论地球重力场对玻色—爱因斯坦凝聚的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1995年,物理学实验取得了一个重大突破,通过激光冷却、静磁阱与蒸发冷却等技术,在87Rb、7Li和23Na原子气中直接实现了玻色—爱因斯坦凝聚(BEC)。该凝聚被认为是二十世纪实验物理学上最重大的成就之一。玻色-爱因斯坦凝聚体具有宏观相干、隧穿和量子超流等奇特的量子特性,它的实验实现为物理学研究打开了一个崭新的领域。BEC的研究不仅对基础研究有重要意义,而且在原子激光、原子钟、原子芯片技术和纳米技术等领域均有美好的应用前景。因而,BEC及其相关问题的研究已成为当前国际物理学界的前沿热点之一。
     外囚禁势场的形式、粒子的空间维度和有限粒子数效应(非热力学极限效应)的理论研究为实验上成功实现BEC奠定坚实的基础。本文选地球重力场作为外囚禁势场,在一维和三维情况下,利用量子态密度积分(热力学极限下)和分离量子态求和两种方法,分别研究它对BEC形成的影响,重点讨论有限粒子数效应。同时,研究了与一维谐振势场相关的BEC若干问题。
     全文共由五章内容构成。在第一章中,本文首先综述了玻色-爱因斯坦凝聚及其研究进展,然后综述了BEC中的有限粒子数效应的研究进展。第二章研究了一维地球重力场对玻色-爱因斯坦凝聚的影响。理论结果显示:在热力学极限下和有限的温度范围内,该体系会出现BEC现象,其临界温度TC随粒子数N增大而升高,热容量和熵本身是连续的,该相变是三级相变。当粒子数有限时,体系的临界温度高于热力学极限下的临界温度;粒子数有限时的临界温度与热力学极限下的临界温度的比值TC / TC0与粒子的质量无关。该体系与我们已知的理想玻色子被囚禁在一维谐振势场的情况不同:一维谐振势场中,在热力学极限下,标准的半经典近似结果显示该体系没有BEC,但当粒子数有限时,BEC可由基态凝聚分数来定义。
     第三章分析了与一维谐振势场相关的若干BEC问题。(1)、研究了在一维谐振势场中的玻色气体化学势。我们发现Mungan给出的化学势的封闭表达式只是一个高温下的近似结果。当温度低于某一特征温度值时,基态上有宏观的粒子占据数,此时该化学势的表达式就不适用了。我们给出了在整个温度范围内化学势的正确结果。探讨了在低温范围内,Mungan的近似结果μapp和精确结果μ的偏差。当温度从Tc继续下降时,绝对误差μ?μapp会减小,但相对误差μ?μapp/μ会迅速从0.7增加到1.0。(2)、侦探了在一维谐振势阱中的玻色气体热容量。我们看到,基态凝聚分数N 0 /N随温度T /T0变化图展示BEC有限粒子数效应的一般特性,但是单粒子无量纲的热容量C / Nk B随温度T /T0变化图则没有显示这一特性。这是因为C / Nk B随T /T0单调上升,最后趋近于1,曲线无最大值。(3)、讨论了一维δ函数修饰的谐振势场中玻色气体的热容量。结果发现δ函数修饰可使少粒子数玻色气体体系的热容量发生明显的改变。当粒子数较少时,单粒子无量纲的热容量C / Nk B随温度T /T0的变化曲线会出现最大值。
     第四章研究了一维半空间谐振腔中理想玻色气体体系的BEC问题。结果表明,该体系在热力学极限下,不会发生玻色—爱因斯坦凝聚相变。但当温度T      第五章研究了三维地球重力场对玻色-爱因斯坦凝聚的影响。如同一维情况,我们从热力学极限和有限粒子数两方面对其进行了研究。结果显示:在热力学极限下,在有限的温度范围内,该体系会出现BEC现象,热容量不连续,但熵本身是连续的,该相变是二级相变。当粒子数有限时,其临界温度低于热力学极限下的临界温度,此结果类似于玻色气体被囚禁在三维谐振磁阱中的情况,这一结果与非相互作用的玻色子在一维的地球重力场中的情况相反。同时,我们还看到当粒子数有限时,体系的临界温度与热力学极限下的临界温度的比值TC / TC0与粒子的质量m和势阱宽度L有关。固定玻色子的质量m = 7amu( 7 Li ),分别研究了L = 1,5,10微米的情况。结果显示:当L = 5微米时,体系的有限粒子数效应相对较小。固定L = 5微米,分别研究了m = 7amu(7 Li ),23amu( 23Na )和39amu(39K )的情况。结果表明:当m = 39amu时,体系的少粒子效应越明显。最后,我们对本论文进行了一简单总结。
In 1995, Bose-Einstein condensation (BEC) was realized in experiment for almost ideal gases of alkali atom 87Rb , 7Li and 23Na in a magnetic trap at the temperature of nano Kelven. The condensation was regarded as one of the most important physical achievements in the 20th century. Pure BEC forms a novel states of matter behaving like a giant atom of unusual properties such as macroscopic coherence, tunneling, superfluidity, etc. BEC research is not only fundamental but also practical, and therefore is currently a hot research topic in atom physics, laser, statistical mechanics even astronomy.
     Studies on the forms of the external potential trapping the Boson gas, the space dimension and the finite number effects (one of the non-thermodynamical limit effect), etc, have been experimentally examined on various BEC experiments. This dissertation chooses earth's gravitational field as the external potential for atomic gases, and investigates its influence on the formation of the BEC in a 1D case and a 3D case respectively, by theoretical means of both the thermodynamic limit—continuous limit of quantum states, and a sum over discrete quantum states, with emphasizing on the finite number effects. Moreover, we also study some theoretical problems relating to BEC in one-dimensional harmonic potential.
     The dissertation is organized as the following five parts. In the first part, we review the present advances of BEC study and finite number effects. The second part investigates influence of presence of the Earth's gravitational field on the Bose-Einstein condensation in a 1D case. The results show that microscopic bouncing balls display usual BEC in the thermodynamic limit, and it is a third-order phase transition. Furthermore, the results also reveal that the critical temperature with a finite number of particles is higher than that in the thermodynamic limit. The ratio of critical temperature TC for finite-particle system over the critical temperature TC 0 of system taken thermodynamic limit ( TC / TC0) is irrelevant to mass of particle. This system is different from Boson gas in the one-dimensional harmonic potential one for which the standard result indicates that there is no BEC.
     The third part analyzes theoretical problems relating to BEC in one-dimensional harmonic potential. Fisrt, by studying chemical potential for the Bose gases in a one-dimensional harmonic trap, we find out that a closed expression for the chemical potential, reported by Mungan, is approximate for higher temperature and not applicable for temperature lower than a characteristic value below which the ground state becomes occupied by a macroscopic number of particles. We address the correct behaviour of the chemical potential in the whole range of temperature. We also discuss the error between approximate value(μapp) and exact value (μ) at low temperature. As the temperature is further lowered from TC , the absolute errorμ?μapp decreases, whereas the relative errorμ?μapp/μincreases quickly from 0.7 to 1.0. Secondly, by studying the heat capacity for the Bose gases in a one-dimensional harmonic trap, we see that there is clearly an abrupt increase of population in the ground state, whereas the curve of C / Nk B for finite N has no maximum, and C / Nk B increases monotonically with temperature T /T0 . Thirdly, by studying the heat capacity of Bose gases in a harmonic trap decorated with Diracδfunctions, we see that modification of the shape of the trapping potential changes obviously the heat capacity with a few Bose particles,which the curve of C / Nk B for finite N has maximum.
     The fourth part investigates BEC in a positive one-half-dimensional harmonic potential. The standard result indicates that the BEC is not possible unless the number of particles is finite. However, for the boson gas trapped in a positive one-half-dimensional harmonic well, there is still a certain nonzero characteristic temperature T0 below which the ground state becomes occupied by a macroscopic number of particles. We also see that there is clearly an abrupt increase of population in the ground state, whereas the curve of C / Nk B for finite N has no maximum, and C / Nk B increases monotonically with temperature T /T0 .
     The fifth part discusses influence of presence of the Earth's gravitational field on the Bose-Einstein condensation in a 3D case. We study it in the thermodynamic limit and in the case of a finite number of particles, in the same way as the 1D earth's gravitational field. The results show that microscopic bouncing balls display Bose-Einstein condensation in the thermodynamic limit. The heat capacity is discontinous, whereas entropy is continuous at critical temperature. So it is a second-order phase transition. Results also show that with finite number of particles, the critical temperature is lower than that in this continuum limit, which is similar to the result for the bosonic gas confined in the 3D harmonic magnetic traps. In addition, we find out that the ratio TC / TC0 of two critical temperatures is relevant to mass of particle m and width of trap L , where TC and TC 0 are determined by finite-particle system and the thermodynamic limit respectively. For m = 7amu ( 7 Li ), we note that finite number effects for L = 5 microns is less significant than that for L = 1,10microns. For L = 5 microns, we note that finite number effects for m = 39amu( 39K ) is more explicit than that for m = 7amu( 7 Li ) and m = 23amu( 23Na ). In the last part of this dissertation, we give a summary to the above-mentioned works.
引文
[1]汪志诚.热力学·统计物理[M].北京:高等教育出版社, 1980: 209-307.
    [2]卫栋. 87 Rb- 40 K玻色费米混合气体磁光阱的实验研究.太原:山西大学博士学位论文,2007.
    [3]戴闻,高政祥.玻色-爱因斯坦凝聚的今天和明天[J].自然杂志,2000,22(6):332-335.
    [4] A. Einstein’s letter to P. Ehrenfest in A. Pais, Subtle is the Lord, Oxford University Press, New York, 2005.
    [5] Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221):198- 201.
    [6] Arlt J J, Bongs K, Sengstock K, et al. Bose-Einstein condensation in dilute atomic gases[J]. Naturwissenschaften, 2002, 89: 47-56.
    [7]王义遒.原子的激光冷却与陷俘[M].北京:北京大学出版社, 2007: 533-534.
    [8] Peter H. Review approaching absolute zero[J]. Spectrochimica Acta Part B, 2008, 63 : 104–114.
    [9] Andrew G T, Kevin E S, William L M, et al. Observation of Fermi pressure in a gas of trapped atoms[J]. Science, 2001, 291: 2570-2572.
    [10]郝柏林.中性原子的玻色-爱因斯坦凝聚[J].物理学进展, 1997, 17(3): 223-232.
    [11] London F. Theλ-Phenomenon of liquid helium and the Bose-Einstein degeneracy[J]. Nature, 1938, 141: 643-644.
    [12]谢世标.玻色-爱因斯坦凝聚的研究[J].广西物理, 2002, 23(3): 47-50.
    [13]刘敏.玻色-爱因斯坦凝聚中量子化涡旋与量子反射的理论研究.武汉:中国科学院武汉物理与数学研究所博士学位论文,2007.
    [14] Hecht C E. The possible superfluid behaviour of hydrogen atom gases and liquids[J]. Physica, 1959, 25: 1159.
    [15] Bradley C C, Sackett C A, Tollett J J, et al. Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions[J]. Phys Rev Lett, 1995, 75(9): 1687–1690.
    [16] Davis K B, Mewes M O, Andrew M R, et al. Bose–Einstein condensation in a gas of sodium atoms[J]. Phys Rev Lett, 1995: 75(22): 3969–3973.
    [17] Anthony J L. Bose-Einstein condenstion in the alkali gases: some fundamentalconcepts[J]. Rev Mod Phys, 2001, 73(2): 307-356.
    [18] http://nobelprize.org/physics/laureates/2001/press.html.http://www.docin.com/ p-23813215.html, 2009-06-12.
    [19] Stellmer S, Tey M K, Huang B, et al. Bose-Einstein condensation of strontium[J]. Phys Rev Lett, 2009, 103(20): 200401(1-4).
    [20] Stellmer S, Tey M K, Grimm R, et al. Bose-Einstein condensation of 86Sr [J]. Phys Rev A, 2010, 82: 041602(R).
    [21] Fried D G, Killian T C, Willmann L, et al. Bose–Einstein condensation of atomic hydrogen[J]. Phys Rev Lett, 1998, 81(18): 3811–3814.
    [22] Robert A, Sirjean O, Browaeys A, et al. A Bose–Einstein condensate of metastable atoms[J]. Science, 2001, 292: 461–464.
    [23] Pereira D S F, Léonard J, Wang J, et al. Bose–Einstein condensation of metastable helium[J]. Phys Rev Lett, 2001, 86(16): 3459–3462.
    [24] Roati G, Zaccanti M, D'Errico C, et al. 39K Bose-Einstein condensate with tunable interactions[J]. Phys Rev Lett, 2007, 99(1): 010403.
    [25] Modugno G, Ferrari G, Roati G, et al. Bose–Einstein condensation of potassium atoms by sympathetic cooling[J]. Science, 2001, 294: 1320–1322.
    [26] Griesmaier A, Werner J, Hensler S, et al. Bose–Einstein condensation of chromium[J]. Phys Rev Lett, 2005, 94(16): 160401.
    [27] Cornish S L, Claussen N R, Roberts J L, et al. Stable 85Rb Bose–Einstein condensates with widely tunable interactions[J]. Phys Rev Lett, 2000, 85(9): 1795–1798.
    [28] Weber T, Herbig J, Mark M, et al. Bose-Einstein condensation of cesium[J]. Science, 2003, 299(5604):232-235.
    [29] Fukuhara T, Sugawa S, Takahashi Y. Bose–Einstein condensation of an ytterbium isotope[J]. Phys Rev A, 2007, 76(5): 051604(R).
    [30] Takasu Y, Maki K, Komori K,et al. Spin-singlet Bose-Einstein condensation of two-electron atoms[J]. Phys Rev Lett, 2003, 91(4): 040404.
    [31] O'Hara K M, Hemmer S L, Gehm M E, et al. Observation of a strongly interacting degenerate Fermi gas of atoms[J]. Science, 2002, 298: 2179.
    [32] Jochim S, Bartenstein M, Altmeyer A, et al. Bose-Einstein condensation of molecules[J]. Science, 2003, 302: 2101.
    [33] Greiner M, Regal C A, Jin D S. Emergence of a molecular Bose-Einstein condensate from a Fermi gas[J]. Nature, 2003, 426: 537.
    [34] Zwierlein M W, Stan C A, Schunck C H, et al. Observation of Bose-Einsteincondensation of molecules[J]. Phys Rev Lett, 2003, 91(25): 250401.
    [35] Regal C A, Greiner M, Jin D S. Observation of resonance condensation of fermionic atom pairs[J]. Phys Rev Lett, 2004, 92(4): 040403.
    [36] Bartenstein M, Altmeyer A, Riedl S, et al. Crossover from a molecular Bose-Einstein condensate to a degenerate Fermi gas[J]. Phys Rev Lett, 2004, 92(12): 120401.
    [37] Andersen J O. Theory of the weakly interacting Bose gas[J]. Rev Mod Phys, 2004, 76(2): 599-639.
    [38]熊宏伟,吕宝龙,刘淑娟等.超冷费米子气体研究的新进展[J].物理学进展, 2005, 25: 296.
    [39]茅奕.玻色-爱因斯坦凝聚的实现及应用[J].现代物理知识, 2000, 12(2): 17-20.
    [40] Andrews M R, Townsend C G, Miesner H J, et al. Observation of interference between two bose condensates [J]. Science, 1997, 275:637-641.
    [41] Dalfovo F, Giorgini S, Pitaevskii L P, et al. Theory of Bose-Einstein condensation in trapped gases[J]. Rev Mod Phys, 1999, 71(3): 463-512.
    [42] Ketterle W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser[J]. Rev Mod Phys, 2002, 74(4): 1131-1151.
    [43] Cornell E A, Wieman C E. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments[J]. Rev Mod Phys, 2002, 74(3): 875- 893.
    [44] Pethick C J, Smith H. Bose–Einstein condensation in dilute gases[M]. Cambridge: Cambridge University Press, 2002.
    [45] Xie Z W, Zhang W P, Chui S T, et al. Magnetic solitons of spinor Bose-Einstein condensates in an optical lattice[J]. Phys Rev A, 2004, 69(5): 053609.
    [46] Ji A C, Liu W M, Song J L, et al. Dynamical creation of fractionalized vortices and vortex lattices[J]. Phys Rev Lett, 2008, 101(1): 010402.
    [47] Qi R, Yu X L, Li Z B, et al. Non-Abelian Josephson effect between two F=2 spinor Bose-Einstein condensates in double optical traps[J]. Phys Rev Lett, 2009, 102(8): 185301.
    [48] Ji A C, Sun Q, Xie X C, et al. Josephson effect for photons in two weakly linked microcavities[J]. Phys Rev Lett, 2009, 102(2): 023602.
    [49] Catani J, Barontini G, Lamporesi G, et al. Entropy exchange in a mixture of ultracold atoms[J]. Phys Rev Lett, 2009, 103(14): 140401
    [50] Bradley C C, Sackett C A, Hulet R G. Bose-Einstein condensation of lithium :observation of limited condensate number[J]. Phys Rev Lett, 1997, 78(6): 985-989.
    [51] Pathria R K. Bose-Einstein condensation of a finite number of particles confined to harmonic traps[J]. Phys Rev A, 1998, 58(2): 1490-1495.
    [52] Kim S H. Ideal Bose Gas in Fractal Dimensions[J]. International Journal of Bifurcation and Chaos (IJBC), 1997, 7(5): 1053-1058.
    [53] Beckmann R, Karsch F, Miller D E. Bose-Einstein condensation of a relativistic gas in d dimensions[J]. Phys Rev Lett, 1979, 43(18): 1277-1280.
    [54] G?rlitz A, Vogels J M, Leanhardt A E, et al. Realization of Bose-Einstein condensates in lower dimensions[J]. Phys Rev Lett, 2001, 87(13): 130402.
    [55] Shi H, Zheng W. Critical temperature of a trapped interacting Bose-Einstein gas in the local-density approximation[J]. Phys Rev A, 1997, 56(1): 1046-1049.
    [56] Ketterle W, Druten N J. Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions[J]. Phys Rev A, 1996, 54(1): 656-660.
    [57] Napolitano R, De Luca J, Bagnato V S, et al. Effect of a finite number of particles in the Bose-Einstein condensation of a trapped gas[J]. Phys Rev A, 1997, 55(5): 3954-3956.
    [58] Grossmann S, Holthaus M. On Bose-Einstein condensation in harmonic traps[J]. Physics Letters A, 1995, 208(3): 188-192.
    [59] Sakamoto S, Ichino S, Matsumoto H. Numerical analysis of transition temperature in Bose–Einstein condensation[J]. Physica B, 2003, 329–333(1): 47–48.
    [60] Kirsten K, Toms D J. Bose-Einstein condensation of atomic gases in a general harmonic-oscillator confining potential trap[J]. Phys Rev A, 1996, 54(5): 4188-4203.
    [61] Haugerud H, Haugest T, Ravndal F. A more accurate analysis of Bose-Einstein condensation in harmonic traps[J]. Phys Lett A, 1997, 225(1-3): 18-22.
    [62] Jaouadi A, Telmini M, Charron E. Bose-Einstein condensation with a finite number of particles in a power-law trap[J]. Phys Rev A, 2011, 83(2): 023616.
    [63] Idziaszk Z, Rzazewski K. Two characteristic temperatures for a Bose–Einstein condensation of a finite number of particles[J]. Phys Rev A, 2003, 68(3): 035604.
    [64] Li M Z, Chen L X, Chen J C, et al. Bose-Einstein condensation of a finite number of particles trapped in any-dimensional space. Phys Rev A, 1999, 60(5):4168-4170.
    [65] Gautam S, Angom D. Critical temperature for Bose-Einstein condensation in quartic potentials[J]. Eur Phys J D, 2008, 46(1): 151-155.
    [66] Karabulut E ?, Koyuncu M, Tomak M. Thermodynamics of Bose-Einstein gas trapped in D-dimensional quartic potentials[J]. Physica A, 2009, 389(7): 1371-1379.
    [67] Grossmann S, Holthaus M. Microcanonical fluctuations of a Bose system's ground state occupation number[J]. Phys Rev E, 1996, 54(4): 3495-3498.
    [68] Herzog C, Olshanii M. Trapped Bose gas: the canonical versus grand canonical statistics[J]. Phys Rev A, 1997, 55(4): 3254-3256.
    [69] Mullin W J, Ferna′ndez J P. Bose–Einstein condensation, fluctuations, and recurrence relations in statistical mechanics[J]. Am J Phys, 2003, 71(7): 661-669.
    [70] Wang J H, Ma Y L. Thermodynamics and finite-size scaling of homogeneous weakly interacting Bose gases within an exact canonical statistics[J]. Phys Rev A, 2009, 79(3): 033604.
    [71] Fujiwara I, Haar D T, Wergeland H. Fluctuations in the population of the ground state of Bose systems[J]. J Stat Phys, 1970, 2: 329-346.
    [72] Huang K. Statistical Mechanics, 2nd ed[M]. New York: Wiley, 1987.
    [73] Pathria R K. Statistical Mechanics(第二版) [M].北京:世界图书出版公司,2003,P.157-168.
    [74] Courteille P W, Bagnato V S, Yukalov V I. Bose-Einstein condensation of trapped atomic gases[J]. Laser Phys, 2001, 11: 659.
    [75] Bagnato V, Pritchard D E, Kleppner D. Bose-Einstein condensation in an external potential[J]. Phys Rev A, 1987, 35(10): 4354-4358.
    [76] Bagnato V S, Kleppner D. Bose-Einstein condensation in low-dimensional traps[J]. Phys Rev A, 1991, 44(11): 7439-7441.
    [77] Grossmann S, Holthaus M. Bose-Einstein condensation and condensate tunneling[J]. Z Naturforsch A: Phys Sci, 1995, 50: 323-326.
    [78] Grossmann S, Holthaus M.λ-transition to the Bose-Einstein condensate[J]. Z Naturforsch A: Phys Sci, 1995, 50: 921-930.
    [79] Yan Z. Bose-Einstein condensation of a trapped gas in n dimensions[J]. Phys Rev A, 1999, 59(6): 4657-4659.
    [80] Groot S R, Hooyman G J, SeldamC A. On the Bose-Einstein condensation[J]. Proc R Soc London Ser A, 1950, 203: 266-286.
    [81] Rehr J J, Mermin N D. Condensation of the rotating two-dimensional ideal Bose gas[J]. Phys Rev B, 1970, 1(7): 3160-3162.
    [82] Masut R, Mullin W J. Spatial Bose-Einstein condensation[J]. Am J Phys, 1979, 47(6):493-497.
    [83] Mullin W J. Bose-Einstein condensation in a harmonic trap[J]. J Low Temp Phys, 1997, 106: 615-641.
    [84] Haugset T, Haugerud H, Andersen J O. Bose-Einstein cndensation in anisotropic harmonic traps[J]. Phys Rev A, 1997, 55 (4): 2922-2929.
    [85] Ingold G L, Lambrecht A. Thermodynamics of non-interacting bosons in low-dimensional potentials[J]. Eur Phys J D, 1998, 1 (1): 29-32.
    [86] Capuzzi P, Hernandez E S. Bose-Einstein condensation in harmonic double wells[J]. Phys Rev A, 1999, 59(2): 1488-1494.
    [87] Olaya Castro A, Quiroga L. Bose-Einstein condensation in an axially symmetric mesoscopic system[J]. Phys Status Solidi (b), 2000, 220(1): 761-764.
    [88] Yukalov V I. Modified semiclassical approximation for trapped Bose gases[J]. Phys Rev A, 2005, 72(3): 033608.
    [89] Uncu H, Tarhan D, Demiralp E, et al. Bose-Einstein condensate in a harmonic trap decorated with Diracδfunctions[J]. Phys Rev A, 2007, 76(1): 013618.
    [90] G?litz A, Vogels J M, Leanhardt A E, et al. Realization of Bose-Einstein condensates in low dimensions[J]. Phys Rev Lett, 2001, 87(13):130402.
    [91] Dai W S, Xie M. Upper limit on the transition temperature for non-ideal Bose gases[J]. Annals of Physics, 2007, 322: 1771-1775;
    [92] Seiringer R, Ueltschi D. Rigorous upper bound on the critical temperature of dilute Bose gases[J]. Phys Rev B, 2009, 80(1): 014502.
    [93] Bayindir M, Tanatar B, Gedik Z. Bose-Einstein condensation in a one- dimensional interacting system due to power-law trapping potentials[J]. Phys Rev A, 1999, 59(2): 1468-1472.
    [94] Gerbier F, Thywissen J H, Richardt S, et al. Experimental study of the thermodynamics of an interacting trapped Bose-Einstein condensed gas[J]. Phys Rev A, 2004, 70(1): 013607.
    [95] Zhang Z Y, Fu H X, Chen J C, et al. Chemical potential of a trapped interacting Bose gas[J]. Phys Rev A, 2009, 79(5): 055603.
    [96] Zobay O, Metikas G, Alber G. Phase transition of interacting Bose gases in general power-law potentials[J]. Phys Rev A, 2004, 69(6): 063615.
    [97] Bayindir M, Tanatar B. Bose-Einstein condensation in a two-dimensional,trapped, interacting gas[J]. Phys Rev A, 1998, 56(4): 3134-3137.
    [98] Gordon B, Paul B J, Holzmann M, et al. The transition temperature of the dilute interacting Bose gas[J]. Phys Rev Lett, 1999, 30: 1703-1706.
    [99] Grossman S, Holthaus M. Bose-Einstein condensation in a cavity[J]. Z Phys B, 1995, 97(1): 319-326.
    [100]衣学喜.有限数目捕获原子的玻色-爱因斯坦凝聚[J].物理学报, 1999, 48: 995.
    [101]催海涛,王林成,衣学喜.低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应[J].物理学报, 2004, 53(4): 991.
    [102] Grlitz A, Vogels J M, Leanhardt C R, et al. Realization of Bose-Einstein condensates in lower dimensions[J]. Phys Rev Lett, 2001, 87(4): 130402.
    [103] Widom A. Superfluid phase transitions in one and two dimensions[J]. Phys Rev, 1968, 176(1): 254-257.
    [104]刘静宜.低维囚禁理想玻色气体的玻色-爱因斯坦凝聚[J].漳州师范学院学报(自然科学版), 2001, 14(2): 35-41.
    [105] Cavalcanti R M, Giacconi P, Pupillo G. Bose-Einstein condensation in the presence of a uniform field and a pointlike impurity[J]. Phys Rev A, 2002, 65(5): 053606.
    [106] Baranov D B, Yarunin V B. Bose-Einstein condensation in atomic trap: gravity shift of critical temperature[J]. Physics Letter A, 2001, 285(12): 34-38.
    [107] Haar D. Problems in Quantum Mechanics[J]. London, Pion Limited, 1975: 97-193.
    [108] Mungan C E. Chemical potential of one-dimensional simple harmonic oscillators[J]. Eur J Phys, 2009, 30(5):1131–1136.
    [109] Pinke P W H, Mosk A, Weidemuler, et al. Adiabatically changing the phase- space density of a trapped Bose gas[J]. Phys Rev Lett, 1997, 78(6):990-993.
    [110] Stamper-Kum D M, Miesner H J, Chikkatur A P, et al. Reversible formation of a Bose-Einstein condensate[J]. Phys Rev Lett, 1998, 81(11):2194-2197.
    [111] Comparat D, Fioretti A, Stern G, et al. Optimized production of large Bose- Einstein condensates[J]. Phys Rev A, 2006, 73(4):043410(1-14).
    [112] Uncu H, Tarhan D, Demiralp E, et al. Bose–Einstein condensate in a Harmonic trap with an eccentric dimple potential[J]. Laser Physics, 2008, 18(3): 331–334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700