倾斜磁各向异性自旋阀结构的稳定性分析和铁磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自旋转移效应不仅给出了一种使用自旋极化电流来调控薄膜磁性状态的新方法,而且预计将产生一批新型的电流驱动的纳米器件,因而受到了学术界和工业界的高度重视。本论文把电流驱动和倾斜磁各向异性自旋阀相结合,以Landau-Lifshitz-Gilbert-Slonczewski (LLGS)方程为基础,系统地分析了倾斜磁各向异性自旋阀以及具有双钉扎层的自旋阀结构中自旋转移矩作用下磁性状态的稳定性,讨论了类场自旋转移矩对电流驱动的磁动力学的影响,研究了倾斜磁各向异性自旋阀结构中电流激发和调节的铁磁共振。研究的主要内容和结果如下:
     1.分析了倾斜磁各向异性自旋阀结构中自旋转移矩作用下磁性状态的稳定性。使用稳定性分析方法,得到了由自旋转移矩大小和方向为控制参数的磁性相图。研究发现:钉扎层中的倾斜磁各向异性为改善自旋阀结构中电流驱动的磁矩翻转和微波振荡的效率提供了新的选择。当钉扎层磁矩方向在一定范围时,通过调节电流,可以实现磁矩准平行和准反平行的稳定态、磁矩伸出膜面的稳定态以及平面内的进动态和磁矩伸出平面的进动态。当钉扎层磁矩方向偏离薄膜平面较小时,磁矩容易发生翻转;而偏离较大时,磁矩进动容易发生。
     2.对具有双钉扎层的自旋阀结构中自旋转移矩作用下磁性状态的稳定性进行了理论研究。获得了由双自旋转移矩的大小和方向为控制参数的磁性相图。通过求解微分方程,得到了每个磁性状态的磁矩演化图。研究结果表明:两钉扎层磁矩的相对取向对不同磁性状态之间的转化有很大的影响。选择不同方向的钉扎层磁矩结构,通过改变电流,可以实现磁矩在准平行和准反平行方向之间的翻转以及从稳定态到进动态之间的转换。当两钉扎层磁矩的方向反平行排列并且都在平面内时,实现磁矩翻转所需的电流最小。当两钉扎层磁矩方向反平行排列并且都垂直膜面的时候,实现磁矩进动态所需的电流最小。对于一些特定的双自旋阀结构,在静态和动态的磁性状态之间存在回滞现象。
     3.选择自由层和钉扎层都具有垂直磁各向异性的多层膜为理论模型,研究了类场自旋转移矩对电流驱动的磁动力学的影响。推导出了实现磁矩翻转所需的临界电流的解析表达式,同时还获得了磁矩进动频率随电流、外磁场以及类场自旋转移矩的变化关系。发现磁矩的进动频率可以通过电流和外磁场来控制,类场自旋转移矩的出现可以改变磁矩翻转的临界电流和磁矩进动的频率
     4.在没有考虑外磁场的情形下,研究了倾斜自旋极化器和垂直分析器自旋阀结构中电流激发和调节的铁磁共振。获得了自由层和钉扎层都具有任意各向异性的自旋阀结构中输出电压的表达式以及交流电流频率调节的铁磁共振谱。结果表明:全电流铁磁共振可通过调节交流电的频率来实现。通过改变直流电流密度和钉扎层磁矩的方向,可以调节共振位置和线宽。当直流电流密度和钉扎层磁矩方向控制在一定的范围时,可以使共振峰达到最大,也就是说共振线宽最小。因此,为了减小有效阻尼,更加容易地实现磁矩翻转和进动,我们可以适当地选择直流电流密度和钉扎层磁矩的方向。
Spin-transfer effects provide a new method of manipulating magnetization states by spin-polarized current, and is promising for developing a batch of novel current-driven nano-devices. So, it has drawn high attention in academia and industry. In this dissertation, on the basis of the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation, we combine the current-driven and spin valve with tilted anisotropy. analyse the stability of magnetization states driven by spin-transfer torque in spin valve structure with tilted anisotropy and dual pinned layers structure, and discuss the effect of field-like spin-transfer torque on the current-driven magnetization dynamics. Meanwhile, we study the current-excited and adjusted ferromagnetic resonance(FMR) in spin valve structures with tilted anisotropy. The main research contents and results are given below:
     1. We analyse the stability of magnetization states driven by spin-transfer torque in spin valve structure with titled anisotropy. The phase diagrams defined by the magnitude and direction of spin-transfer torque are obtained by using stability analysis method. Our results show that the tilted anisotropy in the pinned layer provides a new possible choice to optimize the magnetization reversal and precession driven by current in magnetic trilayers. With the pinned-layer magnetization oriented in a certain range, one can realize different magnetic states, such as quasi-parallel and quasi-antiparallel stable states, in-plane and out-of-plane precessions, and out-of-plane stable states by varying the current. We also find that the free-layer magnetization prefers reversal for small deviation of the fixed-layer magnetization from the film plane, while precession for big deviation.
     2. We take stability analysis for the magnetization states driven by spin-transfer torque in spin valve with dual pinned layers theoretically. Magnetic phase diagrams are established under the control of the magnitude and direction of dual spin torques. The dynamic evolutions of magnetic states are demonstrated by solving differential equations numerically. The results suggest that the switching between different states is highly affected by the pinned-layer configurations. Selecting different pinned-layer configurations, the reversal between parallel and antiparallel orientations and the switching from stable states to precessional ones can be realized by increasing current. The reversal current is the lowest when the magnetization directions of two pinned layers are antiparallel and in the film plane. The threshold current for switching to out-of plane precession state is the lowest when the magnetization directions of two pinned layers are antiparallel and perpendicular to the film plane. For some pinned-layer configurations, there exists hysteretic switching between static and dynamic states.
     3. Selecting magnetic trilayers with perpendicular anisotropy for both free and pinned layers as theoretical model, we study the effect of field-like spin-transfer torque on the current-driven magnetization dynamics. The analytical expression of switching current is derived. Meanwhile, we obtain the dependence of precession frequency on the current, external magnetic field and field-like spin-transfer torque. The results show that the precession frequency of magnetization can be controlled by the current and external magnetic field. The presence of field-like spin-transfer torque can change the switching current and precession frequency.
     4. We investigate the current-excited and adjusted FMR in spin valve structure with a tilted polarizer and a perpendicular analyzer without external magnetic field. The analytical expression of the output dc voltage for arbitrary anisotropy in the free and pinned layers and the FMR spectra adjusted by ac frequency are derived. The results indicate that we can realize FMR throught adjusting the ac frequency without external magnetic field. The resonant location and linewidth can be adjusted by changing the pinned magnetization direction and the dc current density. In some regions defined by the dc current density and the pinned magnetization direction, the height of the resonant peak can reach maximum, i.e., resonance linewidth is smallest. To reduce the effective damping, we can appropriately select the current density and the direction of pinned magnetization.
引文
[1]Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics:A Spin-Based Electronics Vision for the Future. Science,2001,294(16):1488-1495
    [2]Bader S D, Parkin S S P. Spintronics. Annual Review of Condensed Matter Physics.2010,1:71-88
    [3]Zutic I, Fabian J, S. Das Sarma S D. Spintronics:Fundamentals and applications. Reviews of Modern Physics,2004,76(2):323-409
    [4]Gregg J F, Petej I, Jouguelet E, et al. Spin electronics—a review. Journal of Physics D:Applied Physics,2002,35(18):R121-R155
    [5]Gary A P. Magnetoelectronics. Science,1998,282:1660-1663
    [6]Baibich M N. Broto J M, Fert A, et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters,1988, 61(21):2472-2475
    [7]Dieny B, Sperious V S, Parkin S S P, et al. Giant magnetoresistive in soft ferromagnetic multilayers. Physical Review B,1991,43(1):1297-1300
    [8]Julliere M. Tunneling between ferromagnetic films. Physics Letters A,1975, 54(3):225-226
    [9]Miyazaki T, Tezuka N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. Journal of Magnetism and Magnetic Materials,1995,139(3): L231-L234
    [10]Miyazaki T, Tezuka N. Spin polarized tunneling in ferromagnet/insulator/ferromagnet junctions. Journal of Magnetism and Magnetic Materials,1995,151:403-410
    [11]Moodera J S, Kinder L R, Wong T M, et al. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Physical Review Letters,1995,74(16):3273-3276
    [12]Parkin S S, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Materials,2004, 3:862-867
    [13]Yuasa S, Nagahama T, Fukushima A, et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Materials,2004,3:868-871
    [14]Ikeda S, Hayakawa J, Ashizawa Y, et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/ MgO/ CoFeB pseudo-spin-valves annealed at high temperature. Applied Physics Letters, 2008,93(8):082508
    [15]Slonczewski J C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials,1996,159(1-2):L1-L7
    [16]Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B,1996,54(13):9353-9358
    [17]Katine J A, Fullerton Eric E. Device implications of spin-transfer torques. Journal of Magnetism and Magnetic Materials,2008,320:1217-1226
    [18]赖武彦.自旋电子学和计算机硬件产业.物理,2007,31(7):437-443
    [19]Grunberg P, Schreiber R, Pang Y, et al. Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers. Physical Review Letters, 1986,57(19):2442-2445
    [20]Thomson W. On the Electro-Dynamic Qualities of Metals:--Effects of Magnetization on the Electric Conductivity of Nickel and of Iron. Proceedings of the Royal Society of London.1857.8:546-550
    [21]Mcguire T R, Potter R 1. Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys. R. I. IEEE Transactions on Magnetics,1975,11:1018-1038
    [22]Barthelemy A. Fert A, Baibich M N, et al. Magnetic and transport properties of Fe/Cr superlattices (invited). Journal of Applied Physics.1990,67(9):5908
    [23]Binasch G, Griinberg P, Saurenbach F. et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B,1989,39(7):4828-4830
    [24]Parkin S S, More N, Roche K P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures:Co/Ru, Co/Cr, and Fe/Cr. Physical Review Letters,1990,64(19):2304-2307
    [25]Unguris J. Celotta R J, Pierce D T. Observation of two different oscillation periods in the exchange coupling of Fe/Cr/Fe(100). Physical Review Letters, 1991,67(1):140-143
    [26]Mott N F. The electrical conductivity of transition metals. Proceedings of the Royal Society of London,1936, A153:699
    [27]赖武彦.自旋极化的电流—2007年度诺贝尔物理学奖评述.物理,2007,36(12):897-903
    [28]Zhang S, Levy P M. Conductivity perpendicular to the plane of multilayered structures. Journal of Applied Physics,1991,69(8):4786-4788
    [29]Pratt W P. Jr. Lee S F, et al. Perpendicular giant magnetoresistances of Ag/Co multilayers. Physical Review Letters,1991,66(23):3060-3063
    [30]Pratt W P, Jr, Lee S F, et al. Giant magnetoresistance with current perpendicular to the layer planes of Ag/Co and AgSn/Co multilayers. Journal of Applied Physics,1993,73(10):5326
    [31]Pratt W P, Jr, Lee S F, et al. Giant magnetoresistance with current perpendicular to the layer planes of Ag/Co and AgSn/Co multilayers. Journal of Magnetism and Magnetic Materials,1993,126(1-3):406-409
    [32]Berger L. Domain drag effect in the presence of variable magnetic field or variable transport current. Journal of Applied Physics,1979,50(3):2137-2139
    [33]Freitas P P, Berger L. Observation of s-d exchange force between domain walls and electric current in very thin Permalloy films. Journal of Applied Physics,1985.57(4):1266-1269
    [34]Hung C Y, Berger L. Exchange forces between domain wall and electric current in permalloy films of variable thickness. Journal of Applied Physics, 1988,63(8):4276-4278
    [35]张贻松.磁性隧道结中电流诱导的磁化翻转模拟研究:[复旦大学硕士学位论文].上海:复旦大学光科学与工程系,2007,7-8
    [36]Slonczewski J C. Currents. Torques, and Polarization Factors in Magnetic Tunnel Junctions. Physical Review B,2005,71(2):024411
    [37]姜勇.自旋角动量转移效应的实验研究.物理学进展,2008.28(3):215-235
    [38]Tsoi M, Jansen A G M, Bass J, et al. Excitation of a magnetic multilayer by an electric current. Physical Review Letters,1998,80(19):4281-4284
    [39]Albert F J. Katine J A, Buhrman R A, et al. Spin-polarized current switching of a Co thin film nanomagnet. Applied Physics Letters,2000,77 (23):3809-3911
    [40]Katine J A, Albert F J, R. A. Buhrman. et al. Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars. Physical Review Letters,2000,84(14):3149-3152
    [41]Cowburn R P. Koltsov D K, Adeyeye A O. et al. Single-Domain Circular Nanomagnets. Physical Review Letters,1999,83(5):1042-1045
    [42]Wegrowe J E, Hoffer X, Guittienne P, et al. Spin-polarized current induced magnetization switch:Is the modulus of the magnetic layer conserved? Journal of Applied Physics,2002.91(10):6806-6811
    [43]Albert F J, Emley N C, Myers E B, et al. Quantitative Study of Magnetization Reversal by Spin-Polarized Current in Magnetic Multilayer Nanopillars. Physical Review Letters,2002,89(22):226802
    [44]Urazhdin S, Norman 0 B, Pratt W P, et al. Current-Driven Magnetic Excitations in Permalloy-Based Multilayer Nanopillars. Physical Review Letters,2003,91 (14):146803
    [45]Fert A, Cros V, George J M, et al. Magnetization reversal by injection and transfer of spin:experiments and theory. Journal of Magnetism and Magnetic Materials,2004,272-276:1706-1711
    [46]Kaka S, Pufall M R. Rippard W H, Spin transfer switching of spin valve nanopillars using nanosecond pulsed currents. Journal of Magnetism and Magnetic Materials,2005,286:375-380
    [47]Peng X L. Xi H W, Granstrom E, et al. Current-induced hysteretic switching and reversible transition of magnetization in spin-valve structures with current constraint paths in spacer layers. Physical Review B,2005,72(5):052403
    [48]Covington M, AlHajDarwish M, Ding Y, et al. Spin transfer effects in current perpendicular to the plane spin valves. Journal of Magnetism and Magnetic Materials,2005,287:325-332
    [49]Kiselev S I, Sankey J C, Krivorotov I N, et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature.2003.425:380
    [50]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社.2003:410-411
    [51]Ralph D C, Stiles M D. Spin transfer torques. Journal of Magnetism and Magnetic Materials,2008,320(7):1190-1216
    [52]Yang Z, Zhang S. Li Y C. Chaotic Dynamics of Spin-Valve Oscillators. Physical Review Letters,2007,99(13):134101
    [53]Li Z. Li Y C, Zhang S. Dynamic magnetization states of a spin valve in the presence of dc and ac currents:Synchronization, modification, and chaos. Physical Review B,2006,74(5):054417
    [54]Xu H Z, Chen X. Liu J M. Chaos suppression in a spin-torque nano-oscillator. 2008,104(9):093919
    [55]Ustinov A B, Demidov V E. Kondrashov A V. et al. Observation of the Chaotic Spin-Wave Soliton Trains in Magnetic Films. Physical Review Letters, 2011.106(1):017201
    [56]金伟,万振茂,刘要稳.自旋转移效应激发的非线性磁化动力学.物理学报,2011,60(1):017502
    [57]Lee K J, Deac A, Redon O, et al. Excitations of Incoherent Spin-Waves due to Spin-Transfer Torque.2004, Nature Materials,3:877-881
    [58]Rippard W H, Pufall M R, Kaka S, et al, Direct-Current Induced Dynamics in Co90 Feio/Ni80Fe20 Point Contacts. Physical Review Letters,2004,92(2): 027201
    [59]Silva T J, Rippard W H. Developments in nano-oscillators based upon spintransfer point-contact devices. Journal of Magnetism and Magnetic Materials,2008,320:1260
    [60]Hoefer M A, Ablowitz M J, Ilan B, et al. Theory of Magnetodynamics Induced by Spin Torque in Perpendicularly Magnetized Thin Films. Physical Review Letters,2005,95(26):267206
    [61]Pribiag V S, Krivorotov I N, Fuchs G D, et al. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nature Physics,2007,3(7):498-503
    [62]Devolder T, Meftah A, Ito K, et al. Spin transfer oscillators emitting microwave in zero applied magnetic field. Journal of Applied Physics,2007, 101(6):063916
    [63]Grollier J, Cros V, Fert A. Synchronization of spin-transfer oscillators driven by stimulated microwave currents. Physical Review B,2006,73(6):060409
    [64]Dussaux A, Khvalkovskiy A V, Grollier J, et al. Phase locking of vortex based spin transfer oscillators to a microwave current. Applied Physics Letters,2011, 98(13):132506
    [65]Chang J H, Chen H H, Chang C R. Phase locking of dynamical modes in a nanomagnetic oscillator with a circularly spin-polarized current. Physical Review B,2011,84(5):054457
    [66]董浩,陈培毅.胡九宁,等.对称磁多层结构纳米自旋传输矩微波振荡器.微纳电子技术,2010,47(1):1-5
    [67]Tulapurkar A A. Suzuki Y, Fukushima A, et al. Spin-torque diode effect in magnetic tunnel junctions. Nature,2005,438:339-432
    [68]Sankey J C, Braganca P M, Garcia A G F. et al. Spin-transfer-Driven Ferromagnetic Resonance of Indibidual Nanomagnets. Physical Review Letters, 2006.96(22):227601
    [69]Fuchs G D, Sankey J C, Pribiag V S, et al. Spin-torque ferromagnetic resonance measurements of damping in nanomagnets. Applied Physics Letters, 2007,91(8):062507
    [70]Chen W, Beaujour L. Loubens G. et al. Spin-torque driven ferromagnetic resonance of Co/Ni synthetic layers in spin valves. Applied Physics Letters, 2008,92(1):012507
    [71]Chen W, Loubens G. Beaujour J M L, et al. Finite size effects on spin-torque driven ferromagnetic resonance in spin valves with a Co/Ni synthetic free layer. Journal of Applied Physics,2008,103(7):07A502
    [72]Torres L, Finocchio G, Lopez-Diaz L, et al. Micromagnetic modal analysis of spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Journal of Applied Physics,2007,101(9):09A502
    [73]Xi H W. Shi Y M, Gao K Z. Spin-current effect on ferromagnetic resonance in patterned magnetic thin film structures. Journal of Applied Physics,2005, 97(3):033904
    [74]Kupferschmidt J N, Adam S, Brouwer P W. Theory of spin-driven ferromagnetic resonance in a ferromagnet/normal metal/ferromagnet structure. Physical Review B,2006,74(13):134416
    [75]Kovalev A A, Bauer G E W, Brataas A. Current-driven ferromagnetic resonance, mechanical torques, and rotary motion in magnetic nanostructures. Physical Review B,2007,75(1):014430
    [76]Farle M. Ferromagnetic resonance of ultrathin metallic layers. Reports on Progress in Physics,1998,61:755-826
    [77]Kubota H, Fukushima A. Yakushiji K, et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nature physics,2008,4:37-41
    [78]Sankey J C, Cui Y T, Buhrman R A, et al. Measurement of the Spin-Transfer-Torque Vector in Magnetic Tunnel Junctions. Nature physics, 2008,4:67-71
    [79]Celinski Z. Urquhart K B, Heinrich B. Using ferromagnetic resonance to measure magnetic moments of ultrathin films. Journal of Applied Physics, 1997,81(8):4475
    [80]Tsoi M, Tsoi V. Bass J, et al. Current-driven resonances in magnetic multilayers. Physical Review Letters,2002,89(24):246803
    [81]Counil G, Joo Von Kim, Devolder T, et al. Spin wave contributions to the high-frequency magnetic response of thin films obtained with inductive methods. Journal of Applied Physics.2004,95(10):5646-5652
    [82]Cai J W, Kitakami O, Shimada Y. Isotropic soft magnetic properties of CoFeAlCu films with (111) orientation. Journal of Applied Physics,1996, 79(3):1625-1629
    [83]Rado G T. Theory of ferromagnetic resonance and static magnetization in ultrathin crystals. Physical Review B,1982,26(1):295-304
    [84]He P B, Li Z D, Pan A L, et al. Current-driven ferromagnetic resonance in magnetic trilayers with a tilted spin polarizer. Journal of Applied Physics. 2009,105:043908
    [85]He P B, Li Z D, Pan A L, et al. Theory of ferromagnetic resonance in magnetic trilayers with a tilted spin polarizer. Physical Review B,2008,78(5):054420
    [86]Youssef J B, Layadi A. Ferromagnetic resonance study of Permalloy/Cu/Co/NiO spin valve system. Journal of Applied Physics,2010, 108(5):053913
    [87]Bonin R, Aquino M, Bertotti G, et al. Stability of magnetization oscillations driven by spin-polarized currents. Journal of Applied Physics,2011,109(7): 07C902
    [88]Bazaliy Y B, Jones B A, Zhang S C. Towards metallic magnetic memory:How to interpret experimental results on magnetic switching induced by spin-polarized currents. Journal of Applied Physics,2001.89(11):6793-6795
    [89]Bazaliy Y B, Jones B A, Zhang S C. Current-induced magnetization switching in small domains of different anisotropies. Physical Review B,2004,69(9). 094421
    [90]Grollier J, Cros V, Jaffres H, et al. Field dependence of magnetization reversal by spin transfer. Physical Review B,2003,67(17):174402
    [91]Morise H, Nakamura S. Stable magnetization states under a spin-polarized current and a magnetic field. Physical Review B,2005,71(1):014439
    [92]Smith N, Katine J A, Childress J R, et al. Angular Dependence of Spin Torque Critical Currents for CPP-GMR Read Heads. IEEE Transactions on Magnetics. 2005,41(10),2935-2940
    [93]Slavin A N, Tiberkevich V S. Current-induced bistability and dynamic range of microwave generation in magnetic nanostructures. Physical Review B, 2005,72(9):094428
    [94]Ebels U, Houssameddine D. Firastrau I, et al. Macrospin description of the perpendicular polarizer-planar free-layer spin-torque oscillator. Physical Review B.2008.78(2):024436
    [95]Meng H, Wang J P. Spin transfer in nanomagnetic devices with perpendicular anisotropy. Applied Physics Letters,2006,88(17):172506
    [96]Seki T, Mitani S, Yakushiji K, et al. Magnetization reversal by spin-transfer torque in 90° configuration with a perpendicular spin polarizer. Applied Physics Letters,2006,89(17):172504
    [97]Gusakova D, Houssameddine D, Ebels U, et al. Spin-polarized current-induced excitations in a coupled magnetic layer system. Physical Review B,2009, 79(10):104406
    [98]Bertotti G, Serpico C, Mayergoyz I D, et al. Magnetization Switching and Microwave Oscillations in Nanomagnets Driven by Spin-Polarized Currents. Physical Review Letters,2005,94(12):127206
    [99]Zeng Z M, Upadhyaya P, Amiri P K, et al. Enhancement of microwave emission in magnetic tunnel junction oscillators through in-plane field orientation. Applied Physics Letters,2011.99(3):032503
    [100]Zhu W J, Liu Y W, Duan C G. et al. Modeling of the spin-transfer torque switching in FePt/MgO-based perpendicular magnetic tunnel junctions:A combined ab initio and micromagnetic simulation study. Applied Physics Letters.2011,99(3):032508
    [101]Xue L, Wang C, Cui Y T, et al. Conditions for microwave amplification due to spin-torque dynamics in magnetic tunnel junctions. Applied Physics Letters, 2011,99(2):022505
    [102]Mangin S, Ravelosona D. J. A. Katine, et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Materials,2006, 5:210-215
    [103]Roy U, Seinige H, Ferdousi, et al. Spin-transfer-torque switching in spin valve structures with perpendicular, canted, and in-plane magnetic anisotropies. Journal of Applied Physics.2012, 111(7):07C913
    [104]Layadi A. A theoretical investigation of the effect of the oblique anisotropy axis on the ferromagnetic resonance linewidth. Journal of Applied Physics, 1999,86(3):1625-1629
    [105]Layadi A. Ferromagnetic resonance modes in single and coupled layers with oblique anisotropy axis. Physical Review B.2001,63(17):174410
    [106]Gao K Z, Bertram H N. Magnetic recording configuration for densities beyond 1 Tb/in and data rates beyond 1 Gb/s. IEEE Transactions on Magnetics,2002, 38(6):3675-3683
    [107]Wang J P, Zou Y Y, Hee C H, et al. Approaches to tilted magnetic recording for extremely high areal density. IEEE Transactions on Magnetics,2003, 39(4):1930-1935
    [108]Zou Y Y, Wang J P, Hee C H, et al. Tilted media in a perpendicular recording system for high areal density recording. Applied Physics Letters.2003,82(15): 2473-2475
    [109]Wang J P. Magnetic Data Storage:Tilting for the top. Nature Materials,2005,4: 191-192
    [110]Albrecht M, Hu G, Guhr I L, et al. Magnetic multilayers on nanospheres. Nature Materials,2005,4:203-204
    [111]Singh A K, Yin J, Ko H Y Y, et al. Fabrication and characterization of granular-type (FePt/Fe Pt)-and (FePt/fcc FePt)-tilted magnetic recording media. Journal of Applied Physics,2006,99(8):08E704
    [112]Seki T, Tomita H, Tulapurkar A A, et al. Spin-transfer-torque-induced ferromagnetic resonance for Fe/Cr/Fe layers with an antiferromagnetic coupling field. Applied Physics Letters,2009,94(21):212502
    [113]Carpentieri M, Torres L. Micromagnetic computation of interface conductance of spin-transfer driven ferromagnetic resonance in nanopillar spin valves. Journal of Applied Physics.2009,105(7):07D112
    [114]Wang C, Cui Y T, Sun J Z, et al. Sensitivity of spin-torque diodes for frequency-tunable resonant microwave detection. Journal of Applied Physics. 2009.106:053905
    [115]Zha C L, Fang Y Y, Nogues J. et al. Improved magnetoresistance through spacer thickness optimization in tilted pseudo spin valves based on L10(111)oriented FePtCu fixed layers. Journal of Applied Physics,2009, 106(5):053909
    [116]Wang C, Cui Y T. Sun J Z. et al. Bias and angular dependence of spin-transfer torque in magnetic tunnel junctions. Physical Review B,2009,79(22):224416
    [117]Lee C M, Yang J S, Wu T H. Micromagnetic Simulation for Spin-Transfer Switching With a Tilted Spin Polarize. IEEE Transactions on Magnetics,2011, 47(3):649-652
    [118]Sbiaa R, Law R, Tan E L, et al. Spin transfer switching enhancement in perpendicular anisotropy magnetic tunnel junctions with a canted in-plane spin polarizer. Journal of Applied Physics,2009,105(1):013910
    [119]Zhou Y, Zha C L, Bonetti S, et al. Spin-torque oscillator with tilted fixed layer magnetization. Applied Physics Letters,2008,92(26):262508
    [120]Bazaliy Y B. Planar approximation for spin transfer systems with application to tilted polarizer devices. Physical Review B,2012,85(1):014431
    [121]Slonczewski J C. Excitation of spin waves by an electric current.1999,195: L261-L268
    [122]Myers E B, Ralph D C, Katine J A, et al. Current-Induced Switching of Domains in Magnetic Multilayer Devices. Science,1999,285:867-870
    [123]Sun J Z. Spin-current interaction with a monodomain magnetic body:A model study. Physical Review B,2000,62(1):570-578
    [124]Li Z, Zhang S. Magnetization dynamics with a spin-transfer torque. Physical Review B,2003,68(2):024404
    [125]Bonin R, Bertotti G, Mayergoyz I D, et al. Spin-torque-driven magnetization dynamics in nanomagnets subject to magnetic fields perpendicular to the sample plane. Journal of Applied Physics,2005,99(8):08G508
    [126]Bonin R, Bertotti G, Mayergoyz I D, et al. Thermal stability in spin-torque-driven magnetization dynamics. Journal of Applied Physics,2005, 99(8):08G505
    [127]Bertotti G. Serpico C, Mayergoyz I D, et al. Current-induced magnetization dynamics in nanomagnets. Journal of Magnetism and Magnetic Materials, 2007,316,285-290
    [128]Li Z, He J, Zhang S. Stability of precessional states induced by spin-current. Physical Review B,2005,72(21):212411
    [129]Xi H W. Gao K Z, Shi Y M. Microwave generation by a direct current spin-polarized current in nanoscale square magnets. Applied Physics Letters, 2004,84(24):4977
    [130]H. W. Xi, Y. M. Shi, High frequency magnetization rotation induced by a dc spin-polarized current in magnetic nanostructures. Journal of Applied Physics. 2004,96(3):1585
    [131]Rezende S M. Aguiar F.M. Azevedo A. Magnon excitation by spin-polarized direct currents in magnetic nanostructures. Physical Review B,2006,73(9): 094402 (2006)
    [132]Rezende S M, Aguiar F M, Azevedo A. Spin-Wave Theory for the Dynamics Induced by Direct Currents in Magnetic Multilayers. Physical Review Letters. 2005,94(3):037202
    [133]Li Z, He J. Zhang S. Magnetization instability driven by spin torques. Journal of Applied Physics,2005,97(10):10C703
    [134]Shin S C. Agarwala A K. Magnetic anisotropy in TbFe thin films prepared at oblique incidence. Journal of Applied Physics,1988,63(8):3645-3647
    [135]Zhou Y, Zha C L, Bonetti S, et al. Microwave generation of tilted-polarizer spin torque oscillator. Journal of Applied Physics,2009,105(7):07D116
    [136]刘秉正,彭建华.非线性动力学.北京:高等教育出版社,2007, 31-34
    [137]Zhou Y, Bonetti S, Zha C L, et al. Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer. New Journal of Physics,2009,11:103028
    [138]Berger L. Multilayer configuration for experiments of spin precession induced by a dc current. Journal of Applied Physics,2003,93(10):7693-7695
    [139]Fuchs G D, Krivorotov 1 N, Braganca P M, et al. Adjustable spin torque in magnetic tunnel junctions with two fixed layers. Applied Physics Letters,2005, 86(15):152509
    [140]Huai Y M, Pakala M, Diao Z T, et al, Spin transfer switching current reduction in magnetic tunnel junction based dual spin filter structures. Applied Physics Letters,2005,87(22):222510
    [141]Diao Z T, Panchula A, Ding Y F, et al. Spin transfer switching in dual MgO magnetic tunnel junctions. Applied Physics Letters,2007,90(13):132508
    [142]Salahuddin S, Datta S. Self-consistent simulation of quantum transport and magnetization dynamics in spin-torque based devices. Applied Physics Letters. 2006,89(15):153504
    [143]Balaz P, Gmitra M, Barnas J. Current-induced dynamics in noncollinear dual spin valves. Physical Review B,2009,80(17):174404
    [144]Mojumder N N, Augustine C, Nikonov D E, et. al. Effect of quantum confinement on spin transport and magnetization dynamics in dual barrier spin transfer torque magnetic tunnel junctions. Journal of Applied Physics, 2010,108(10):104306
    [145]Yan P. Sun Z Z, Wang X R. Spin transfer torque enhancement in dual spin valve in the ballistic regime. Physical Review B,2010,83(17):174430
    [146]Zhang S, Levy P M, Fert A. Mechanisms of Spin-Polarized Current-Driven Magnetization Switching. Physical Review Letters,2002,88(23):236601
    [147]Urazhdin S, Birge N O, Pratt W P, et al. Current-Driven Magnetic Excitations in Permalloy-Based Multilayer Nanopillars. Physical Review Letters,2003, 91(14):146801
    [148]Zimmler M A, Ozyilmaz B, Chen W, et al. Current-induced effective magnetic fields in Co/Cu/Co nanopillars. Physical Review B.2004.70(18):184438
    [149]Petit S. Baraduc C, Thirion C, et al. Spin-Torque Influence on the High-Frequency Magnetization Fluctuations in Magnetic Tunnel Junctions. Physical Review Letters,2007,98(7):077203
    [150]Li Z, Zhang S, Diao Z, et al. Perpendicular Spin Torques in Magnetic Tunnel Junctions. Physical Review Letters,2008,100(24):246602
    [151]Deac A M, Fukushima A, Kubota H, et al. Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nature Physics, 2008,4:803-809
    [152]J. Guo, M. B. A. Jalil, Seongtae Bae. Current-induced magnetization reversal mechanisms of pseudospin valves with perpendicular anisotropy. Journal of Applied Physics,2007,102(9) 093902
    [153]Zhou Y, Akerman J. Perpendicular spin torque promotes synchronization of magnetic tunnel junction based spin torque oscillators. Applied Physics Letters, 2009,94(11):112503
    [154]Heiliger C, Stiles M D. Ab Initio Studies of the Spin-Transfer Torque in Magnetic Tunnel Junctions. Physical Review Letters,2008,100(18):186805
    [155]Heinonen O G, Stokes S W, Yi J Y. Perpendicular Spin Torque in Magnetic Tunnel Junctions. Physical Review Letters,2010,105(6):066602
    [156]Oh S C, Park S Y, Manchon A, et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions. Nature Physics.2009,5:898
    [157]Xiao J, Bauer G E W, Brataas A. Spin-transfer torque in magnetic tunnel junctions:Scattering theory. Physical Review B,2008,77(22):224419
    [158]Zhang Z Z, Qiu Y C. Jin Q Y, et al. Micromagnetic study of fieldlike spin torque effect on the magnetization switching in tunnel junctions with perpendicular anisotropy. Applied Physics Letters.2010.97(17):172501
    [159]Zhou Y. Effect of the field-like spin torque on the switching current and switching speed of magnetic tunnel junction with perpendicularly magnetized free layers. Journal of Applied Physics,2011,109(2):023916
    [160]Bertotti G, Bon in R. Serpico C, et al. Spin-wave analysis of uniaxial nanopillar devices. Journal of Applied Physics.2009,105:07D104
    [161]Griffiths J H E. Anomalous High-frequency Resistance of Ferromagnetic Metals. Nature,1946,158:670-671
    [162]Kittel C. Interpretation of Anomalous Larmor Frequencies in Ferromagnetic Resonance Experiment. Physical Review.1947,71(4):270-271
    [163j Polder D, VIII. On the theory of ferromagnetic resonance. Philosophical magazine,1949,40(300):99
    [164]Beaujour J M L, Chen W. Krycka K, et al. Ferromagnetic resonance study of sputtered Co/Ni multilayers. European Physical Journal B,2007,59:475-483
    [165]Beaujour J M L, Kent A D, Abraham D W, et al. Ferromagnetic resonance study of polycrystalline Fe1-xVx alloy thin films. Journal of Applied Physics, 2008,103(7):07B519
    [166]Wu C, Khalfan A N. Pettiford C. et al. Ferromagnetic resonance studies of surface and bulk spin-wave modes in a CoFe/PtMn/CoFe multilayer film. Journal of Applied Physics,2008,103(7):07B525
    [167]Kakazei G N, Martin P P, Ruiz A, et al. Ferromagnetic resonance of ultrathin Co/Ag superlattices on Si(111). Journal of Applied Physics,2008,103(7): 07B527
    [168]Farle M, Platow W, Kosubek E, et al. Magnetic anisotropy of Co/Cu(111) ultrathin films. Surface science,1999,439:146-152
    [169]Kardasz B, Mosendz O, Heinrich B, et al. Spin current studies in Fe/Ag,Au/Fe by ferromagnetic resonance and time-resolved magneto-optics. Journal of Applied Physics,2008,103(7):07C509
    [170]Heinrich B, Tserkovnyak Y, Woltersdorf G, et al. Dynamic Exchange Coupling in Magnetic Bilayers. Physical Review Letters,2003,90(18):187601
    [171]Lenz K. Tolinski T, Lindner J, et al. Evidence of spin-pumping effect in the ferromagnetic resonance of coupled trilayers. Physical Review B,2004,69(14): 144422
    [172]Lindner J, Baberschke K. In situ ferromagnetic resonance:an ultimate tool to investigate the coupling in ultrathin magnetic films. Journal of Physics: Condens Matter,2003,15:R193-R232
    [173]Lindner J, Baberschke K. Ferromagnetic resonance in coupled ultrathin films. Journal of Physics:Condens Matter,2003,15:S465-S478
    [174]Mosendz O, Kardasz B, Heinrich B. Ferromagnetic resonance and spin momentum exchange in crystalline magnetic ultrathin films in noncollinear configuration. Journal of Applied Physics,2008,103(7):07B505
    [175]Urban R, Woltersdorf G. Heinrich B. Gilbert Damping in Single and Multilayer Ultrathin Films:Role of Interfaces in Nonlocal Spin Dynamics. Physical Review Letters,2001,87:217204
    [176]Heinrich B, Woltersdorf G, Urban R, et al. Role of spin current in magnetic relaxations of metallic multilayer films. Journal of Magnetism and Magnetic Materials,2003,258-259:376-381
    [177]Heinrich B. Woltersdorf G. Urban R. et al. Role of dynamic exchange coupling in magnetic relaxations of metallic multilayer films. Journal of Applied Physics,2003,93(10):7545-7550
    [178]Mizukami S, Ando Y, Miyazaki T. Ferromagnetic resonance linewidth for NM/80NiFe/NM films (NM=Cu, Ta, Pd and Pt). Journal of Magnetism and Magnetic Materials,2001,226-230:1640-1642
    [179]Mizukami S. Ando Y, Miyazaki T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Physical Review B,2002,66(10):104413
    [180]Lubitz P, Cheng S F, Rachford F J. Increase of magnetic damping in thin polycrystalline Fe films induced by Cu/Fe overlayers. Journal of Applied Physics,2003,93(10):8283-8285
    [181]Leea H K. Yuan Z M. Studies of the magnetization reversal process driven by an oscillating field. Journal of Applied Physics,2007,101(3):033903
    [182]Scholz W, Batra S. Micromagnetic modeling of ferromagnetic resonance assisted switching. Journal of Applied Physics,2008,103(7):07F539
    [183]Gabriel D C. Daniel L S, Andrew D K, et al. Minimum action paths for spin-torque assisted thermally induced magnetization reversal. Journal of Applied Physics,2011,109(7):07C918
    [184]d Aquino M. Serpico C, Bonin R, et al. Thermally induced synchronization and stochastic resonance between magnetization regimes in spin-transfer nano-oscillators. Journal of Applied Physics,2012,111(7):07C915
    [185]Swarnali B. Arne B. Gerrit E W B. Feedback control of noise in spin valves by the spin-transfer torque. Applied Physics Letters,2011,98(8):083110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700