆栋,于昌明,刘建明等.氦光泵磁力仪(HC-95a)在矿体勘查中的应用[J].中国矿业.2007,16:61-64.
    [19]张昌达.航空磁力梯度张量测量——航空磁测技术的最新进展[J].工程地球物理学报,2006,3(5):354-360.
    [20]秦葆瑚.高精度磁法勘探[M].武汉:中南工业大学出版社,1988.
    [21]王永生.我国矿产资源综合利用现状、潜力和对策措施[J].矿产保护与利用,2007,(6):5-7.
    [22]严加永,滕吉文等.深部金属矿产资源地球物理勘查与应用[J].地球物理学进展,2008,23(3):871-891.
    [23]董树文,李廷栋,高锐等.地球深部探测国际发展与我国现状综述[J].地质学报,2010,84(6):734-768.
    [24]罗大锋.当代中国矿产资源开发存在的问题及对策[J].中国工程科学,2005,7(S1):49-52.
    [25]管志宁.我国磁法勘探的研究与进展[J].地球物理学报,1997,40(Supp):299-307.
    [26]娄德波,宋国玺,李楠等.磁法在我国矿产预测中的应用[J].地球物理学进展,2008,23(1):249-256.
    [27]滕吉文,刘建明等.第二深度空间金属矿产探查与东北战略后备基地的建立和可持续发展[J].吉林大学学报(地球科学版),2007,37(4):633-651.
    [28]郑全库.高精度磁法在多金属矿产勘探中的应用[J].科学技术与工程,2009,9(9):2412-2415.
    [29]黄謨涛,翟国君,欧阳永忠,陆秀平等.海洋磁场重力场信息军事应用研究现状与展望[J].海洋测绘,2011,31(1):71-76.
    [30]邓明,杜刚,张启生,余平等.海洋大地电磁场的特征与测量技术[J].仪器仪表学报,2004,25(6):742-746.
    [31]刘胜旋.光泵磁力仪在光缆路由调查中的应用[J].海洋测绘,2002,22:25-29.
    [32]姚俊杰,赖仲滋. G_880G海洋磁力梯度仪的改装与使用[J].海洋测绘,2004,24:65-68.
    [33]孙岚,李厚朴,边少峰,李宏武,周超烨.基于重力梯度的潜艇探测方法研究[J].海洋测绘,2010,30(2):24-27.
    [34]崔国恒,于德新.非声探潜技术现状及其对抗措施[J].火力与指挥控制,2007,32(12):10-13.
    [35]曾小牛,李夕海.基于磁异常探测的航空反潜技术.国家安全地球物理丛书(五)地球物理与海洋安全[C],2009.
    [36]林君.地球物理弱磁测量仪器进展[J].石油仪器,1997,11:7-12.
    [37]祁香兵.数字氦光泵磁力仪的设计与实现[D].浙江:浙江大学,2007.
    [38]杜陵,吴天彪,刘士杰.中国地磁测试仪器的发展[J].地球物理学报,1994,37(S1):295-299.
    [39]吴天彪.我国地面重磁仪器的现状与前景[J].地质装备,2007,8(2):11-16.
    [40]董浩斌,张昌达.量子磁力仪再评说[J].工程地球物理学报,2010,7(4):460-469.
    [41]张昌达.量子磁力仪研究和开发近况[J].物探与化探,2005,29(4):283-287.
    [42]李岳亮. WCZ-1质子磁力仪的原理及应用[J].企业技术开发,2008,27(10):34-36.
    [43]秦葆瑚,吴天彪.磁通门式磁力梯度仪与磁场梯度测量[M].北京:地质出版社,1985.
    [44]孟娟.质子磁力仪及其标定信号源的研究[J].科技创新导报,2010,27:13.
    [45]王应吉,李伟,孙淑琴,姜艳秋.基于MSP430的质子旋进式磁力仪设计[J].吉林大学学报(信息科学版),2006,24(3):336-340.
    [46]张振宇,程德福,连明昌,周志坚,王君.氦光泵磁力仪信号的分析及检测[J].仪器仪表学报,2011,32(12):2656-2661.
    [47]吴水根,谭勇华,周建平.铯光泵磁力仪G880在海洋工程勘探方面的应用[J].海洋科学,2006,30:5-9.
    [48]金惕若,瞿清昌,肖良熙. He4光泵梯度磁强计[J].地球物理学报,1982,25:87-91.
    [49]张振宇.氦光泵磁力仪的信号检测技术研究[D].吉林:吉林大学,2009.
    [50]吴天彪.国外新型重磁仪器述评[J].地质装备,2002,9:3-7.
    [51] D. D. McGregor. High-sensitivity helium resonance magnetometers [J]. Review ofScientific Instruments,1987,58:1067-1076.
    [52]金惕若,瞿清昌,肖良熙.频率跟踪式He4光泵及其在梯度磁强计中的应用[J].计量学报,1982,3:33-41.
    [53] R.E.Slocum. Advances in optically pumped helium magnetometers for space and Earthscience [J]. Contributions to Geophysics and Geodesy,2001,31(1).
    [54] O. Gravrand, A. Khokhlov, J. L. Le Moue, and J. M. Leger. On the calibration of avectorial4He pumped magnetometer [J]. Earth Planets Space,2001,53:949-958.
    [55] L. D. Schearer, F. D. Colegrove, and G. K. Walters. Optically Pumped NuclearMagnetometer [J]. Review of Scientific Instruments,1963,34:1363-1366.
    [56]董连芝,葛钟峋.近代物理[M].吉林:吉林大学出版社,1992.
    [57]王其俊.超导量子干涉器[M].西安:西北大学出版社,1988.
    [58]赵静.高温超导磁梯度仪关键技术研究[D].吉林:吉林大学,2011.
    [59]赵静,王君,凌振宝,刘光达.高温RF SQUID磁力仪射频振荡器[J].吉林大学学报(信息科学版),2009,27(2):113-116.
    [60]李曙光,周翔,曹晓超,盛继腾等.全光学高灵敏度铷原子磁力仪的研究[J].物理学报,2010,59(2):877-881.
    [61]王丰,刘强,曾宪金,孙伟民,张军海. Cs原子磁力仪共振谱线宽度的研究[J].光电子激光,2010,21(6):845-847.
    [62]周志坚.氦光泵磁力仪关键技术研究[D].吉林:吉林大学,2011.
    [63]邹鹏毅,罗深荣,顾建松.两型光泵磁力仪比对试验结果及分析[J].声学与电子工程,2008,2:35-38.
    [64] E. B. Alexandrov. Recent Progress in Optically Pumped Magnetometers [J]. PhysicaScripta,2003,105:27–30.
    [65] S. J. Seltzer and M. V. Romalis. Unshielded three-axis vector operation of aspin-exchange-relaxation-free atomic magnetometer [J]. Applied Physics Letters,2004,85:4804-4806.
    [66] E Pulz, K-H J¨ackel and H-J Linthe. A new optically pumped tandem magnetometer:principles and experiences [J]. Meas. Sci. Technol,1999,10:1025–1031.
    [67] E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson.Double-resonance atomic magnetometers from gas discharge to laser pumping [J].Laser Physics,1996,6:244-251.
    [68] W. David Lee and Joe C. Campbell. Optically stabilized AlxGa1-xAs/GaAs laser usingmagnetically induced [J]. Applied Physics Letters,1991,58:995-997.
    [69] C. L. Bohler and B. L. Marton. Helium spectroscopy using an InGaAs laser diode [J].Optics Letters,1994,19:1346-1348.
    [70] Slocum, R. E. Principles of the Self-Calibrating Vector Laser Magnetometer [J].American Geophysical Union,Spring Meeting2002.
    [71] S. Groeger, A. S. Pazgalev, and A. Weis. Comparison of discharge lamp and laserpumped cesium magnetometers [J]. Applied Physics B:Lasers and Optics,2005,85:645-654.
    [72]张振宇,程德福,王君,周志坚,连明昌.光泵磁力仪中磁共振光学检测方法研究[J].吉林大学学报(信息科学版),2011,29(3):253-257.
    [73] A. Cassimi, B. Cheron, and J. Hamel.4He optical pumping with intensity modulatedlaser light [J]. Journal de Physique II,1991,1:123-133.
    [74] B. Chéron, H. Gilles, J. Hamel, O. Moreau, E. No l.4He Optical Pumping withFrequency Modulated Light [J]. Journal de Physique II,1996,6:175-185.
    [75] H. Gilles, B. Cheron and J. Hamel.4He optical pumping with polarization modulatedlight [J]. Optics Communications,1991,81:369-374.
    [76] H. Gilles, J. Hamel, and B. Cheron. Laser pumped4He magnetometer [J]. Review ofScientific Instruments,2001,72:2253-2260.
    [77] Schearer, L. D. Nd-doped, tunable IR lasers for helium optical pumping [J].ADVANCES IN LASER SCIENCE-IV. AIP Conference Proceedings,1989,191:97-102.
    [78] DELEVAQUW. A tunable fiber laser for application to helium optically pumpedmagnetometers [J]. Journal de Physique IV,1994,4:695-698.
    [79] B. Cheron, H. Gilles, J. Hamel, O. Moreau, and E. No l. A new optical pumping schemeusing a frequency modulated semi-conductor laser for4He magnetometers [J]. OpticsCommunications,1995,115:71-74.
    [80] Bohler, C.L. Low-noise Nd: LaMgAl11O19laser for use in magnetometry [J]. Journal ofApplied Physics,1989,66:4914-4920.
    [81] G. Bison, R. Wynands, A. Weis. A laser-pumped magnetometer for the mapping ofhuman cardiomagnetic fields [J]. Applied Physics B: Lasers and Optics,2003,76:325-328.
    [82] B. Cheron, H. Gilles, J. Hamel, O. Moreau, E. No l. Improvement of the SpatialAmplitude Isotropy of a4He Magnetometer Using a Modulated Pumping Beam [J].Journal de Physique III,1997,7:1735-1740.
    [83] L. D. Schearer. TUNABLE LASERS AT1080nm FOR HELIUM OPTICAL PUMPING_NEW USES FOR AN OLD TECHNIQUE[J]. Journal de Physique IV,1991,1:429-434.
    [84] N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon and A. Aspect. Afrequency-stabilized LNA laser at1.083um: application to the manipulation of helium4atoms [J]. Journal de Physique II,1991,1:1407-1428.
    [85] L. D. Schearer and Padetha Tin. Tunable lasers at1080nm for helium optical pumping[J]. Journal of Applied Physics,1990,68:943-949.
    [86] R. E. Slocum. Advances in laser-pumped helium magnetometers for space applications[J]. Review of Scientific Instruments,1990,61.
    [87]郑乐民,徐庚武.原子结构与原子光谱[M].北京:北京大学出版社,1988.
    [88] Michael K. Plante and Duncan L. MacFarlane. Generalized theory of double-resonanceoptical pumping of4He[J]. PHYSICAL REVIEW,2010,013837:1-14.
    [89] Hpper, W. Optical Pumping[J]. Rev. Mod. Phys,1972,44(2):169-249.
    [90] F. D. Colegerove and P. A. Franken. Optical Pumping of Helium in the3S1MetastableState [J]. Physical Review,1960,119:680-690.
    [91] L. D. Schearer and Padetha Tin. Enhanced polarization of electron spins in4He bysimultaneous optical pumping with circularly and linearly polarized resonance radiation[J]. Physical Review A,1990,42:4028-4031.
    [92] R. B. PARTRIDGE and G. W. SERIES. The modulated absorption of light in an opticalpumping experiment on4He [J]. PROC. Phys. Soc,1966,88:969-982.
    [93] William E. Bell and Arnold L. Bloom. Optically Driven Spin Precession[J]. PhysicsReview Letters,1961,6:280-281.
    [94] Slichter,C.P. Principles of magnetic resonance[M]. Harper and Row,New York,1963.
    [95] Robert E. Slocum. Zero-Field Level-Crossing Resonances in Optically Pumped23S1He4[J]. Physical Review Letters,1972,29:1642-1645.
    [96]浦昭邦,王宝光.测控仪器设计[M].北京:机械工业出版社,2007.
    [97]周志坚,程德福,王君,张振宇.氦光泵磁敏传感器抽真空及精确充气系统的研究[J].真空,2011,48(2):73-75.
    [98]达道安.真空设计手册[M].北京:国防工业出版社,2006.
    [99]王君,凌振宝.传感器原理及检测技术[M].吉林:吉林大学出版社,2002.
    [100]陈竹年.光泵氦磁强计共振信号的角相关性[J].计量学报,1994,15:265-268.
    [101]林春莲.氦光泵探头中偏振组件的装调与测试[J].声学与电子工程,1996,(3)39-42.
    [102]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,2006.
    [103]Zhou Zhijian; Zhang, Zhenyu; Cheng, Defu; Wang, Jun, Research onmagneto-dependent sensor applied to optical pumped magnetometer[C].2010International Conference on Measuring Technology and Mechatronics Automation,ICMTMA2010:109-111.
    [104]周志坚,程德福,王君,张振宇,刘祥.氦光泵磁力仪中磁敏传感器的研制[J].传感技术学报,2009,22(9):1284-1288.
    [105]沈伟慈.通信电路[M].西安:西安电子科技大学出版社,2004.
    [106]赵广林.常用电子元器件识别/检测/选用一读通[M].北京:电子工业出版社,2007.
    [107]康华光.电子技术基础模拟部分.第四版[M].北京:高等教育出版社,1999.
    [108]王立刚,建天成,牟海维,刘强,付天舒.基于光电二极管的噪声分析与电路设计[J].大庆石油学院学报,2009,33(2):88-92.
    [109]许卫春,徐可欣,贺忠海.光电测试系统的性能分析[J].传感技术学报,2004,(4):679-682.
    [110]龚涵,陈浩宇.微弱光信号检测电路的设计与实现[J]. SCIENCE&TECHNOLOGYINFORMATION,2007,27:85-87.
    [111]Walt Jung.运算放大器应用技术手册[M].北京:人民邮电出版社,2009.
    [112]易晓柯.亥姆霍兹线圈的制作和测试[J].实验科学与技术,2005,(Supp):171-172.
    [113]李景天,郑勤红.矩形线圈的磁场计算[J].云南师范大学学报,1997,17(1):60-63.
    [114]赵旭光.载流直导线的磁场及作用力的研究[J].齐齐哈尔大学学报,2008,24(1):81-83.
    [115]康中尉,罗飞路.矩形激励线圈的磁场分析[J].传感器世界,2003,2:5-9.
    [116]汪华英,李兰秀,张仲秋,林露芳,崔伟.光泵磁共振信号幅度与射频场振幅的关系[J].物理实验,2005,25:29-32.
    [117]王书远.光泵磁共振实验中扫场及线圈产生水平场方向的判断[J].实验室研究与探索,2008,27(7):65-68.
    [118]张振宇,程德福,连明昌,周志坚,王君.氦光泵磁力仪信号检测控制回路的设计[J].电子测量与仪器学报,2011,25(4):366-371.
    [119]高晋占.微弱信号检测[M].北京:清华大学出版社,2004.
    [120]邹燕,冯丽爽,张春熹,刘军.锁定放大器在微弱光信号检测中的应用[J].电测与仪表,2005,42(479):15-18.
    [121]邵帅,李曼义,刘丹非,和伟,李树晨.全数字锁相环及其数控振荡器的FPGA设计[J].现代电子技术,2008,10(273):1-3.
    [122]屈星,唐宁,严舒,杨白.基于FPGA的IIR数字滤波器的设计与仿真[J].计算机仿真,2009,26(8):304-308.
    [123]张振宇,程德福,王君,周志坚.光泵磁力仪中压控振荡器的设计与实现[J].仪器仪表学报,2011,32(2):279-283.
    [124]刘晓红,郭文胜,王合利,常青松.集成压控振荡器的可靠性设计与分析[J].半导体技术,2008,33(5):450-453.
    [125]李刚,张丽君,林凌等.利用过采样率技术提高ADC测量微弱信号时的分辨率[J].纳米技术与精密工程,2009,7(1):71-75.
    [126]严军,张志柏.智能模数转换器AD7703在数字式倾斜读数仪中的应用[J].常州信息职业技术学院学报,2008,7(4):24-26.
    [127]徐双武,白天蕊,杨修等.基于过采样技术的Σ-Δ型A/D转换器的设计[J].微电子学,2007,37(4):574-578.
    [128]熊静琪.计算机控制技术[M].北京:电子工业出版社,2003.
    [129]姚栋伟,吴锋,杨志家,俞小莉.基于增量式数字PID的汽油机怠速控制研究[J].浙江大学学报(工学版),2010,44(6):1122-1126.
    [130]Samir Palnitkar. Verilog HDL数字设计与综合[M].北京:电子工业出版社,2008.
    [131]徐晓莹,张秀然,张艳凤.工程实际中电磁兼容的屏蔽措施[J].电工技术,2007,4:58-59.
    [132]Kraig Mitzner. PCB设计大全[M].北京:人民邮电出版社,2011.
    [133]周志敏,纪爱华.电磁兼容技术[M].北京:电子工业出版社,2007.
    [134]徐义亨.工程电磁干扰的分类及其抑制途径[J].石油化工自动化,2007,6:1-4.
    [135]程德福,林君.智能仪器[M].北京:电子工业出版社,2005.
    [136]梅川英之,柳村提亮,大坊真洋. Construction and Evaluation of Magnetic FieldSensitivity for Optical Pumped Potassium Atom Magnetometer[C].岩手大学工学部,2007,235:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700