用户名: 密码: 验证码:
极端气候下沥青路面破坏机理与修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变暖的大背景导致各类极端天气气候事件频发。极端气候事件直接导致路面结构的损坏和病害的大幅增加,降低路面的使用性能和服务寿命,经济效益和社会效益损失严重。本文分别以南方地区极端低温(含冻雨、冰灾)气候、北方地区极端高温和夏季洪水气候为研究背景,以高速公路沥青路面为研究对象,综合现场调研、室内试验、数值模拟和理论分析方法,系统研究了各极端气候条件下高等级公路沥青路面破坏机理与修复技术。
     论文取得的主要成果如下:
     (1)针对作用于公路工程的特定环境,给出了三种极端天气气候事件(南方地区极端低温(含冻雨、冰灾)、北方地区极端高温和夏季洪水)的定义与作用范围,获得了各极端气候与常态气候的差异及其对沥青路面结构和交通运输产生的典型破坏类型和表现特征。
     (2)通过现场调研、室内试验和数值模拟,阐明了极端低温气候作用后南方地区沥青路面典型病害和产生原因,获得了AH-70、SBS和CMA沥青混合料不同冻融循环条件下的空隙率、低温弯曲应变、弯曲劲度模量和水稳定性,得出了各材料低温抗裂性能和冻融稳定性的衰减规律,建立了路面结构内区域性积水的冻胀模型,得到了冰冻作用下沥青路面局部积水结冰膨胀力学响应特征。
     (3)总结了极端高温气候下北方地区沥青路面典型破坏特征,获得了基质沥青、SBS、CMA结(混)合料极端高温条件下的车辙因子、蠕变劲度、动稳定度和抗剪参数。在计算各极端高温下沥青路面温度场分布的基础上,建立了不同路面结构形式、极端温度条件下结构层内永久变形量和剪应力间的关系,得到了重载高温条件下北方地区沥青路面破坏机理。
     (4)分析了北方地区沥青路面受夏季洪水气候作用后的典型破损特征和层间连接情况,获得了各层位材料受水浸泡后的强度和水稳定性衰减规律。建立了移动荷载作用下结构动力响应分析模型,得出了不同路面结构水-力耦合条件下的孔隙水压力,获得了洪灾后北方地区沥青路面产生结构型车辙的致灾机理。
     (5)基于对沥青路面现有病害处治方案的评价,分析了极端气候条件下沥青路面修补材料应具备的性能,提出了适宜修复各类典型病害的修补措施,明确了各典型病害最佳修补时间,提炼了裂缝封填和坑槽修补的施工工艺。采用寿命周期费用方法确定了极端气候灾害前沥青路面预防性养护最佳时机。
     研究成果可为提高路面结构设计的有效性和可靠性提供理论依据与数据支持,对减少和减轻各类病害,降低养护与维修成本具有积极的现实意义。进一步地,对我国现有路面结构与材料设计、施工和养护规范的修改和完善也具有重要的参考价值。
Global climate warming is the background of all kinds frequent extreme weather climate events. Extreme weather event directly increase the damage and disease of pavement structure, reduce its service performance and service life, the economic efficiency and social efficiency suffer serious loss. This paper based on the southern area extreme low temperature climate (include freezing rain and ice disaster), northern area extreme high temperature and summer flood climate for research background, taking expressway asphalt pavement as the research object, synthesize methods of site investigation, laboratory test, numerical simulation and theoretical analysis, the failure mechanism and remediation technology of high-grade highway asphalt pavement which under various extreme climate conditions were systematically studied.
     The main achievements of the paper are as follows:
     (1) Aiming at the specific environment which is acting on highway engineering, the definition and action sphere of three extreme weather and climate events have been given, that is southern area extreme low temperature (include dreezing rain and ice disaster), northern area extreme high temperature and summer flood. The difference between each extreme climate and normal climate, and its typical failures and exprerssive characteristics to asphalt pavement structure and road transportation were obtained.
     (2) By means of site investigation, laboratory test and numerical simulation,the typical diseases and cause of south asphalt pavement which suffer extreme low temperature climate have been illustrated. The porosity, low-temperature bending strain, bending stifffness modulus and water stability of AH-70, SBS and CMA mixtures under different frost and thaw condition were obtained. The attenuation law of low-temperature crack resistance and freeze-thaw stability of each material were obtained. The pavement ice expansion model which concerned crack regional water in pavement structure has been built, and the mechanical response characteriatics of asphalt pavement local ice inflation under frozen action have been analyzed.
     (3) The typical damage features of north asphalt pavement which suffer extreme high temperature climate have been summarized. The rut factor, creep stiffness, dynamic stability and shear parameter of base asphalt, SBS and CMA binders and mixtures were obtained. Based on the temperature distribution of asphalt pavement under each extreme high temperature, the relationship between perment deformation and shear stress of structure layers which under different pavement structure and extreme temperature condition has been estabilished. The failure mechanism of north asphalt pavement which under heavy load and high temperature was put forward.
     (4) The typical breakage form and interlayer connection situation of north asphalt pavement which suffer summer flooding climate have been investigated and analyzed. The attenuation discipline of strength and water stability of each layer which suffered water immersion were obtained. The dynamic response model of pavement structure which under moving load was estabilished, and the pore water pressure of different pavement structure which under water-force coupling condition have been calculated. The disaster-causing mechanism of structural rutting of asphalt pavement in north region after was obtained.
     (5) Based on the present disease treatment scheme evaluation of asphalt pavement, the basic properties of repair material which appropriate each extreme weather condition have been analyzed. The suitable repair measures and optimum repairing time of typical diseases have been proposed, the construction technology of crack sealing and pothole repair were epurated. The best preventive maintenance time of asphalt pavement before extreme climate disaster has been determined by life cycle cost method.
     The research results can provide theoretical basis and data support to improve the effectiveness and reliability of pavement structure design, it also can alleviate pavement diseases, reduce the maintenance and repair costs. Furthmore, it has important reference value to revise and perfect the current design, construction and maintenance specification of pavement structure and material.
引文
[1]Beskow G. Soil freezing and frost heaving with special application to roads and railroads[J].Swedish Geol Survey Yearbook,1935.26(3):375-380.
    [2]Everett D H. The thermodynamics of frost damage to porous solids[J]. Trans. Faraday Soc.1961.57:1541-1551.
    [3]Penner E. Fundamental aspects of frost action[R]. Sweden:Int.Symp.on Frost action in soils. Sweden,1977.
    [4]Kamensky RM. Proceedings of 5th International Sym-posium on Permafrost Engineering[M]. Yakutsk:PermafrostInstitute SB RAS Press,2002:236-255.
    [5]Jones R. H., Hurt K. G.. An osmotic method for determining rock and aggregate suction characteristics with applications to frost heave studies[J].QuarterlyJ.Eng. Gell.1978.11:245-252.
    [6]Loch P. G., Miller R. D.. Test of the concept of secondary frost heaving[J]. Soil Sci.Soc.Am.Proc.1975.39:1036-1041.
    [7]Cames.Pintaux. Ground Freezing 2000. Proceedings of the International Symposium on Ground Freezing and Frost Action in Soils[C]. AA. Balkema, Rotterdam,2000.
    [8]郭海昕.季节性冰冻地区道路工程的设计[J].黑龙江交通科技,2009,(9):24.
    [9]罗晓勇.对道路冻害处理措施的探讨[J].市政与路桥,2009,(3):175.
    [10]王铁行.多年冻土地区路基设计原理及临界高度研究[D].西安:长安大学,2001.
    [11]谷宪明.季冻区道路冻胀翻浆机理及防治研究[D].长春:吉林大学,2007.
    [12]徐学祖.土体冻胀和盐胀机理[J].地球科学进展,1998,13(6):15.
    [13]宋玲,尤立正,袁晓明,等.季节冻土区寒土土体温度场的计算模型[J].石河子大学学报(自然科学版),2000,4(2):147-150.
    [14]张冬青.季节性冰冻路基病害及防治措施研究[D].长春:吉林大学,2008.
    [15]Washington D.C. National Academy Press. Strategic Highway Research:Saving lives, Reducing congestion and Improving quality of life[R]. Washington D.C.: Washington D.C.National Academy Press,2001.
    [16]AASHTO. Standard Specification for Superpave Volumetric Mix Design. America:MP2-00 [S],1986.
    [17]W.G.Buttlar, R.Roque. Evaluation of Empirical and Theoretical Models To Determine Asphalt Mixture Stiffnesses at Low Temperatures[J].AAPT,1996: 99-141.
    [18]W.GButtlar, R.Roque. Micromechanical Modeling to Predict the Stiffness of Asphalt Concrete[J]. Fifth Pan American Congress on Applied Mechanics,1997, (4):175-178.
    [19]U.S Department of Transportation,etc. Simulation, Imaging and Mechanics of Asphalt Pavement[R]. Virginia:Turner-Fairbank Highway Research Center, 1998.
    [20]E.R.Brown, John E.Haddock. Characterization of Stone Matrix Asphalt Mortars[R]. Washington D.C.:Transprotation Research Board,1996.
    [21]Ann M.Brach. Interim Planning for a Future Strategic Highway Research Program[R]. Washington D.C.:Transportation Research Board of the National Academies,2003.
    [22]David.A.Anderson, Thomas W.Kennedy. Development of SHRP Binder Specification[J]. AAPT,1993.
    [23]D.A.Anderson, D.W.Chtistensen, H.Bahia. Physical Properties of Asphalt cement and the Development of performance-Related Specifications[J]. American Asphalt Pavement Technology,1991, (25):156-163.
    [24]Maureen A. Kestler. An open graded base to reduce thaw weakening in flexible pavements[C]. Proceeding of the 8th International Conference on Cold Regions Engineering (ASCE),1996,878-889.
    [25]梁东升,姜海洋.季冻区沥青路面裂缝成因分析与防治措施[J].交通标准化,2009,(10):133-135.
    [26]崔凌秋,张荠丰.冰冻期沥青混凝土路面裂缝原因及防治措施[J].吉林交通科技,2004,(4):2-3.
    [27]张建华.冰灾对潭邵高速公路沥青路面力学性能的影响评估[J].中外公路,2009,29(2):73-75.
    [28]艾长发.高寒地区沥青路面行为特性与设计方法研究[D].成都:西南交通大学,2008.
    [29]王刚.寒冷地区沥青混合料路用性能研究[D].长春:吉林大学,2009.
    [30]杨扬,刘海苹.寒区ATPB基层抗冻性能研究[J].黑龙江工程学院学报(自然科学版),2008,22(2):7-9.
    [31]王文华,曹玉华,赵文丁.季节性冰冻地区路面结构内部排水[J].长春工程学院学报(自然科学版),2006,7(3):8-10.
    [32]王新友.冷再生混合料路面基层水稳性及冰冻稳定性研究[J].交通标准化,2009,(8):50-53.
    [33]李静,袁建,郝培文,等.沥青混合料低温抗裂性能研究[J].公路交通科技,2005,22(4):9-13.
    [34]陈建,许永明,张登良.沥青混合料低温缩裂的研究[J].西安公路学院学报,1991,11(2):10-18.
    [35]李东庆,孟庆洲,房建宏,等.沥青混合料抗冻融循环性能的试验研究[J].公 路,2007(12):145-147.
    [36]刘广信.沥青混凝土低温抗裂的有效指标[J].国外公路,1995.15(6):47-49.
    [37]霍曼琳,马保国,魏建强.沥青路面防冻抗滑技术研究[J].公路工程,2008,23(5):1-5.
    [38]Oteng Seifah, Manke P.G.. Study of rutting in flexible highway pavements in oklahoma[J]. Transportation Researeh Record 602, Transportation Researeh Board, National Researeh Couneil, Washington,D.C.,1976:97-99.
    [39]Proceedings A SymPosium. Workshop on high pressure truck tires[C]. American Associationof State Highwayand TransPortation Officials and Federal Highway Administration Anstin, Texas,1987.
    [40]DawleyC.B., B.L.Hogewiede, K.O.Anderson. Mitigation of instability rutting of asphalt concrete pavements in Lethbridge, Alberta, Canada[J]. Journal of the Association of Asphalt Paving Technologists,1990,59:481-508.
    [41]Mahboub, K. A. Simpson, P. Oduroh, J. Fleckenstein. Field performance of large stone hot mix asphalt on a kentueky coal hanl road[J]. Transportation Researeh Record1337, Transportation Researeh Board, NationalResearch, Washington, D.C.,1992:71-78.
    [42]Brown E.R., S. A. Cross. A national study of rutting in hot mix asphalt (HMA) pavements[R]. Alabama:National Center for AsPhalt Technology,1992.
    [43]Brown E.R., S. A.Cross. A study of rutting in hot mix asphalt (HMA) pavements[J]. Journal of the Association of Asphalt Paving Technologists,1992, 61(2):15-24.
    [44]Monismith C.L., R.G. Hicks, E. M. Finn, etal. Permanent deformation response of asphalt aggregate mixes[R]. Washington, D.C.:Transportation Research Board, National Researeh Council,1994.
    [45]SimPson A. L., Daleiden J. E., Hadley W. O.. Rutting analysis from a different perspective[J].Transportation Research Record 1473, Transportation Research Board, National Researeh Council, Washington, B.C.,1995:9-17.
    [46]John E. Haddock, AdamJ. T. Hand, Honghing Fang, etal. Determining layer contributions to rutting by Surface profile analysis[J]. Jounal of Transportation Engineering,2005,131(2):131-139.
    [47]Jian Shiuh Chen, Chih Hsien Lin, Erwin Stein, etal. Development of a mechanistic empirieal model to characterize rutting in flexible pavements[J]. Journal of Transportation Engineering,2004,130(4):519-525.
    [48]Adrian Rieardo Archilla, Samer Madanat. Development of a pavement rutting model from experimental data[J]. Journal of Transportation Engineering,2000, 126(4):291-299.
    [49]王辉,李雪莲,张起森.高温重载作用下沥青路面车辙研究[J].土木工程学报, 2009.42(5):139-144.
    [50]谭积清,张肖宁.三层式沥青面层车辙组成及发展的调查与分析[J].公路交通科技,2006,23(1):20-23.
    [51]李雪莲,陈宇亮,张起森.高温条件下上坡路段沥青路面结构性能研究[J].公路交通科技,2010,27(8):1-6.
    [52]杨海荣,关宏信.高温、重载、慢速条件下上坡沥青路面车辙[J].长沙理工大学学报(自然科学版),2008,5(4):13-17.
    [53]陆勇.长大纵坡路段沥青路面车辙形成机理与防治对策研究[D].西安:长安大学,2009.
    [54]黄晓明,范要武,赵永利,等.高速公路沥青路面高温车辙的调查与试验分析[J].公路交通科技,2007,24(5):16-20.
    [55]李林勇,孟庆民,刘文涛.不同沥青面层在高温下变形性能的数值分析[J].中国高新技术企业,2010,(10):19-21.
    [56]徐世法.沥青路面的车辙深度与行车安全性[J].北京建筑工程学院学报,1994,10(1):47-51.
    [57]佟泽民.改性沥青混合料高温流变性能评价方法[J].内蒙古公路与运输,2009,(1):5-7.
    [58]SHRP 2002 Design Guide. Design of new and rehabilitation pavement structure (draft final document) [R]. Washington D.C.:Transportation Research Board of the National Academies,2003.
    [59]A.Wijeratne, Homyeh P., Benaben J. P.. Repeated load triaxial testing of granular materials in the French network of laboratoires[C]. Project European Symposium on Flexible Pavements (EUROFLEX), Lisbon,1993:81-95.
    [60]Prithvi S.Kandhal, L. Allen Cooley. Evaluation of permanent deformation of asphalt mixtures using loaded wheel tester[R]. Washington, D.C.:National Center For Appropriate Technology,2002.
    [61]SousaJ.B., Weiswnan S. L., Deaeon J.A., etal. Permanent pavemnent deformation response of asphalt aggregate mixes[R]. Washington, D.C.:SHRP National Research Couneil,1994.
    [62]Bill Buttlar. Fracture characteristies of asphalt concrete[J]. Association of Asphalt Paving Technologists,2002,41:215-256.
    [63]K.Sokolov, R.Gubler, M.N.Parti. Extended numerical modeling and application of the coaxial shear test for asphalt Pavements [J]. Materials and Structures, 2005,38(5):515-522.
    [64]Norman W. Mcleod. The rational design of bituminous paving mixture[J]. Highway Research Record, HRB,1949,29:86-98.
    [65]NormanW. Meleod. A rational approach to the design of bituminous paving mixtures[J]. Proc. Assoc. Asphalt Paving Technol.1950,19:82-87.
    [66]V. A. Endersby. The history and theory of triaxial testing and the preparation of realistic test specimens[J]. Speeial Technieal Publieation STP No.106, Ameriean Society for Testing and Materials, Philadelphia.1951:112-137.
    [67]L.W. Nijbocr. Plastieity as a factor in the design of dense bituminous road carpets[M]. Amsterdam:Elsevier Publishing CO. INC.,1948.
    [68]W. H. Goctz, C.C.Chen.Vaeuum triaxial technique applied to bituminous aggregate mixtures[C]. Proceedings of Association of Asphalt Paving Technologists,1950,19:67-84.
    [69]Geotz W.H.. ComParison of triaxial and marshall test results[C]. Proc. Assoc. Asphalt Paving Technol.1951,20:200-245.
    [70]Gretz B. Asphalt Pavement resistance to rutting[J]. Bitumens,1999,99:24-28.
    [71]W. S. House. Intenal stability of granular materials[C]. Proceedings A.S.T.M., 1936,26(2):61-63.
    [72]W. S. House. Interpretation of triaxial compression tests on granular mixture[C]. Proceedings A.A.P.T.,1950,19.
    [73]BurmisterD.M.. The importance of natural controlling conditions upon triaxial compression test conditions, triaxial testing of soils and bituminous mixtures[J]. ASTM STP 106,1951,33:45-52.
    [74]Fwa T. F., Tan S. A., Zhu L. Y.. Rutting predietion of asphalt pavement layer using C-φmodel[J]. J.Transp.Eng.,2005,130(5):675-683.
    [75]B. H.Subbaraju. Model study of stress in asphalt pavement[C]. ASTM 5th Conference,1965.
    [76]William L. Helwitt. Continuation of study on the theoretical design of flexible pavement based on shear strength[C]. ASTM 5th Conference,1965.
    [77]Kiryukhin G. N. Influence of rheological charaeteristics of asphalt conerete and interlayer bitumen on the formation of reflective cracks in pavements [C]. Proceeding of soyuzdornii,2001,200:4-17.
    [78]Fwa T. E., Low B.H., Tan S.A.. Compaction of asphalt mixtures for laboratory testing:evaluation based on density profile[J]. J.Test.Eval.,1993,21(5):414-421.
    [79]Fwa T. E., Tan S. A., Zhu L.Y.. Reexamining C-φ concept for asphalt paving mix design[J]. J. Transp. Eng.2001,127(1),67-73.
    [80]Tethi K. Pellinen, Shangzhi Xiao. Relationship between triaxial shear strength and indirect tentile strength of hot mix asphalt[R]. Indiana:School of Civil Engineering, Purdue University,2005.
    [81]Siddharthan Raj V, Elmously Mohey, Sebaaly Peter E, etal..Investigation of tire contact stress distributions on pavement response[J]. Journal of Transportation Engineering,2002,128(2):136-144.
    [82]Bekheet Wael, Easa Said M, Ponniah Joseph. Investigation of shear stiffness and rutting in asphalt conerete mixes[J]. Canadian Journal of Civil Engineering2004, 31(2):253-262.
    [83]李欣.层间接触条件对沥青路面高温性能的影响[J].陕西科技大学学报,2009,27(6):72-76.
    [84]毕玉峰,孙立军.沥青混合料抗剪试验方法研究[J].同济大学学报,2005,33(8):1036-1040.
    [85]王联芳.双层摊铺路面抗剪性能的研究[J].公路与汽运,2010,(4):82-85.
    [86]吕文江,韩君良,郭平,等.沥青混合料抗剪强度的影响因素分析[J].公路,2010,(11):81-85.
    [87]林绣贤.关于沥青混凝土路面设计中抗剪指标的建议[J].公路,2004,(12):66-69.
    [88]郭寅川,申爱琴,张金荣,等.沥青路面下封层力学响应及抗剪强度试验[J].中国公路学报,2010,23(4):20-26.
    [89]陈鹏举,张常梅,刘金利.应力吸收层对沥青路面结构中剪切应力的影响分析[J].公路交通科技,2010,(4):34-37.
    [90]Geetha Srinivasan. Evaluation of indirect tensile strength to identify asphalt concrete Rutting potential department of civil and environmental engineering morgantown[D]. Virginia:West Virginia University,2004.
    [91]Ibrahim M.Asi. Performance evaluation of SUPERPAVE and Marshall asphalt mix designs to suit Jordan climatic and traffic conditions [J]. Construction and Building Materials 2007 (21):1732-1740.
    [92]Zhi Suo, Wing Gun Wong. Nonlinear properties analysis on the rutting behavior of bituminous materials with different air void contents [J]. Construction and Building Materials,2009(23):3492-3498.
    [93]Ibrahim M.Asi. Laboratory comparison study for the use of stone matrix asphalt in hot weather climates [J].Construction and Building Materials,2006, (20):982-989.
    [94]Sureyya Tayfura, Halit Ozenb, Atakan Aksoy. Investigation of rutting performance of asphalt mixtures containing polymer modifiers [J]. Construction and Building Materials,2007, (21):328-337.
    [95]R.Gubler, M.N.Partl, F.Canestrari etal. Influence of water and temperature on mechanical properties of selected asphalt pavements[J]. Materials and Structures, 2005, (38):523-532.
    [96]Daniel Duaquaye Darku. Evaluation of the superpave gyratory compactor for assessing the rutting resistance of asphalt mixtures[D]. Florida:University of Florida,2003.
    [97]Yong Rak Kim, Hee Mun Park, Francisco Thiago Sacramento Arag, etal. Effects of aggregate structure on hot-mix asphalt rutting performance in low traffic volume local pavements [J].Construction and Building Materials,2009, (23): 2177-2182.
    [98]Amy Louise Simpson. Measurement of rutting in asphalt pavement[D]. Austin: University of Texas at Austin,2001.
    [99]R.A.Tarefdera, M.Zaman, K.Hobson. A laboratory and statistical evaluation of factors affecting rutting [J]. International Journal of Pavement Engineering,2003, 4(1):59-68.
    [100]R.Christopher, Williams, Brian D. Prowell. Comparison of laboratory wheel-Tracking test results with wes track performance [J]. Journal of the Transportation Research Board,1999,1681(3):121-128.
    [101]尚新鸿,舒国明,马立峰.GTM法在解决石太高速公路车辙病害中的应用[J].中外公路,2009.29(2):221-224.
    [102]胡松,谷莉,彭红卫.适用于高温多雨地区AC-13沥青混合料级配优化设计[J].公路工程,2010,35(4):100-103.
    [103]岳学军,黄晓明.沥青混合料高温稳定性评价指标的试验研究[J].公路交通科技,2006,23(10):37-40.
    [104]郝培文,吴徽,张登良.不同沥青用量与级配组成对沥青混合料抗车辙性能的影响[J].西安公路交通大学学报,1998,18(3B):199-202.
    [105]彭波,袁万杰,陈忠达.用车辙系数评价沥青混合料的抗车辙性能[J].华南理工大学学报(自然科学版),2005,23(12):84-86.
    [106]徐踢,关宏信,张起森.连续上坡沥青路面抗车辙材料组合设计[J].武汉理工大学学报,2010,32(14):62-65.
    [107]傅志勇.沥青混合料高温性能试验方法研究[D].长沙:长沙理工大学,2005.
    [108]郭林泉,谭积青.高模量沥青混凝土在路面车辙处理中的应用[J].公路交通科技,2009,(4):59-62.
    [109]关宏信,张起森,徐踢.沥青混合料中温车辙试验研究[J].公路交通科技,2010,27(11):38-42.
    [110]黄晓明,张裕卿.沥青混合料高温性能试验方法[J].公路交通科技,2008,25(5):1-8.
    [111]J. B. walsh, W. F. Brae. The effect of pressure on porosity and the transport properties of roeks[J]. J.Geo-phys.Res,1984,89(3):9425-9431.
    [112]A. AI-Omari, L. Tashman. E. Masad, A.Cooley, etal. Proposed methodology for predieting HMA permeability [J]. Journal of the Assoeiation of the Asphalt Paving Echnologist,2002,71:58-63.
    [113]Ridgeway H. Infiltration of water through the pavement surface[J]. Transportation Research Record,1976,616:98-100.
    [114]冯俊领,郭忠印,陈崇驹.高温多雨条件下沥青混合料水损害模拟研究[J].建筑材料学报,2007,10(5):548-552.
    [115]郭捷菲.高温多雨地区沥青路面改性沥青选型及应用[D].成都:西南交通大学,2006.
    [116]陈志刚.微表处在高温多雨地区沥青路面预防性养护中的应用[J].建筑机械技术与管理,2010,(9):71-73.
    [117]唐中嶷,候丽,王丽.多孔排水性沥青混合料性能的研究[J].黑龙江交通科技,2001,(5):29-33.
    [118]刘朝晖,谭炯,沙庆林.多碎石沥青混合料SAC路用性能[J].长沙理工大学学报(自然科学版),2008,5(2):9-14.
    [119]张泽鹏,王钊.高温多雨地区橡胶沥青粘度技术指标的试验研究[J].公路交通科技,2010,27(6):34-39.
    [120]黄美德,曾俊标,袁万杰.关于对南方湿热地区矿物纤维沥青混合料路用性能的研究[J].中国新技术新产品,2008(12):68-69.
    [121]季节,张志新.基于同种沥青不同级配的大空隙沥青混合料渗水性能试验与评价[J].北京建筑工程学院学报,2006,22(4):44-47.
    [122]薛鹏涛,袁万杰,王钊.抗车辙剂在南方湿热地区的应用研究[J].交通标准化,2007(6):84-87.
    [123]关志深.南方湿热地区50号硬质沥青路用性能研究[J].公路交通技术,2010,(1):40-43.
    [124]袁万杰,王钊.南方湿热地区沥青混合料配合比设计方法应用研究[J].公路,2007,(2):101-106.
    [125]严军,叶奋,黄彭,等.排水沥青混合料透水性能的评价研究[J].公路交通科技,2002,19(6):35-38.
    [126]徐皓,倪富健,刘清泉,等.排水性沥青混合料渗透系数测试研究[J].中国公路学报,2004,17(3):1-5.
    [127]诸永宁.排水性沥青路面排水性能研究与排水设施的设计[D].南京:东南大学,2004.
    [128]王抒音,周纯秀.提高沥青-酸性集料抗水损害的试验研究[J].中国公路学报,2003,16(1):6-9.
    [129]王庆祝.透水沥青路面在我国湿热多雨地区城市道路应用的可行性研究[J].中外公路,2005,25(6):27-29.
    [130]张兴军,谢远光,姜永伟.排水沥青混合料在湿热多雨地区耐久性的研究[J].中国水运,2007,7(3):92-93.
    [131]长沙理工大学.冰雪气候对湖南高速公路路基路面影响机理及处治对策研究[R].长沙:长沙理工大学交通运输工程学院,2009.
    [132]廖公云.ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社,2008:452-456.
    [133]耿立涛,钟阳,乔娜.考虑材料特性随温度变化时沥青路面的温度应力[J].公路交通科技,2009,26(11):16-20.
    [134]马骉,韦佑坡.高原寒冷地区沥青混合料劈裂强度影响因素[J].公路,2010,(8):210-213.
    [135]张洪刚.水-温冻融条件下沥青路面病害特征及发展机理[D].长沙:长沙理工大学,2010.
    [136]王辉.重载高温区沥青路面结构与材料研究[D].长沙:中南大学,2008.
    [137]张俊杰.沥青路面永久变形数值模拟及车辙预估[J].河北工业大学学报,2011,40(4):95-98.
    [138]吕文江,伍石生,戴经梁.透水基层材料渗透系数测试[J].长安大学学报(自然科学版),2003,23(2):22-24.
    [139]张晓冰,黄晓明.半刚性基层沥青路面典型结构厚度设计研究[J].中国公路学报,1999,12(2):25-31.
    [140]李维平.低等级公路沥青路面典型结构研究[J].科技之友,2006,(4):50-52.
    [141]贾亮,朱彦鹏.低交通量公路柔性路面典型结构探讨[J].科学技术与工程,1999,9(18):5589-5592.
    [142]陈忠达,武建民,张小荣,等.干线公路沥青路面典型结构的研究[J].公路交通科技,2001,18(2):9-12.
    [143]杨永红,王选仓,韩国杰,等.甘肃黄土地区高等级公路沥青路面典型结构研究[J].公路交通科技,2004,21(10):37-40.
    [144]田盛鼎,刘朝晖.贵州省高速公路沥青路面使用状况与典型结构建议[J].中外公路,2007,27(4):57-61.
    [145]申爱琴,孙增智,王小明.陕西沥青路面典型结构设计参数敏感性分析[J].内蒙古公路与运输,2001,(1):31-33.
    [146]邓绍玉.辽宁省沥青路面典型结构研究[D].西安:长安大学,2004.
    [147]李纯.四川省农村公路典型路面结构的研究[D].重庆:重庆交通大学,2008.
    [148]康敬东.沥青路面裂缝和坑槽养护维修技术的研究[D].西安:长安大学,2002.
    [149]黄雄立.冰灾对湖南高速公路路面性能的影响及灾后养护对策研究[D].长沙:长沙理工大学,2010.
    [150]陈其学.高速公路路面预防性养护决策[J].公路交通技术,2007,(1):63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700