混流式水轮机转轮叶片疲劳裂纹控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型水轮机组运行中转轮叶片出现的裂纹问题是水轮机设计和运行部门亟待解决的关键课题之一。工程上按水轮机运行状态将叶片上的疲劳裂纹分为两类:快速疲劳裂纹和损伤累积疲劳裂纹。由于转轮叶片工作载荷和几何构型的复杂性,还没有成熟的叶片疲劳裂纹控制方法。本文以预防和预测这两类裂纹为目标,提出了基于动载面力下复杂空间曲面结构的控制疲劳裂纹发生的系统方法,为工程应用提供理论基础。
     为了避免卡门涡等激振力频率与叶片固有频率接近发生共振产生快速疲劳裂纹,本文以相邻两流道中心面为周围水体边界,建立了叶片在水体中固有频率的计算模型,得出了水体对叶片固有频率的降低系数具有非线性且降低的幅度主要与叶片构型和振动模态有关的结论。应用捶击法对模型水轮机叶片的模态进行实验分析,验证了模型和方法的有效合理性,为转轮叶片在几何构型设计上控制快速疲劳裂纹的发生提供了技术支持。
     论文深入研究了水轮机组预期寿命内基于概率统计与模型的疲劳累积损伤裂纹的预防控制理论和方法。根据水轮机组运行工况复杂多变的特点,提出了叶片载荷谱的确定和处理、根据水力载荷计算应力-时间历程进行叶片薄弱环节的选择、基于von Mises屈服准则的叶片高周疲劳等效损伤参数、叶片材料的二维疲劳强度分布、采用二维统计参量的剩余强度和疲劳累积损伤的疲劳可靠性分析模型的方法,实现了叶片疲劳损伤裂纹的预防和预测计算。
     在上述理论研究的基础上,分析了水轮机叶片在非定常流场压力下应力历程数值计算方法以及编制应力载荷谱的方法流程。采用雨流计数法、最优化参数估计和权系数法获得了叶片在各典型工况下合成后的疲劳应力二维概率密度函数。针对计算模型的复杂性提出了采用Monte Carlo试验模拟方法求解的有效数学模型。
     最后以典型转轮叶片为例,详细分析转轮叶片的疲劳裂纹控制流程,通过理论计算分析和疲劳试验验证了将二维概率Miner准则和二维应力-强度干涉模型应用到混流式转轮叶片疲劳寿命预测上具有良好的效果。应用所研究的叶片疲劳裂纹控制理论与方法,开发了混流式转轮叶片疲劳裂纹控制系统软件平台。
The issue of runner blade cracking of large-sized hydropower units during the operation conditions has become one of significative tasks that should be urgently resolved for departments of design, research, manufacture and operation. Study on the cracks in the operating blade shows that there are two kinds of fatigue cracks: rapid resonance cracks and fatigue damage cracks. Due to the complexity of working loads and the geometry of runner blade, however, well accepted method is still not available to guide the cracks prevention and control design in the open area. This dissertation aimed on the prevention and control of two kinds of blade cracks so as to develop the cracks prevention and control method of complex curved surface under the dynamic pressure on the surface.
     In order to avoid the influence of abnormal vibration induced by Karman vortex on rapid cracks, the algorithmic equation of dynamic and fluid-structure interaction (FSI) vibration characteristic are set up in this paper, and the conclusions are that water influenced coefficients on the natural frequencies of blades are nonlinear reduced with the geometry and the mode of blades. Lastly, effectiveness of the proposed model and method was demonstrated using the experimental modal analysis on the model Francis blade by using hammer-hitting pulse excitation method and FFT analysis, which provided technology support for the geometry design of blade to prevent and control of rapid cracks.
     The control design method and theory is deeply researched in this paper to prevent the fatigue damage cracks in various operation conditions。According to the characteristic of the complex operation conditions of the hydropower units, five theories and methods are proposed in the fatigue reliability analysis of the blade under random stresses spectrum, the determination and processing to the pressure load spectrum, the transformation of the pressure load to the stress history to find the dangerous area on the blade, an effective damage parameter of the high cycle fatigue based on von Mises yielding criterion and the P-Sa-Sm-N fatigue surface of the blade material, the two fatigue reliability analysis model of the fatigue accumulated damage and residual strength for the 2-D statistical parameters of stress mean and amplitude. At last, the predictive and control design calculation is realized to prevent the happen of fatigue damage cracks.
     Based on above theories, the method of the unsteady stress of the blade in the unsteady incompressible turbulence flow calculated by numerical simulation is determined and the process of load spectrum compiling is analyzed. the distribution of dynamic stress and displacement in the blade are obtained. The fatigue stress has been counted and deals with in statistics methods, synthesized and extended with these theories and method, including the advanced rain flow counting method, optimal method of estimation to parameters in forecasting model, the weight coefficient method. And numerical simulation by Monte Carlo method is made to calculate the complex mathematic modal.
     At lastly, take some typical turbine blades as study cases, a theoretical framework for the evaluation and control of cracks is formed. It is proved that the 2-D probabilistic Miner's rule and 2-D stress-strength interference model are more reliable and effective to forecast the fatigue life by theoretical calculated and fatigue experiment. Based on the research results, a software system for hydraulic turbines blade‘s cracks control is developed.
引文
[1]陆燕荪.发电设备和输变电设备制造业“十一五”发展重点及2020年的展望.动力工程, 2003, 23(5):2615-2619.
    [2] Stuart Coulson etc. Model development for the Grand Coulee turbine Upgrade. IAHR symposium, 2000, A3:1-9.
    [3]中国长江三峡工程开发总公司.赴巴基斯坦塔贝拉水电站考察报告, 1995.
    [4]В.Г.西弗科夫,陈昌宏,邱莎莎.萨彦-苏申斯克水电站转轮叶片裂纹的修复.水利水电快报, 2005, 26(2):21-22.
    [5]孙鸿秉,唐培甲.岩滩水轮机转轮叶片裂纹原因探析.红水河, 1996, 15(3):32-37.
    [6]于纪幸,徐抱朴,孙殿湖等.大朝山水电站水轮机转轮制造和质量分析.大电机技术, 2004, 2:46~51.
    [7]胡宝玉,张利新,丁焱.小浪底转轮裂纹及处理措施.水电站机电技术, 2002, 25(4):43-46.
    [8] VOITH SIEMENS Hydro Power Generation. Failure analysis WUQIANGXI unit 1 runner Cracks, 2002, 4: 1-20.
    [9]李启章.三峡机组振动稳定性问题应以预防为主.水利水电技术, 1999, 30(11):15-17.
    [10]李启章.提高大型水电机组的运行稳定性.贵州水力发电, 2002, 16(3):62-64
    [11]石清华,尹国军.大朝山电站225MW水轮机转轮卡门涡共振分析.东方电气评论, 2005, 19(3):128-132.
    [12]李启章.大朝山电站转轮叶片的卡门涡共振.水电站机电技术, 2005, 28(4):76-79.
    [13]李启章.对大型机组振动、裂纹问题的探讨.水电站机电技术, 2003, 26(B12):17-19.
    [14]陶星明.大型水轮发电机组关键核心技术新发展.电力设备. 2006, 7(7):17-21.
    [15] Rocha, Gastao, Wernicke, Gunther. Hydraulic turbine noise induced by Karman vortices. IAHR symposium, l988: 279-293.
    [16] F. R. Schleif, G. E. Martin, R. R. Angell. Damping of system oscillations with a hydrogenerating unit. IEEE Transations on Power Apparatus and System, 1967, 86(4):438-442
    [17] D. D. Vergilа, et al. The influence of stator geometry for flow distribution around Romanian Kaplan runners. IAHR symposium, 2002, A18:1-6.
    [18] A. Gajic, Z. Predic, et al. Investigation of crack on the Kaplan turbine stray vanes. IAHR symposium, 1990 (A4):1-12.
    [19]С.В.Иванов.混流式水轮机转轮可靠性能论证.宫颖,译.国外大电机, 2002, 2: 76-78.
    [20] VOITH SIEMENS Hydro Power Generation. Report: XIAOLANGDI project studies and testing update, 2002, 1:1-25.
    [21]胡宝玉,张利新,丁焱.小浪底转轮裂纹及处理措施.水电站机电技术, 2002, 4:43-46.
    [22] Richard. K. FISHER等.小浪底水电站转轮产生裂纹的原因及解决措施—在水弹力共振方面的实例研究.国外大电机. 2003, 2:69-76.
    [23] Fisher. R. K. An overview of root causes and solutions to runner crack problems at the Xiaolangdi project. Shanghai: Shanghai Hydro-Power Equipment Company, 2001.
    [24] K. Richard, J. R. Fisher, et al. A case study in resonant hydroelastic vibration: The causes of runner cracks and the solution implemented for the XiaoLangDi hydroelectric project. IAHR symposium, 2002, A82:1-12.
    [25] VOITH SIEMENS Report: Hydro Power Generation. XLD runner crack investigation findings, 2002, 2:1-22.
    [26] VOITH SIEMENS Hydro Power Generation. Report: MainHuaTan failure analysis Unit 4 and 3. 2001, 10:1-23.
    [27] VOITH SIEMENS Hydro Power Generation. Report: MainHuaTan Finite-Element-analysis of existing runner. 2001, 2:1-17.
    [28] VOITH SIEMENS Hydro Power Generation. Report: MainHuaTan runner cracks investigation report. 2001, 3:1-19.
    [29]孙建平,杨为民,郑莉媛.天生桥一级水电厂机组稳定性分析.水力发电学报, 2008, 27(6):163-167.
    [30]于纪幸,徐抱朴,孙殿湖,等.大朝山水电站水轮机转轮制造和质量分析.大电机技术, 2004, 2:46-51.
    [31]郑冬飞,刘顺,吴义航.大朝山水电站水轮机转轮叶片裂纹及处理.水电站机电技术2005, 28(4):83-85.
    [32]陈杰.二滩水电站转轮裂纹原因浅析和处理对策.水电站机电技术. 2005, 28(1):7-8.
    [33]孙鸿秉,唐培甲.岩滩水轮机转轮叶片裂纹原因探析.红水河, 1996, 15(3):32-37.
    [34]李璞.天生桥一级水电站水轮机转轮叶片裂纹处理.红水河, 2004, 23(2):27-31.
    [35]张兴栋,黄少洪.天生桥一级水电站水轮机转轮裂纹原因分析.水电自动化与大坝监测, 2004, 28(3):19-21.
    [36]钱勤,陈喜阳,刘伦洪,等.李家峡1号机组转轮叶片动应力试验及机理分析.水力发电学报, 2006, 25(4):131-134.
    [37]褚云峰.水轮机转轮开裂事故原因分析和经验教训电气技术2008, 3:73-74.
    [38]沈炜良,毛汉领,等.转轮裂纹原因试验研究.广西大学学报:自然科学版, 1999, 12:265-267.
    [39]李成家,张双平,等.水轮机转轮裂纹的检测分析与研究.西北电力技术, 2001, 6:21-24.
    [40]赵奇,李二伟,薛世钦.进口水轮机转轮叶片的裂纹分析及处理.检验检疫科学, 2003, 13(4):4-6.
    [41]黄振峰,沈炜良,温洁明.岩滩水电厂水轮机转轮动应力测试.广西大学学报(自然科学版), 1999, 24:43-45.
    [42]高秀玲,李雅范.水轮机叶片断裂分析.物理测试, 2003, 1:37-38.
    [43]曹剑绵,陈昌林.大型水轮机转轮异常振动及叶片裂纹分析.西南交通大学学报, 2002,37(B11):68-72.
    [44]罗伟文,郑时雄,等.大型混流式水轮机转轮叶片裂纹及其成因分析.机械工程师, 2006, 8:98-100.
    [45]林太举.水轮机转轮叶片振动问题(I).湖北水力发电, 1996, 1(20):27-30.
    [46]陈凯,陆军,何万成.红石电站水轮机转轮叶片裂纹的分析及处理.水力发电, 2003, 29(1):54-56.
    [47]黄文,吴彤峰.水轮机转轮叶片的应力分布及其裂纹成因.实用测试技术, 1999, 5:33-34.
    [48]尹述鸿.大朝山#1水轮机转轮裂纹原因分析及处理.水力水电技术, 2002, 33(12):39-40.
    [49]余圣甫,李志远,杨其良,等.水轮机叶片焊缝及其热影响区裂纹分析.物理测试, 2001, 1:27-30.
    [50]霍立兴,王东坡,王文先.提高焊接接头疲劳性能的研究进展和最新技术.焊接学报, 2001, 22(1):37-40.
    [51]陈兆斌,过淳,邓爱国,等.异种钢转轮焊接应力分布规律及形貌研究.大电机技术, 1999(6):49-57.
    [52]王远江.岩滩与李家峡水电站水轮机转轮裂纹的原因和处理.水力发电, 1999, 5:43-45.
    [53]王泉龙.浅谈水轮机振动的研究.大电机技术, 2001, 7:12-14.
    [54]王者昌,陈怀宁.水轮机叶片裂纹的产生及对策.大电机技术, 2003, 6:51-57.
    [55]薛伟,陈昭运.水轮机叶片裂纹原因及预防措施研究.大电机技术, 2002, 2:42-45.
    [56]王珂崙编.水力机组振动.北京:水利电力出版社, 1986.
    [57] Thierry, Jacob等.混流式水轮机脉动的探讨和数据处理. 18th IAHR Symposium, 1996.
    [58]吕桂萍.水轮发电机组大部件刚强度及动态特性研究[博士学位论文].沈阳:沈阳工业大学, 2004.
    [59] V. Ramamurti, S. Sreenivasamurthy. Dynamic stress analysis of rotating twisted and tapered blades. J. Strain Ana1, 1980:117-126.
    [60] V. Gnesin, R. Rzadkowski. A coupled fluid structure analysis for 3-d inviscid flutter of IV standard configuration. Journal of Sound and Vibration, 2005, 49: 349-369.
    [61] Volker Carstens, Ralf Kemme, Stefan Schmitt b. Coupled simulation of flow-structure interaction in turbomachinery. Aerospace Science and Technology, 2003, 7: 298-306.
    [62] Matthias Heil. An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems. Computer Methods In Applied Mechanics And Engineering, 2003, (1): 103-116.
    [63] C. Micheler. A monolithic approach to fluid-structure interaction. Computers & Fluids, 2004, 33: 839-848.
    [64]肖若富,韦彩新,韩风琴,等混流式水轮机转轮的动力学研究.大电机技术, 2001, 7: 41-43.
    [65]肖若富,陈秋等.液固耦合对水轮机固定导叶振频振型的影响.华中科技大学学报, 2001, 29(4):85-87.
    [66]王正伟,周凌九.水力机械转轮内部三维液-固耦合振动的变分原理及有限元方程.水动力学研究与进展: A辑, 1996, 11(l): 24-34.
    [67]瞿伦富,王正伟,周凌九.轴流转浆机组浆叶液固耦合振动特性仿真计算.清华大学学报, 1998, 38(1):15-18.
    [68]梁权伟,王正伟,方源.考虑流固耦合的混流式水轮机转轮模态分析.水力发电学报, 2004, 23(3):116-120.
    [69]谷朝红,姚熊亮,陈起富.水轮机部件流固耦合振动特性研究.大电机技术, 2001, 6:47-52.
    [70]于建华,魏泳涛,曹剑绵.水轮机组结构-液体系统的动态特性分析,西南交通大学学报, 2001, 36(3):258-263.
    [71]李舜酩,许庆余,程德林.水轮机转轮结构液固耦合振动的广义组合模态综合法.农业机械学报, 1997, 28 (l):47-52.
    [72] Tanaka S,Akita S. On the Miner's damage hypothesis in notched specimen with emphasis on scatter of fatigue life. Engineering Fracture Mechanics, 1975, 7: 473-480.
    [73] S. Suresh.材料的疲劳.王中光等,译.北京:国防工业出版社, 1999.
    [74]郦明.结构抗疲劳设计.北京:机械工业出版社, 1987.
    [75] W. Z. Gerber. Calculation of the allowable stresses in iron structures. Z. Bayer Archit Ing Ver, 1974, 6(6): 101-110.
    [76] J. Goodman. Mechanics applied to engineering. London: Longmans Green and Co., 1899.
    [77] O. H. Basquin. The exponential law of endurance tests. // Proceedings of ASTM, New York: ASME, 1910, 10:625-630.
    [78] J. Bauschinger. Changes of the elastic limit and the modulus of elasticity on various metals. Civil Engineer, 1881, 27:289-348.
    [79] J.A. Ewing, J. C. Humfrey. The fracture of metal under rapid alterations of stress. Philosophical Transactions of the Royal Society, London, 1903, A200: 241-250.
    [80] L. Bairstow. The elastic limits of iron and steal under cyclic variations of stress. Philosophical Transaction of the Royal Society. London, 1910, A210:33-35
    [81] B. P. Haigh. Report on alternating stress tests of a sample of mild steel received from the British Association Stress Committee. Report of the British Association, 1915, 85: 163-170.
    [82] B.P. Haigh. Experiment on the fatigue of brasses. Journal of the Institute of Metal, 1917, 18:55-77.
    [83] H. Neuber. Theory of notch stresses. New York: McGraw-Hill, 1937.
    [84] A. A. Griffith. The phenomenon of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, 1921, 221:163-198.
    [85] A. Palmgren. Ball and roller bearing engineering. 3rd ed. Philadelphia: SKF Ind, 1959.
    [86] M. A. Miner. Cumulative damage in fatigue. Journal of Applied Mechanics, 1945, 12: 3-159.
    [87] J. W. Fisher.钢桥的疲劳与断裂北京:中国铁道出版社, 1989.
    [88] S. S. Manson. Behavior of materials under conditions of thermal stress. Heat Transfer Symposium. Michigan: University of Michigan Engineering Research Institute, 1953:9-25.
    [89] L. F. Coffin. A study of the effects of cyclic thermal stresses on a ductile metal. Transactions of the American Society of Mechanical Engineers, 1954, 76: 931-950.
    [90] J. D. Morrow. Cyclic plastic strain energy and the fatigue of metals. Internal Friction, damping and cyclic plasticity. ASTM STP 378, 1965.
    [91] H. Neuber. Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain laws. Journal of Applied Mechanics, 1961, E28: 544-550.
    [92] P. C. Paris, M. P. Gomez, W. E. Anderson. A rational analytic theory of fatigue. The Trend in Engineering, 1961, 13: 9-14.
    [93] B. Lindner. MS thesis in civil engineering. Lehigh Univeristy, 1965.
    [94] W. Elber. Fatigue crack closure under cyclic tension. Engineering Fracture of Mechanics, 1970, 2:37-45.
    [95] W. Weibull. A statistical representation of fatigue failure in solids. Acta Polystech, Mechanical Engineering Series, 1949, 1(9):1-50.
    [96]赵永翔,高庆,蔡力勋.管道结构焊接头240℃低周疲劳试验裂纹萌生寿命的统计分布.核动力工程, 1999, 20(1):42-48.
    [97] E. B. Haugen.机械概率设计.汪一麟,译.北京:机械工业出版社, 1985.
    [98] E. B. Haugen, P. H. Wirsehing. Probabilistic fatigue design alternative to miner’acumulative damage rule. Proc. R & M Symp, 1973.
    [99] D. Kececioglu. Probabilistic design for reliability and their data and research requirements. Proc Failure Prevention and Reliability, ASME, 1978: 285-309.
    [100] D. Kececioglu, L. B. Chester, E. O. Gardner. Sequential cumulative fatigue reliability. Annual Reliability and Maintainability Symposium, 1974:533-539.
    [101] D. Kececioglu. Fatigue prevention and reliability. // Processing of ASME. New York: ASME, 1978:285-309.
    [102] D. Kececioglu. Reliability analysis of mechanical components and systems. Nuclear Engineering and Design, 1979, 19:259-290.
    [103] A. D. S. Carter. Mechanical Reliability and design, 2nd Ed. New York: Macmillan Pr. Ltd, 1997.
    [104] P. H. Wirsching. Probability-based fatigue design criteria for offshore Structures. Final Report, API, PRAC Project, 1983:81-115.
    [105] P. H. Bognanoffx, F. Kozin. On nonstationary cumulative damage model. J. Appl. Mech. 1982, 49(1):37-42
    [106] A. Tsurui, H. Ishikawa. Application of the Fokker-Planck equation to a stochastic fatigue crack growth model. Structure Safety, 1986, 4(1):15-20.
    [107] K. Golos, F. Ellyin. Generalization of cumulative damage criterion to multilevel cyclic loading. Theor. Appl. Frac. Mech. 1987, 7:169-176.
    [108] J. D. Baldwin, J. G. Thacker. A strain based fatigue reliability analysis method. J. Mech. Des., Trans. ASME, 1995, 117(2):229-234.
    [109] P. H. Wirsching, T. Y. Torng, W. S. Martin. Advanced fatigue reliability analysis. International Journal of Fatigue, 1991, 13(5):389-394.
    [110] H. Bargmann, I. Rustenberg, J. Devlukia. Reliability of metal components in fatigue: a simple algorithm for the exact solution. Fatigue Fract. Eng. Mater. Struct., 1994, 17(12):1445-1457.
    [111]高镇同,熊峻江.疲劳/断裂可靠性研究现状与展望.机械强度, 1995, 17(3):61-80.
    [112]高镇同,熊峻江.疲劳可靠性.北京:航空航天大学出版社, 2000.
    [113]高镇同,熊峻江.疲劳学的研究进展.北京航空航天大学学报, 1996, 22(3): 245-248.
    [114]熊峻江,高镇同.实测载荷谱数据处理系统.北京航空航天大学学报, 1996, 22(4): 438-441.
    [115]高镇同,蒋新桐,熊峻江.疲劳性能试验设计和数据处理.北京:北京航空航天大学出版社, 1999.
    [116]熊峻江,武哲,高镇同.不完全疲劳寿命数据可靠性分析的秩统计方法及其应用.航空学报, 1998, 19(2): 216-219.
    [117]熊峻江,高镇同.极大似然法测定P-S-N曲线的置信度.北京航空航天大学学报, 1996, 22(6):687-691.
    [118]熊峻江,黄新宇,高镇同,等.极大似然法对比试验研究及其试验数据处理.航空学报, 1996, 17(5):539-542.
    [119]徐人平,傅惠民,高镇同,等.可靠度置信限曲线等同性原理及其参数估计.工程数学学报, 1996, 13(1):23-29.
    [120]傅惠民,高镇同.二维疲劳强度分布函数.航空学报, 1988, 9(S1): 72-77.
    [121]高镇同,阎楚良.结构全寿命主动可靠性设计与失效智能在线预示.中国机械工程, 2000, 11(2):53~56.
    [122]徐灏.机械强度的可靠性设计.北京:机械工业出版社, 1984.
    [123]徐灏.概率疲劳.沈阳:东北大学出版社, 1994.
    [124]凌静,高镇同.二维应力—强度干涉模型.机械强度, 1989, 11(4):12-15.
    [125]罗毅.疲劳寿命可靠性分析模型.机械强度, 1994, 16(3):64-66.
    [126]吕海波,姚卫星.元件疲劳可靠性估算的剩余强度模型.航空学报, 2000, 21(1):74-77.
    [127]郭盛杰,姚卫星.结构元件疲劳可靠性估算的剩余寿命模型.南京航空航天大学学报, 2003, 35(1):25-29.
    [128]倪侃,高镇同.疲劳可靠性二维概率MINER准则.固体力学学报, 1996, 17(4):365-371.
    [129]倪侃.随机变幅加载下疲劳强度可靠性分析.上海交通大学学报, 1996, 30(2): 23-29.
    [130]倪侃,张圣坤.二维概率MINER准则的试验数据验证.机械强度, 1997, 19(3): 52-56.
    [131] K. Ni, Z. T. Gao. Constant amplitude fatigue strength and P-Sa-Sm-N surface family. Chinese Journal of Aeronautic. 1996, 9(l):28-29.
    [132]倪侃.二维统计Miner准则及其应用.机械科学与技术, 2001, 20(5):641-642.
    [133]谢里阳,林文强.线性累积损伤的概率准则.机械强度, 1993, 15(3):41-44.
    [134]赵维涛,安伟光,吴香国.杆系结构静强度和疲劳失效机理及可靠性分析.力学学报, 2005, 37(5):662-666.
    [135]董聪,何庆芝.自洽型随机疲劳累积损伤可靠性分析模型.机械强度, 1995, 17(1):6-8.
    [136]尚德广,王德俊.多轴疲劳强度.北京:科学出版社, 2007.
    [137]方华灿,贾星兰,段梦兰.冰区海洋平台构件的模糊疲劳可靠性分析.石油大学学报, 2003, 27(4):94-97.
    [138]袁修开,吕震宙.可靠性敏度分析方法及其在非线性蠕变疲劳失效模型中的应用.计算力学学报, 2007, 1(24):69-73.
    [139]王平,胡毓仁,陈伯真.结构系统疲劳可靠性分析的一阶和二阶混合方法.中国造船, 1999, 4(147):51-58.
    [140]徐人平,段小建,傅惠民.应变疲劳强度概率分布.应用力学学报. 1996, 13(4):95-101.
    [141]吕文林,张宝珍.轮盘低周疲劳寿命的可靠性研究.航空动力学报, 1995, 10(2):187-189.
    [142]赵永翔,杨冰,张卫华.应变疲劳可靠性理论与方法的新进展.机械强度, 2005, 27(5):604-611.
    [143]程渭敏,吴新润,徐南根.哈尔滨电机厂大型水轮机技术发展的现状和探讨.动力工程, 1993, 13(1):33-39.
    [144]李成家.安康电厂水轮发电机组运行稳定性分析及改进措施研究[硕士学位论文].西安:西安理工大学, 2002.
    [145]祝晓燕,王彦惠.汽轮机叶片疲劳寿命与故障诊断研究的发展及现状.电力情报, 2000(2):12-15.
    [146]谢亚琴.双击式水轮机转轮强度计算探讨.水利电力机械, 1994(5):11-15.
    [147]朱宝田,刘东远.计算汽轮机叶片低周和高周疲劳寿命的改进的局部应力应变方法第一部分模型与方法.热力发电, 1997(4):9-15.
    [148]朱宝田,刘东远.计算汽轮机叶片低周和高周疲劳寿命的改进的局部应力应变方法第二部分计算和分析.热力发电, 1997(5):3-9.
    [149]姬晋延,罗兴琦.轴流式水轮机转轮叶片刚强度计算分析.水电能源科学, 2005, 23(1): 34-36.
    [150]杨建.叶片可靠性预测的非线性振荡低网格边界元法.热能动力工程, 2004, 19(2): 175-178.
    [151]段巍,安利强,徐飞.基于随机有限元—一次二阶矩法的汽轮机叶片可靠度计算.华北电力大学学报, 2004, 31(3):104-107.
    [152]江龙平,徐可君,隋育松.叶片振动的灰色可靠性研究.气轮机技术, 2002, 44(5): 286-287.
    [153]陈晓伟等.压气机叶片的静强度模糊可靠性分析.车用发动机, 2000, 3:9-12.
    [154] M. Farhat, P. Y. Lowys. Onboard measurements of pressure and strain fluctuations in a model of low head Francis turbine. Part1: Instrumentation. // Proceedings of the 21th IAHR Symposium on the Hydraulic Machinery and Systems. Lausanne: EPFL, 2002:865-872.
    [155] P. Y. Lowys, M. FARHAT. Onboard measurements of pressure and strain fluctuations in a model of low head Francis turbine. Part2: measurements and preliminary analysis results. // Proceedings of the 21th IAHR Symposium on the Hydraulic Machinery and Systems. Lausanne: EPFL, 2002:873-880.
    [156]黄源芳.三峡左岸水轮机总体设计及合同实践.中国三峡建设, 2003 , 7:24-28.
    [157]黄源芳,刘光宁,樊世英.原型水轮机运行研究.北京:中国电力出版社, 2010.
    [158]陶星明,刘光宁.高比速混流式水轮机的水力稳定性问题.大电机技术, 2003, 4:46-49.
    [159] F. R. Schleif, G. E. Martin, R. R. Angell. Damping of system oscillations with a hydrogenerating unit. IEEE Transations on Power Apparatus and System, 1967, 86(4):438-442
    [160]姜仲卫.锤击法在水轮机转轮动态特性研究中的应用.动力工程. 1984(3):33-41.
    [161] Q. Zhang, T. Hisada. Studies of the strong coupling and weak coupling methods in FSI analysis.Int J of Numer Meth Engng. 2004, 60(12):2013-2029.
    [162]何世江,杜建镔.水轮机转轮叶片系统动力分析(1)-力学模型与方程列式.清华大学学报:自然科学版, 1998, 38(8): 68-71.
    [163]杜建镔,何世江.水轮机转轮叶片系统动力分析(2)-实例分析.清华大学学报:自然科学版, 1998, 38(8): 72-75.
    [164] Matej Vesenjak, Zoran Ren. Weakly coupled analysis of a blade in multiphase mixing vessel. // Proc Appl Math Mech. Weinheim: PAMM, 2004, 4(1): 378-379.
    [165] C. Y. Lepage, W. G. Habashi. Fluid-structure interactions using the ALE formulation. // 37nd AIAA Aerospace Sciences Meeting and Exhibit. AIAA paper 99-0660. Nevada: Reno, 1999.
    [166] K. Ramakrishnan, P. B. Lawless, S. Fleeter. Finite element simulation of turbomachine blade row viscous interactions-vane vibratory stress predictions. // 42nd AIAA Aerospace Sciences Meeting and Exhibit. AIAA paper 2004-0193. Nevada: Reno, 2004.
    [167] R. W. Anderson, R. B. Pember, N. S. Elliott. An arbitrary Lagrangian-Eulerian method with local structured adaptive mesh refinement for modeling shock hydrodynamics. // 40nd AIAA Aerospace Sciences Meeting and Exhibit. AIAA paper 2002-738. Nevada: Reno, 2002.
    [168] D. A. Gottfried, S. Fleeter. Prediction aerodynamics by an arbitrary Lagrangian-Eulerian finite element method. // 34th AIAA Aerospace Sciences Meeting and Exhibit. AIAA paper 98-3746. Ohio: Cleveland, 1998.
    [169]岳宝增,李笑天. ALE有限元方法研究及应用.力学与实践, 2002, 24(2):7-10.
    [170] YUE Baozen, LI Xiaotian. Study of the ALE finite ele-ment method and its applications (in Chinese). Mechanics in Engineering, 2002, 24(2):7-10.
    [171]王勖成.有限单元法.北京:清华大学出版社, 2003.
    [172]陆鑫森.高等结构动力学.上海:上海交通大学出版社, 1992.
    [173]庄表中,刘明杰.工程振动力学.高等教育出版社, 1986.
    [174]曾攀.有限元方法.北京:清华大学出版社,2004.
    [175]居荣初,曾心传.弹性结构与液体的耦联振动理论.北京:地震出版社, 1983.
    [176] E. L. Kinsler. Fundamentals of acoustics. New York: John Wiley and Sons, 1982.
    [177]梁玲,赵春章. Pro/ENGINEER Wildfire 4.0实用教程.北京:清华大学出版社, 2008.
    [178] Peter Kohnke. ANSYS theory manual. Canonsburg: ANSYS Inc, 2004.
    [179]张朝晖,李树奎. ANSYS 11.0有限元分析理论与工程应用.北京:电子工业出版社, 2008.
    [180]刘德民,刘小兵,李娟.基于流固耦合的水轮机振动分析.流体传动与控制, 2008, 26(1):21-25.
    [181] H. S. Lim, H. H. Yoo. Model analysis of cantilever plates undergoing accelerated in-plane motion. Journal of Sound and Vibration, 2006, 297:880-894.
    [182]王少波,刘元杰,梁醒培.大型混流式水轮机转轮叶片结构动力特性分析.机械强度, 2004, 26(1):38-41.
    [183] J. Thomas, B. A. H. Abbas. Finite element model for dynamic analysis of Timoshenko beam. Journal of Sound Vibration. 1975, 41(3): 291-299.
    [184] M. M. Bhat, V. Ramamurti, C. Sujatha. Studies of the deter-mination of natural frequency of industrial turbine blades. Journal of Sound and Vibration, 1996, 196 (5):681-703.
    [185] R. B. Bhat. Joint research effort on vibrations of twisted plates. NASA Reference publication, 1985.
    [186] A. W. Leissa, J. K. Lee, A. J. Wang. Rotating blade vibration analysis using shel1s. Journal of Engineering for Power, 1982, 104(5): 621-625.
    [187]廖伟丽,梁武科,逯鹏,徐斌,等.混流式水轮机转轮自振特性研究.水力发电学报, 2008, 27(2):130-134.
    [188]张锦,王文亮,陈向均等.环向圈连带冠叶片的动态分析.航空学报, 1991, 12(9): 474-480.
    [189] Brownk. Finite element engine blade structural optimization. AIAA Paper, 1985.
    [190] G. Valeri, G. Olga, A. Ilia, et al. Simulation of vibration stresses in turbine blades. AIAA Paper, 2003.
    [191]张学荣.叶片在水体下的模态分析.排灌机械, 2002, 20(5): 10-12.
    [192]梁权伟,王正伟.混流式转轮静强度和振动特性分析.清华大学学报:自然科学版, 2003, 43(12):1649-1652.
    [193]瞿伦富,王正伟,周凌九.轴流转桨机组桨叶液固耦合振动特性仿真计算.清华大学学报:自然科学版, 1998, 38(1):15-18.
    [194] E. A. Davis and F. M. Connelly. Stress distribution and plastic deformation in rotating cylinders of strain-hardening material. Journal of Applied Mechanics, 1959, 18: 25-30.
    [195] S. S. Manson and G. R. Halford. Discussion to the paper“Multiaxial low cycle fatigue of type 304 stainless steel”by J. J. Blass and S. Y. Zamrik. Journal of Engineering Materials and Technology, 1977, 99(3): 283-285.
    [196] M. J. Manjoine and R. E. Tome. Proposed design criteria for high-cycle fatigue of Austenitic stainless steel. Advances in Life Prediction Methods, 1983: 51-57.
    [197] Alan R Kallmeyer, Ahmo Krgo, Peter Kurath. Evaluation of multiaxial fatigue life prediction methodologies for Ti-6Al-4V. J Eng Mater Technol, 2002, 124:229-237.
    [198] J. E. Shigley, C. R.Mischke. Mechanical engineering design. New York: McGraw-Hill, 1989.
    [199] J. A. Bannantine, D. F. Socie. A multiaxial fatigue life estimation technique. // Mitchell M R, Landgraf R W, et al. The ASTM Symposium on Advances in Fatigue Lifetime Predictive Techniques. California: ASTM, 1992:249-275.
    [200] G. Sines, G. Ohgi. Fatigue criteria under combined stresses or strains. J of Eng Mater Technol, 1981, 103:82–90.
    [201]马贵兴,尹继红,刘秀杰.大型水轮机用ZG0Cr16Ni5Mo不锈钢的性能研究.大电机技术, 1997, (3):33-40
    [202]陈继志,王嘉敏等. 0Cr16Ni5Mo不锈钢疲劳性能研究.材料开发与应用, 2002, 17(3):6-10.
    [203]杜兵,周宝金,张慧文等. ZG0Cr13Ni5Mo钢及其焊缝金属水下疲劳断裂特性的研究.大电机技术, 2001, (3):56-60.
    [204]侯世璞.叶片材料疲劳性能和断裂行为研究.黑龙江科技信息, 2007, 6:3-4.
    [205]黄雨华,米毓德.水轮机转轮用钢疲劳性能的研究.大电机技术, 1985, 6:50-56
    [206] W. Weibull. Fatigue testing and analysis of results. London: Pergamon Press, 1961.
    [207] W. Weibull. A Statistical function of the wide applicability. J Appl Mech, 1951, 18:293-300.
    [208] ZHAO Zheng-wei, Achintya H. Fatigue-reliability evaluation of steel bridges. J. Struct. Engrg., 1994, 120(15): 1608-1623.
    [209] P. H. Wirsching, T. Y. Torng and W. S. Martin. Advanced fatigue reliability analysis. Int. J. Fatigue, 1991, 13: 389-394.
    [210] P. H. Wirsching and Y. N. Chen. Considerations of probability-based fatigue design for marine structure. Marine Structures 1, 1988, 1:23-45.
    [211]赵少汴,王保忠.抗疲劳设计-方法与数据.北京:机械工业出版社, 1997.
    [212]赵少汴.抗疲劳设计.北京:机械工业出版社, 1994.
    [213]倪侃,高镇同.二维等幅加载下疲劳可靠性分析.强度与环境, 1996, 4:8-15.
    [214]凌静,高镇同.二维应力-强度干涉模型.机械强度, 1989, 11(4):12-16.
    [215]谢里阳,林文强.线性累计损伤的概率准则.机械强度,1993, 15(3): 41-44.
    [216] A. D. S. Carter. Mechanical reliability, 2nd Ed. London: Macmillan Education, 1986:102-103
    [217] Z. T. Gao, B. J. Fei, H. M. Fu, et al. Two dimensional stress-strength interference models for reliability-based design. Kyoto: Coherence proceedings of ICM-6, 1991.
    [218]熊峻江,黄新宇,高镇同等.稳态循环载荷下结构疲劳可靠性分析技术.强度与环境, 1996, 4:16-20.
    [219]吕海波,姚卫星.元件疲劳可靠性估算的剩余强度模型.航空学报, 2000, 21(1): 74-77.
    [220]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子运输问题中的应用.北京:科学出版社, 1980.
    [221]徐钟济.蒙特卡罗方法.上海:科学技术出版社, 1985.
    [222]赵国藩,金伟良,贡金鑫.结构可靠性理论.北京:中国建筑工业出版社, 2000.
    [223]高惠璇.统计计算.北京:北京大学出版社, 1995.
    [224]王福军.计算流体动力学分析一CFD软件原理与应用.北京:清华大学出版社,2004.
    [225]周凌九,王正伟.混流式水轮机部分负荷下的叶片动载荷模拟.清华大学学报:自然科学版, 2005, 45(8):1134-1137.
    [226]杨魏,刘树红,吴玉林.对旋轴流水轮机的非定常数值模拟研究.工程热物理学报. 2008, 29(1): 74-76.
    [227]刘树红,杨魏,吴玉林等.贯流式水轮机三维定常湍流计算及改型设计.水力发电学报, 2007, 26(1): 110-114.
    [228] Matthias Heil. An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 2004, 193:1-23.
    [229]曹良,刘云.混流式水轮机整体结构有限元分析.水科学与工程技术, 2007(3):27-30.
    [230]罗永要,王正伟,梁权伟.混流式水轮机转轮动载荷作用下的应力特征.清华大学学报:自然科学版, 2005, 45(2):235-237.
    [231]徐斌,廖伟丽.混流式水轮机转轮的刚强度分析.水电能源科学, 2006, 24(2):8-12.
    [232] J. B. Chang, M. Szamossi. Random spectrum fatigue crack life predictions with or without considering load interactions. // Chang J B, Hudson C M, eds. Methods and Models for Predicting Fatigue Crack Growth Under Randomloading-SPT748. California: ASTM, 1981:115-132.
    [233] G. Glinka, J. C. P. Kam. Rain-flow counting algorithm for very long stress histories. Int J Fatigue, 1987, 9(44):223-228.
    [234] S. D. Downing, D. F. Socie. Simple rain-flow counting algorithms. Int J Fatigue, 1982, 4(1):31-40.
    [235] J. Cacko. Simultaneous computer simulation of operational random proeesses and continual rain-flow counting. Int J Fatigue, 1992, 14(3):183-188.
    [236]高镇同.二维随机疲劳载荷的统计处理及应用.北京航空学院学报, 1986(4):75-80.
    [237]罗中华.最优化方法及其在机械行业中的应用.北京:电子工业出版社, 2008.
    [238]孙光瑜,徐成贤,朱德通.最优化方法.北京:高等教育出版社, 2004.
    [239]凌静,高镇同.多工况机械结构疲劳载荷的统计处理.机械强度, 1992, 14(2):34-38.
    [240]张志涌.精通MATLAB 6.5版.北京:北京航天航空大学出版社, 2003:531-580.
    [241]程永全.电液伺服动态试验技术与电液伺服动态试验机.新三思通讯,2006,33.
    [242]李承军.抽水蓄能机组压力脉动的测试与分析.水力发电, 2001(5): 53-56.
    [243]张伟,吴玉林,陈乃祥等.蓄能机组压力脉动测试研究.水力发电学报, 2001(7): 72-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700