可控震源编码激发技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控震源作为地震勘探中成功的非破坏性震源,自上世纪五十年代初发明至今已在资源、工程、环境等多领域中得到了广泛的应用,特别在当前广泛开展的深部资源勘探以及浅层高分辨率勘探中扮演着不可替代的角色。现阶段应用于实际勘探任务中的可控震源主要是基于Vibroseis技术的连续振动可控震源和基于SIST扫描冲击技术的编码冲击震源。
     连续振动可控震源的常规扫描信号是Chirp线性扫频信号,然而Chirp扫描存在着明显的旁瓣效应,会降低地震记录的分辨率,而伪随机编码方案中的二元m-序列扫描虽然能够压制Chirp扫描所产生的旁瓣效应,但由于相关运算的作用会使解码地震剖面中出现能量较强的相关噪声干扰,降低了地震记录的信噪比。而对于编码冲击震源而言,目前仅有的线性扫描冲击对于参数的选择比较敏感,选择不当会劣化解码地震剖面的质量。
     为了能够同时提高可控震源地震记录的分辨率和信噪比,针对连续振动可控震源本文首先提出了三元伪随机编码方案,有效压制了二元m-序列编码方案中的相关噪声干扰,而后提出了一种全新的可控震源匹配扫描方法,其通过匹配伪随机序列偶调制产生的匹配扫描信号具有理想的相关特性,可显著提高解码地震剖面的分辨率和信噪比,而后将匹配扫描方法拓展到编码冲击震源的信号设计中,提出了一种匹配冲击方法,使得匹配激发技术对于各种形式的可控震源具有很好的通用性。
     本文的研究工作是在国家自然科学基金项目“可控震源匹配扫描方法与技术研究”和国家863计划重点项目“金属矿地震勘探关键技术与装备”的联合资助下完成的,所提出的匹配激发技术是现有可控震源编码方案的重要补充,具有重要的理论和现实意义。
Vibroseis source is the most successful seismic source in land seismic exploration.Different from the single-pulse source like explosive which excites high-powerseismic pulse in very short time, Vibroseis source excites long-time and small-powercontinuous sine waves as the equivalence of spike pulse excited by pulse sources. Forthe original seismic record from Vibroseis acquisition, reflection information is mixedand unable to distinguish, while by cross-correlating the long seismic record with thepilot signal generated from Vibroseis vibrator, the long record are compressed into aseismic response of a single-pulse source, and then reflection information is recovered.
     As Vibroseis develops up to now, the main form of Vibroseis sweep signal is stillthe linear sweep frequency Chirp signal whose correlation wavelet has distinct side-lobe effect, thus, serious correlation noises will appear in decoded seismic profile andthe resolution of seismic profile is reduced. The objective of this thesis is to developcoding schemes for Vibroseis with ideal correlation characteristic which willfundamentally solve the side-lobe effect and correlation noises problems of Chirpsweep and increase the resolution and signal to noise ratio of seismic profiles.
     On account of the two type of seismic source, the continuous Vibroseis source andpulse-coded impact source, brand new signal coding schemes are given, whichexpands the applications of coding techniques for various kinds of seismic sources.
     Main contents and achievements are:
     1. Numerical simulation for single pulse source and Vibroseis Chirp sweep seismicresponses are conducted on the basis of the Vibroseis theory. The research on coding techniques for seismic source is part of seismic forward problem which is to solve theseismic response profile of a given source signal propagating through the establishedlayer model. First of all, finite difference format of seismic response numericalsimulation is given and then a three layer horizontal model is established with initialvalue condition, boundary condition and joining condition given for the2-d p-wavemathematical models. Since the seismic response of a single pulse source is the basisreference for verifying the quality of a new seismic source coding scheme, seismicnumerical simulation for a single pulse source using the Ricker wavelet is conducted,and the seismic response profile has clear and distinguishable seismic events of directwave reflected wave with the visible multiple underneath the profile and the wholeprofile has high signal to noise ratio. Then numerical simulation for conventionalChirp sweep is conducted and the result show that there is strong correlation noisesparallel to the direct wave with obvious side-lobe effect on both sides of the directwave, furthermore the multiple underneath the profile is submerged by strong noiseswhich result in a low signal to noise ratio profile and the quality of the profile cannotcompare with the single pulse situation.
     2. Ternary pseudorandom coding scheme for Vibroseis source is given. Ternarypseudorandom sequence is constructed for the use of modulation of Vibroseis sweepsignal, then n order q-ary m-sequence in finite domain GF (q)is generated from themodules q operation of an n order primitive polynomial in finite domain GF (q)by agiven nonzero initial vector. Ternary pseudorandom sequence consist of1,0,-1internary domain is produced through the mapping relation from multi-ary domain toternary domain and then the ternary pseudorandom sweep signal for Vibrosies sourceis generated from the sinusoidal carrier modulation of the ternary pseudorandomsequence. The numerical simulation result show that the correlation noises in thedecoded seismic profile has been remarkable attenuated in comparison with binarycase, and the multiple underneath the profile is also visible,which effectively increase the signal to noise ratio of seismic profile. In the meantime, ternary aperiodicpseudorandom coding scheme has also been researched.
     3. Brand new matched sweep method for Vibroseis source is researched. In order tofundamentally suppress the correlation noises due to the side-lobe effect of thecorrelation wavelet and increase the resolution and signal to noise ratio of seismicrecords, matched sweep method for Viborseis source is proposed. The realization ofmatched sweep method is through the excitation of a pair of correlative matchedsweep signals and the composition of the correlative matched seismic records.Matched pseudorandom sequence pair used for generating Vibroseis sweep signal isgiven, and matched sweep signals are generated by modulation of the matchedpseudorandom sequence pair. The numerical simulation result the comprehensivedecoded seismic profile of matched sweep can rival the seismic response profile ofsingle pulse source, which fundamentally suppress the correlation noises and theoutdoor excitation and acquisition experiments verify the superiority of matchedsweep method.
     4. Swept impact method of pulse-coded source is researched. The swept impactmethod is the combination of the linear sweep of Vibroseis and the random impact ofMini-Sosie, nevertheless, the choice of swept impact parameters can significantlyaffect the final decoded seismic profile in actual application. The numericalsimulation results reveal the affection by selecting different impact number andincrement of time interval; in the meantime, appropriate swept impact parametersthrough which high resolution and signal to noise ratio seismic profile can be obtainedare given.
     5. Matched impact method for pulse-coded seismic source is researched on thebasis of matched sweep method for Vibroseis source. Matched sweep signals areseparated into matched impact signal pairs which have a single impact state and can be excited by pulse-coded seismic source in sequence. The numerical simulationresults indicate that matched impact method can effectively avoid the side negativeeffect brought from inappropriate parameter setting up in the case of swept impact,and the comprehensive decoded seismic profile demonstrates high signal to noiseratio and resolution commensurate with the single pulse seismic profile. The outdoorexcitation and acquisition experiments verify that the matched impact method is aneffective coding scheme for pulse-coded seismic source which is superior to the sweptimpact method. The matched sweep method for continuous Vibroseis source and thematched impact method for pulse-coded seismic source compose a complete matchedexcitation technique for seismic sources in company which is an advanced andeffective coding scheme.
     The main innovative achievements of this thesis are:
     1. Ternary pseudorandom single excitation and acquisition coding scheme forcontinuous Vibroseis source is proposed which improve the correlation noise problemin the case of binary m-sequence coding scheme and enrich the single excitationcoding schemes for Vibroseis source.
     2. Brand new matched sweep method for Vibroseis source is proposed. After theprocesses of excitation, acquisition and decoding for the matched sweep sub-signalsmodulated from the matched pseudorandom sequences, the comprehensive decodedseismic profile is of extremely high resolution and signal to noise ratio.
     3. On the basis of the research on the existing parameter selecting problem forpulse-coded seismic source, matched sweep method for continuous Vibroseis sourceis extended to the signal design of pulse-coded seismic source, which has substantialtheoretical and realistic significance particularly for shallow high resolution seismicexploration which is appropriated for pulse-coded seismic source
引文
[1]阳正熙,高德政,严冰.矿产资源勘查学[M].北京:科学出版社,2011.
    [2]廖明光.油气地质与勘探概论[M].北京:石油工业出版社,2011.
    [3]特尔福德.应用地球物理[M].北京:科学出版社,2011.
    [4] Electromagnetic Methods in Applied Geophysics[M]. NABIGHIAN M N.8801SouthYale Suite500Tulsa OK74137USA: SEG,1991.
    [5]陆基孟,王永刚.地震勘探原理[M].山东:中国石油大学出版社,2011.
    [6] SHERIFF R E, GELDART L P. Exploration Seismology[M]. Cambridge: CambridgeUniversity Press,1995.
    [7] ASSAD J M. A Petroleum Geologist’s Guide to Seismic Reflection[J]. Geofluids,2012,12(2):197–198.
    [8]徐中信.爆炸激发地震波的理论计算[J].地球物理学报,1963,12(1):41–50.
    [9]谢毓寿,王耀文.工业爆破的地震效应[J].地球物理学报,地球物理学报,1962,11(2):154–163.
    [10] DOMENICO S N. GENERATION OF SEISMIC WAVES BY WEIGHT DROPS[J].GEOPHYSICS,1958,23(4):665–683.
    [11] NEITZEL E B. SEISMIC REFLECTION RECORDS OBTAINED BY DROPPING AWEIGHT[J]. GEOPHYSICS,1958,23(1):58–80.
    [12] PRAMIK B, BELL L. The synchronized electromagnetic impulsive source[J]. TheLeading Edge,2011,30(10):1150–1157.
    [13] SUNWALL D A, SPEECE M A, PEKAR S F. Advances in on-sea-ice seismicreflection methods using an air gun: McMurdo Sound, Antarctica[J]. GEOPHYSICS,2012,77(1): S19–S30.
    [14]林建民,王宝善,葛洪魁.大容量气枪震源特征及地震波传播的震相分析[J].地球物理学报,2008,51(1):206–212.
    [15] GILES B F. Some notes on air-gun development as a marine seismic source[J]. TheLeading Edge,2009,28(11):1334–1335.
    [16]赵明辉,丘学林,夏少红.大容量气枪震源及其波形特征[J].地球物理学报,2008,51(2):558–565.
    [17] LANDR M, AMUNDSEN L, BARKER D. High-frequency signals from air-gunarrays[J]. GEOPHYSICS,2011,76(4): Q19–Q27.
    [18] CALDWELL J. Does air-gun noise harm marine mammals?[J]. The Leading Edge,2002,21(1):75–78.
    [19] SALLAS J J, GIBSON J B, LIN F, et al. Broadband Vibroseis using simultaneouspseudorandom sweeps[C]//2008:100–104.
    [20] BROTZ R, MARSCHALL R, KNECHT M. SIGNAL ADJUSTMENT OFVIBROSEIS AND IMPULSIVE SOURCE DATA*[J]. Geophysical Prospecting,1987,35(7):739–766.
    [21] BECQUEY M, BIANCHI T, MEUNIER J. Pseudo-random coded simultaneousvibroseismics[C]//2002:77–80.
    [22] GOUPILLAUD P L. SIGNAL DESIGN IN THE “VIBROSEIS” TECHNIQUE[J].GEOPHYSICS,1976,41(6):1291–1304.
    [23] WOMACK J E, CRUZ J R, RIGDON H K, et al. Simultaneous vibroseis encodingtechniques[C]//SEG Technical Program Expanded Abstracts1988. Society ofExploration Geophysicists,1988:101–104.
    [24] BAGAINI C. Overview of simultaneous Vibroseis acquisition methods[C]//SEGTechnical Program Expanded Abstracts2006. Society of Exploration Geophysicists,2006:70–74.
    [25] EDELMANN H A K, WERNER H. The encoded sweep technique for Vibroseis[J].GEOPHYSICS,1982,47(5):809–818.
    [26] BROCHER T M, HART P E. Comparison of vibroseis and explosive source methodsfor deep crustal seismic reflection profiling in the Basin and Range Province[J].Journal of Geophysical Research,1991,96(B11):18197.
    [27] WEI Z, PHILLIPS T F. Break through the limits of vibroseis data quality[J].Geophysical Prospecting,2012,60(2):373–393.
    [28] CHAPMAN W L, BROWN G L, FAIR D W. The Vibroseis system: A high‐frequency tool[J]. GEOPHYSICS,1981,46(12):1657–1666.
    [29] BARBIER M G, BONDON P, MELLINGER R, et al. MINI-SOSIE FOR LANDSEISMOLOGY*[J]. Geophysical Prospecting,1976,24(3):518–527.
    [30] GREENHALGH S A, SUPRAJITNO M, KING D W. Shallow seismic reflectioninvestigations of coal in the Sydney Basin[J]. GEOPHYSICS,1986,51(7):1426–1437.
    [31] BARBIER M G, VIALLIX J R. SOSIE: A NEW TOOL FOR MARINESEISMOLOGY[J]. GEOPHYSICS,1973,38(4):673–683.
    [32] PARK C B, MILLER R D, STEEPLES D W, et al. Swept impact seismic technique(SIST)[J]. GEOPHYSICS,1996,61(6):1789–1803.
    [33] CRAWFORD J M, DOTY W E N, LEE M R. CONTINUOUS SIGNALSEISMOGRAPH[J]. GEOPHYSICS,1960,25(1):95–105.
    [34] VIROLAINEN T, ESKELINEN J, HAEGGSTROM E. Frequency domain low time-bandwidth product chirp synthesis for pulse compression side lobe reduction[C]//2009IEEE International Ultrasonics Symposium. IEEE,2009:1526–1528.
    [35] CAO S, ZHENG Y F, EWING R L. Scaling function waveform for effective side-lobesuppression in radar signal[C]//Proceedings of the2011IEEE National Aerospace andElectronics Conference (NAECON). IEEE,2011:231–236.
    [36] SHEN C-C, LIN C-H. Chirp-encoded excitation for dual-frequency ultrasound tissueharmonic imaging.[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequencycontrol,2012,59(11):2420–30.
    [37] BORSBOOM J M G, BOUAKAZ A, VERSLUIS M, et al. Harmonic chirp imagingmethod for ultrasound contrast agent[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2005,52(2):241–249.
    [38] AMEIN A S, SORAGHAN J J. Fractional Chirp Scaling Algorithm: MathematicalModel[J]. IEEE Transactions on Signal Processing,2007,55(8):4162–4172.
    [39] JOU C F. Method of Suppressing the Side Lobe of a Tapered Short Leaky WaveAntenna[J]. IEEE Antennas and Wireless Propagation Letters,2009,8:1146–1149.
    [40] TEWFIK A H, KIM M. Correlation structure of the discrete wavelet coefficients offractional Brownian motion[J]. IEEE Transactions on Information Theory,1992,38(2):904–909.
    [41] CUNNINGHAM A B. Some alternate vibrator signals[J]. GEOPHYSICS,1979,44(12):1901–1921.
    [42] MOERIG R, BARR F J, NYLAND D L. Simultaneous shooting using cascadedsweeps[C]//SEG Technical Program Expanded Abstracts2002. Society of ExplorationGeophysicists,2002:74–76.
    [43] HAMPSON G, STEFANI J, HERKENHOFF F. Acquisition using simultaneoussources[J]. The Leading Edge,2008,27(7):918–923.
    [44] ZABIHI NAEINI E, HOEBER H, POOLE G, et al. Simultaneous multivintage time-shift estimation[J]. GEOPHYSICS,2009,74(5): V109–V121.
    [45] THOMAS J W (Tom), CHANDLER B, OSTEN D. Galcode: Simultaneous SeismicSourcing[C]//SEG Technical Program Expanded Abstracts2010. Society ofExploration Geophysicists,2010:86–90.
    [46] SALLAS J, GIBSON J, MAXWELL P, et al. Pseudorandom sweeps for simultaneoussourcing and low-frequency generation[J]. The Leading Edge,2011,30(10):1162–1172.
    [47] ALLEN K P, JOHNSON M L, MAY J S. High Fidelity Vibratory Seismic (HFVS)method for acquiring seismic data[C]//SEG Technical Program Expanded Abstracts1998. Society of Exploration Geophysicists,1998:140–143.
    [48] KROHN C E, JOHNSON M L. HFVSTM: Enhanced data quality through technologyintegration[J]. GEOPHYSICS,2006,71(2): E13–E23.
    [49] DEAN T. Establishing the limits of vibrator performance-experiments withpseudorandom sweeps[C]//SEG Technical Program Expanded Abstracts2012. Societyof Exploration Geophysicists,2012:1–5.
    [50] RAS P, DALY M, BAETEN G. Harmonic distortion in slip sweep records[C]//SEGTechnical Program Expanded Abstracts1999. Society of Exploration Geophysicists,1999:609–612.
    [51] WEI Z, SALLAS J J, CROWELL J M, et al. Harmonic distortion reduction onvibrators—Suppressing the supply pressure ripples[C]//SEG Technical ProgramExpanded Abstracts2007. Society of Exploration Geophysicists,2007:51–55.
    [52] LI X, S LLNER W, HUBRAL P. Elimination of harmonic distortion in vibroseisdata[J]. GEOPHYSICS,1995,60(2):503–516.
    [53] WEI Z, PHILLIPS T F. Harmonic distortion reduction on seismic vibrators[J]. TheLeading Edge,2010,29(3):256–261.
    [54] WEI Z, PHILLIPS T F. On the generation of low frequencies with modern seismicvibrators[J]. GEOPHYSICS,2013,78(2): WA91–WA97.
    [55] WEI Z, PHILLIPS T F. Improving S/N ratio on Vibroseis source signature at lowfrequencies[C]//SEG Technical Program Expanded Abstracts2012. Society ofExploration Geophysicists,2012:1–5.
    [56] SCHRODT J K. Techniques for improving Vibroseis data[J]. GEOPHYSICS,1987,52(4):469–482.
    [57] WEI Z, HALL M A. Analyses of vibrator and geophone behaviors on hard and softground[C]//SEG Technical Program Expanded Abstracts2010. Society of ExplorationGeophysicists,2010:81–85.
    [58] LEBEDEV A V., BERESNEV I A. Nonlinear distortion of signals radiated byvibroseis sources[J]. GEOPHYSICS,2004,69(4):968–977.
    [59] MEUNIER J, BIANCHI T. Harmonic noise reduction opens the way for array sizereduction in vibroseisTMoperations[C]//SEG Technical Program Expanded Abstracts2002. Society of Exploration Geophysicists,2002:70–73.
    [60] YONGSHENG S, CHANGHUI W, MUGANG Z, et al. A method for harmonic noiseelimination in slip sweep data[C]//SEG Technical Program Expanded Abstracts2011.Society of Exploration Geophysicists,2011:1–5.
    [61] SICKING C, FLEURE T, NELAN S, et al. Slip sweep harmonic noise rejection oncorrelated shot data[C]//SEG Technical Program Expanded Abstracts2009. Society ofExploration Geophysicists,2009:36–40.
    [62] WUXIANG C. To attenuate harmonic distortion by the force signal ofvibrator[C]//SEG Technical Program Expanded Abstracts2010. Society ofExploration Geophysicists,2010:157–161.
    [63] BAOBIN W, HEQUN L, BO Z, et al. Cross-harmonic noise removal on slip-sweepvibroseis data[C]//SEG Technical Program Expanded Abstracts2012. Society ofExploration Geophysicists,2012:1–5.
    [64] LI X‐P., S LLLNER W, HUBRAL P. Elimination of harmonic distortion invibroseis data[C]//SEG Technical Program Expanded Abstracts1994. Society ofExploration Geophysicists,1994:886–889.
    [65] LINER C L. Elements of Seismic Dispersion: A Somewhat Practical Guide toFrequency-Dependent Phenomena[M]. Society of Exploration Geophysicists,2012.
    [66] E D, GUAN Y, ZHANG M. A new method for analyzing vibroseis harmonics basedon overloads statistics[C]//ZHENWU L, SUN Y. Beijing2009InternationalGeophysical Conference and Exposition, Beijing, China,24–27April2009. Society ofExploration Geophysicists,2009:15–15.
    [67] WEI Z, PHILLIPS T F. On the generation of low frequencies with modern seismicvibrators[J]. GEOPHYSICS,2013,78(2): WA91–WA97.
    [68] HALL K W, MARGRAVE G F, BERTRAM M B. Comparison of low‐frequencydata from co‐located receivers[C]//SEG Technical Program Expanded Abstracts2010. Society of Exploration Geophysicists,2010:147–151.
    [69] THOMAS J W (Tom), JURICK D M, OSTEN D. Vibroseis as an impulsive seismicsource-3D field testing Permian Basin Texas[C]//SEG Technical Program ExpandedAbstracts2012. Society of Exploration Geophysicists,2012:1–5.
    [70] YUDONG N, YUNSHAN L, JINGFU W, et al. Attempts of singular valuedecomposition in the separation of the simultaneous vibroseis sweep data[C]//SEGTechnical Program Expanded Abstracts2012. Society of Exploration Geophysicists,2012:1–5.
    [71] BAGAINI C. Enhancing the low‐frequency content of Vibroseis data[C]//SEGTechnical Program Expanded Abstracts2006. Society of Exploration Geophysicists,2006:75–79.
    [72] WEI Z, PHILLIPS T F. On the generation of low frequencies with modern seismicvibrators[J]. GEOPHYSICS,2013,78(2): WA91–WA97.
    [73] BAOBIN W, HEQUN L, BO Z, et al. Cross-harmonic noise removal on slip-sweepvibroseis data[C]//SEG Technical Program Expanded Abstracts2012. Society ofExploration Geophysicists,2012:1–5.
    [74] MAXWELL P, GIBSON J, EGRETEAU A, et al. Extending low frequency bandwidthusing pseudorandom sweeps[C]//SEG Technical Program Expanded Abstracts2010.Society of Exploration Geophysicists,2010:101–105.
    [75] BIANCHI T, MONK D, MEUNIER J. Efficient wave field sampling in vibroseisoperations[C]//2008:110–114.
    [76] SALLAS J J, GIBSON J B, LIN F, et al. Broadband Vibroseis using simultaneouspseudorandom sweeps[C]//2008:100–104.
    [77] MILLER R D, XIA J, RICE D, et al. Near‐surface utility of vibroseis[C]//SEGTechnical Program Expanded Abstracts2009. Society of Exploration Geophysicists,2009:1330–1334.
    [78] MARGRAVE G F, BERTRAM M B, BERTRAM K L, et al. A low-frequency seismicfield experiment[C]//SEG Technical Program Expanded Abstracts2012. Society ofExploration Geophysicists,2012:1–5.
    [79] WEI Z, PHILLIPS T F. Improving S/N ratio on Vibroseis source signature at lowfrequencies[C]//SEG Technical Program Expanded Abstracts2012. Society ofExploration Geophysicists,2012:1–5.
    [80] WEI Z, PHILLIPS T F. Extending the Vibroseis Bandwidth to LowFrequencies[C]//SEG Technical Program Expanded Abstracts2012. Society ofExploration Geophysicists,2012:1–4.
    [81]陶知非,苏振华,赵永林, et al.可控震源低频信号激发技术的最新进展[J].物探装备,2010,20(1):1–5.
    [82]陶知非,刘兴元,王志杰.可控震源低频能量激发在低频地震数据采集应用中的误区[J].物探装备,2012,22(4):211–217.
    [83] BENABENTOS M, ORTIGOSA F, MOLDOVEANU N, et al. Cascaded sweeps—Amethod to improve vibroseis acquisition efficiency: A field test[J]. The Leading Edge,2006,25(6):693–697.
    [84] KROHN C E, JOHNSON M L, NORRIS M W, et al. Vibroseis productivity: Shakeand go[C]//SEG Technical Program Expanded Abstracts2006. Society of ExplorationGeophysicists,2006:42–46.
    [85] BAGAINI C, DALY M, MOORE I. The acquisition and processing of dithered slip-sweep vibroseis data[J]. Geophysical Prospecting,2012,60(4):618–639.
    [86]李凤磊.可控震源滑动扫描谐波干扰压制方法研究[D].中国石油大学,2011.
    [87]俞寿朋.高分辨率地震勘探[M].北京:石油工业出版社,1994.
    [88]林君.电磁驱动可控震源地震勘探原理及应用[M].北京:科学出版社,2004.
    [89]王庆海,徐明才.抗干扰高分辨率浅层地震勘探[M].北京:地质出版社,1990.
    [90]徐义,张剑锋.地震波数值模拟的非规则网格PML吸收边界[J].地球物理学报,2008,51(5):1520–1526.
    [91]李静,曾昭发,吴丰收, et al.探地雷达三维高阶时域有限差分法模拟研究[J].地球物理学报,2010,53(4):974–981.
    [92]许洋铖,林君李,肃义.全波形时间域航空电磁响应三维有限差分数值计算[J].地球物理学报,2012,55(6):2105–2114.
    [93] COATES R T, SCHOENBERG M. Finite-difference modeling of faults andfractures[J]. Geophysics,1995,60:1514–1526.
    [94]王忠仁,樊丹丹,高健, et al.基于三元伪随机编码的可控震源信号设计方法[J].石油地球物理勘探,2009,44(5):534–536.
    [95]冯重熙,钱亚生,姚彦.现代数字通信技术[M].北京:人民邮电出版社,1987.
    [96]肖国镇,粱传甲,王玉民.伪随机序列及其应用[M].北京:国防工业出版社,1985.
    [97]万哲先.代数和编码[M].北京:科学出版社,1980.
    [98] P I V. Ternary sequences with ideal periodic autocorrelation properties[J]. Radio EngElect ron Phys,1979,24:75–79.
    [99]王忠仁,高健,耿亮.基于非周期伪随机序列的可控震源信号调制技术[J].吉林大学学报(地球科学版),2009,39(6):1146–1149.
    [100] HUFFMAN, CARY W, PLESS V. Fundamentals of Error-Correcting Codes[M].London: Cambridge University Press,2003.
    [101] POTT A, KUMAR P V, HELLESETH T. Difference Sets, Sequences and TheirCorrelation Properties[M]. Netherlands: Kluwer Academic Publishers,1999.
    [102]毛飞,蒋挺,赵成林, et al.伪随机二进序列偶研究[J].通信学报,2005,26(8):94–98.
    [103]靳慧龙.序列偶的设计理论研究[D].燕山大学,2012.
    [104]王扬志.零相关区序列与零相关区序列偶理论的研究[D].燕山大学,2010.
    [105] K NEKE S G, VAN BEEK J D, ERNST M, et al. Characteristics of zero-quantumcorrelation spectroscopy in MAS NMR experiments.[J]. Journal of magneticresonance (San Diego, Calif.:1997),2010,207(2):197–205.
    [106] XU L, LIANG Q. Optimized Punctured ZCZ Sequence-Pair Set: Design, Analysis,and Application to Radar System[J]. EURASIP Journal on Wireless Communicationsand Networking,2010,2010(1):254837.
    [107] KE P, ZHANG S, LIN F. Constructions of binary array set with zero-correlationzone[J]. Information Sciences,2012,197:197–206.
    [108]王忠仁,高健,林君.可控震源匹配扫描方法研究[J].地球物理学报,2010,53(11):2754–2759.
    [109]王忠仁,高健,孙锋.脉冲编码可控震源信号设计[J].地球物理学进展,2008,23(6):1931–1935.
    [110]高健,王忠仁,刘瑞, et al.脉冲编码震源的匹配冲击技术[J].地球物理学报,2012,55(4):1384–1389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700