弱测量及量子测量相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子力学是现代物理学的理论基础,其中量子测量问题则是量子力学的基本问题。对量子测量问题的研究不仅能加深我们对物理世界的认识,推动物理学本身的发展,而且可以由此发展出新的实验方法,从而促进实验技术的提高。本论文主要讨论量子测量问题,具体针对弱测量问题、信息获取量与测量耦合强度的关系、量子系综的经典性和量子性问题进行研究。主要的研究内容有如下几方面:
     1.简要描述量子测量的一般理论,并对弱测量理论的发展现状及应用做必要的介绍。现有的弱测量理论,由于在推导弱测量结论的时候使用了近似,使其适用范围受到了限制,例如当先选择态|Ψi)和后选择态|Ψi)接近或者正交的时候,现有的弱测量的结论将不再成立。所以需要比现有理论更加精确的弱测量理论。本文在研究弱测量问题的时候,没有使用任何近似,并抛弃了弱值的概念。我们给出的结论不仅对弱耦合强度的情况成立,而且对强耦合强度的情况也成立。我们可以通过变化耦合强度,来得到弱耦合和强耦合时的测量结果,并发现:当耦合强度弱的情况下,我们可以通过选取合适的先后选择态,来得到明显放大的仪器指针偏移量;当耦合强度强的时候,我们不能通过先后选择得到任何放大效应。对于测量系统为qubit的情况,我们解析地给出了测量结果的极值,并发现这些极值在不同的耦合强度下对仪器和系统的依赖关系是不一样的。
     2.对在引入弱测量的方法下实验中信噪比的提高问题进行了研究,并给出了具体的计算方法。基于对Stern-Gerlach实验模型的研究,我们得到在考虑由后选择带来的实验数据数目降低的情况下,性噪比并不能得到明显提高的结论。在那些不会因后选择而带来实验数据降低的实验中,引入弱测量的方法能明显提高实验的性噪比。我们还考察了弱测量的方法对实验测量灵敏度的提高,得到与性噪比提高相似的结果:在考虑后选择引起实验数据降低的情况下,测量的灵敏度不会得到明显提高;在不考虑后选择引起实验数据降低的情况下,实验的测量灵敏度可以得到明显的提高。
     3.研究了测量过程中的耦合强度和信息获取量之间的关系,基于量子信息理论中互信息的方法,我们给出了信息获取量以耦合强度为参量的具体计算方法。对于测量仪器的态为高斯波包类型的情况,我们给出了信息获取量具体的计算公式。并得到在耦合强度比较大的情况下,信息的获取量等于在进行正交投影测量下获取的信息量。在信息载体为qubit的情况下,我们证明信息的获取量随着耦合强度的增加单调递增。我们给出了沿互相垂直的方向上的进行测量获取的信息量之间的一个互补关系,即在两个互相垂直的方向上获取信息量的总和小于某一个上限。
     4.利用正交投影测量的方法定义一个量J来衡量一个量子系综的经典性,J的大小告诉我们一个系综有多像一个经典系综。如果一个系综的经典性J=1,那么这个系综在某些情况下可以当成一个经典系综来处理;当一个系综的J<1,那么这个系综将不再能当成一个经典系综来处理。我们发现如果一个系综的经典性越大,那么来自于这个系综的未知态的近似克隆效果越好。一个系综的经典性的数值J给我一个衡量一些经典操纵(比如:态克隆,态删除,态区分)在该系综上能完成的最好程度。在此基础上我们定义了系综的量子性Q=1一J,令人惊奇的是Q刚好是用这个系综进行量子密钥分配时的误码率(error rate)的下限,因此这个量可以给我们在选择密钥分配的系综时提供一个重要参考。
Quantum mechanics is the base of the modern physical theories, and the problem of quantum measurement is one of foundational problems of quantum mechanics. The re-searches on quantum measurement can improve our understanding of the objective word and provide advanced technologies for our experiments. This paper is focused on the problems of weak measurements, the relationship between the coupling strength and the information gain in the measurement, the classicality and quantumness of a quantum en-semble. The main points are summarized as follows:
     1. The theory of quantum measurement is briefly described, and the current the-ories and applications of weak measurements are introduced in this paper. Due to the approximations used in deriving the results of weak measurement, the existed measure-ment results in the previous literature are not valid when the pre-selected state|ψi> and the post-selected state|ψi> are approximatively orthogonal to each other. Thus, we need some more precise descriptions of weak measurements. In this paper, we calculate the shifts of the pointers without any approximation. Without using the concept of weak val-ue, the expressions we obtained are not only valid for the weak interaction cases, but also legitimate for the strong interaction cases. By changing the strength of the interaction, we find:when the coupling strength is weak, the shift of pointer with postselection can be can be much larger than the shift obtained without postselection, and the amplification effect disappears when the interaction strength is strong. We also give the maximum shifts of the measuring device for the two-dimensional systems by choosing appropriate PPS.
     2. The improvement of the signal-to-noise ratio (SNR) by weak measurements is studied. Based on the researches of Stern-Gerlach experiment, we find:without consider-ing the probability of obtaining the outcomes decrease due to postselection, the SNR can be significantly improved by weak measurements; neither SNR cannot be effectively im-proved when the probability decrease is considered. We also study the the enhancement of the measure sensitivity (MS) by weak measurements, similarly with the SNR, the MS cannot be efficiently enhanced if the probability decrease due to postselection is taken into account; the MS can be efficiently enhanced if the probability should not be taken into account.
     3. We investigate the relationships between the information gain and the interaction strength between the quantum systems and measuring apparatus. Based on the theories of quantum information, a general method is proposed to calculate the information gain of the measuring apparatus. The explicit expressions are obtain for the state of the mea-suring apparatus is a Gaussian type. For qubit systems, we prove that the information gain of the measuring apparatus increases monotonically with the coupling strength. A complementarity of information gain is given for the qubit systems in this paper.
     4. In this paper, we propose a quantity J, the ensemble classicality based on projec-tive measurement strategy, to measure the classicality of a given ensemble. The quantity J can tell how classical an ensemble is. When J=1the ensemble behaves like a purely classical ensemble; and when J<1the ensemble cannot be considered as a classical en-semble anymore. We have revealed that the more classical an ensemble is, the better an unknown state from the ensemble can be cloned. The quantity of J provides us with a tool to evaluate how well classical tasks such as cloning, deleting, and distinguishing could be accomplished for quantum ensembles. We also define the quantumness Q of an ensemble and we surprisingly find that the quantumness Q of an ensemble used in quantum key distribution is exactly the attainable lower bound of the error rate.
引文
[1]Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete. Phys. Rev.,1935,47:777-780
    [2]Bohr N. Can quantum-mechanical description of physical reality be considered complete. Phys. Rev.,1935,48:696-702
    [3]PAM.狄拉克.量子力学原理.北京:科学出版社,1965,33-47
    [4]张永德.量子力学.北京:科学出版社,2002,25-28
    [5]张永德.量子信息物理原理.北京:科学出版社,2005,1-28
    [6]Nielsen M A, Chuang. Quantum computation and quantum information. Cam-bridge:Cambridge University Press,2000,61-607
    [7]朗道,栗弗席茨.非相对论量子力学.北京:高等教育出版社,1980,26-30
    [8]Aharonov Y, Albert D Z, Vaidman. How the result of a measurement of a compo-nent of the spin o a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett.,1988, 60(14):1351-1354
    [9]Duck I M, Stevenson P M, Sudarshan E C G. The sense in which a "weak mea-surementof a spin-1/2 particle's spin component yields a value 100. Phys. Rev. D, 1989,40(6):2112-2117
    [10]Jozsa R. Complex weak values in quantum measurement. Phys. Rev. A,2007, 76(4):044103
    [11]Geszti T. Postselected weak measurement beyond the weak value. Phys. Rev. A, 2010,81(4):044102
    [12]Wu S, Li Y. Weak measurements beyond the Aharonov-Albert-Vaidman formal-ism. Phys. Rev. A,2011,83(5):052106
    [13]Aharonov Y, Popescu S, Tollaksen J. A time-symmetric formulation of quantum mechanics. Phys. Today,2010,63:27-32
    [14]Leggett A J. Comment on "How the result of a measurement of a component of the spin of a spin-z particle can turn out to be 100". Phys. Rev. Lett.,1989,62(19): 2325-2325
    [15]Peres A. Quantum measurements with postselection. Phys. Rev. Lett.,1989, 62(19):2326-2326
    [16]Aharonov Y, Vaidman L. Aharonov and Vaidman reply. Phys. Rev. Lett.,1989, 62(19):2327-2327
    [17]Ritchie N W M, Story J G, Hulet R G. Realization of a measurement of a "weak value". Phys Rev Lett,1991,66(9):1107-1110
    [18]Pryde G J, Brien J L O', White A G, et al. Measurement of quantumWeak values of photon polarization Phys. Rev. Lett.,2005,94(22):220405
    [19]Hardy L. Quantum mechanics, local realistic theories, and Lorentz-invariant real-istic theories. Phys. Rev. Lett.,1992,68(20):2981-2984
    [20]Ahronov Y, Botero A, Popescu S, et al. Revisiting Hardy's paradox:counterfac-tual statements, real measurements, entanglement and weak values. Phys. Lett. A, 2002,301(3-4):130-138
    [21]Lundeen J S, Steinberg A M. Experimental joint weak measurement on a photon pair as a probe of Hardy's paradox. Phys. Rev. Lett.,2009,102(2):020404
    [22]Yokota K, Yamamoto T, Koashi M, et al. Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair. New. J. Phys.,2009, 11:033011
    [23]Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measure-ments. Science,2008,319:787-790
    [24]Resch K J. Amplifying a tiny optical effect. Science,2008,319:733-734
    [25]Dixon P B, Starling D J, Jordan A N, et al. Ultrasensitive beam deflection measure-ment via interferometric weak value amplification. Phys Rev Lett,2009,102(17): 173601
    [26]Popescu, S. Weak measurements just got stronger. Phys.,2009,2:32
    [27]Starling D J, Dixon P B, Jordan A N, et al. Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values. Phys. Rev. A, 2009,80(4):041803
    [28]Starling D J, Dixon P B, Jordan A N, et al. Precision frequency measurements with interferometric weak values. Phys Rev A,2009,82(6):063822
    [29]Katz N, Neeley M, Ansmann M, et al. Reversal of the weak measurement of a quantum state in a superconducting phase qubit Phys. Rev. Lett.,2008,101(20): 200401
    [30]Williams N S, Jordan A N. Weak values and the Leggett-Garg inequality in solid-state qubits. Phys. Rev. Lett.,2008,100(2):026804
    [31]Brunner N, Simon C. Measuring small longitudinal phase shifts:weak measure-ments or standard interferometry? Phys. Rev. Lett.,2010,105(1):010405
    [32]Kedem Y, Vaidman L. Modular values and weak values of quantum observables. Phys. Rev. Lett.,2010,105(23):230401
    [33]Dressel J, Agarwal S, Jordan A N. Contextual values of observables in quantum measurements. Phys. Rev. Lett.,2010,104(24):240401
    [34]Zilberberg O, Romito A, Gefen Y. Charge sensing amplification via weak values measurement. Phys. Rev. Lett.,2011,106(8):080405
    [35]Wu S, M(?)lmer K. Weak measurements with a qubit meter. Phys. Lett. A,2009, 374(1):34-39
    [36]Romito A, Gefen Y. Weak values under uncertain conditions. Physica E,2010,42: 343-347
    [37]Shpitalnik V, Gefen Y, Romito A. Tomogrphy of many-body weak values:Mach-Zehnder interferometry. Phys. Rev. Lett.,2008,101(22):226802
    [38]Romito A, Gefen Y, Blanter Y M. Weak values of electron spin in a double quantum dot. Phys. Rev. Lett.,2008,100(5):056801
    [39]Shannon C E. A Mathematical theory of communicaiton. Bell System Tech. J., 1948,27:379-423
    [40]Cover T M, Thomas J A. Elements of information theory. Beijing:Tsinghua University Press,2003,12-49
    [41]Wehrt A. General properties of entropy. Rev. Mod. Phys.,1978,50(2):221-260
    [42]Vedral V. The role of relative entropy in quantum information theory. Rev. Mod. Phys.,2002,74(1):197-234
    [43]Ollivier H, Zurek W H. Quantum discord:a measure of the quantumness of corre-lations. Phys. Rev. Lett.,2001,88(1):017901
    [44]Henderson L, Vedral V. Classical, quantum and total correlations. J. Phys. A,2001, 34:6899-6905
    [45]Piani M, Horodecki P, Horodecki R. No-local-broadcasting theorem for multipar-tite quantum correlations. Phys. Rev. Lett.,2008,100(9):090502
    [46]Wu S, Poulsen U V, M(?)lmer K. Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality. Phys. Rev. A, 2009,80(3):032319
    [47]Luo S. Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A,2008,77(2):022301
    [48]Holevo A S. Statistical problems in quantum physics. Lecture Notes in Mathemat-ics,1973,330:104-119
    [49]Wootters W K, Zurek W H. A single quantum cannor be cloned. Nature,1982, 299:802-803
    [50]Dieks D. Communication by EPR devices. Phys. Lett. A,1982,92:271-272
    [51]Pati A K, Braunstein S L. Impossibility of deleting an unknown quantum state. Nature,2000,404:164-165
    [52]Bennett C H, Brassard G. In:Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India,1984,175-179
    [53]Scarani V, Lblisdir S, Gisin N, et al. Quantum cloning. Rev. Mod. Phys.,2005, 77(4):1225-1256
    [54]Pang S, Wu S. Optimum unambiguous discrimination of linearly independent pure states. Phys. Rev. A,2009,80(5):052320
    [55]Fuchs C A, Sasaki M. Squeezing quantum information through a classical channel: measuring the quantumness of a set of quantum states. Quant. Inf. Comput.,2003, 3(5):377-404
    [56]Fuchs C A. On the quantumness of a Hilbert space. Quant. Inf. Comput.,2004, 4(6-7):467-478
    [57]Luo S, Na L, Sun W. How quantum is a quantum ensemble? Quantum Inf. Process, 2010,9:711-726
    [58]Lorenzo A D, Egues J C. Weak measurement:Effect of the detector dynamics. Phys. Rev. A,2008,77(4):042108
    [59]Starling D J, Dixon P B, Williams N S,et al. Continuous phase amplification with a Sagnac interferometer. Phys. Rev. A,2010,82(1):011802
    [60]Feizpour A, Xing X, Steinberg A M. Amplifying single-photon nonlinearity us-ingweak measurements. Phys. Rev. lett.,2011,107(13):133603
    [61]Wu S, Zukowski M. Feasible optical weak measurements of complementary ob-servables via a single Hamiltonian.2011, arXiv:1106.4607v1.
    [62]Brunner N, Polzik E S, Simon S. Heralded amplification for precision measure-ments with spin ensembles.2011, arXiv:quant-ph/1107.2828v1.
    [63]Taylor J R. An introduction to error analysis:the study of uncertainties in physical measurements. California:University Science Books,1999,3-10
    [64]Hughes I G, Hase T P A. Measurements and their uncertainties:a practical guide to modern error analysis. New York:Oxford University Press,2010,1-7
    [65]Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements:beating the standard quantum limit. Science,2004,306:1330-1336
    [66]Holevo A S. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm.,1973,9(3):177-183
    [67]Hausladen P, Jozsa R, Schumacher B, et al. Classical information capacity of a quantum channel. Phys. Rev. A,1996,54(3):1869-1876
    [68]Maassen H, Uffink J B M. Generalized entropic uncertainty relations. Phys. Rev. Lett.,1988,60(12):1103-1106
    [69]Hall M J W. Information exclusion principle for complementary observables. Phys. Rev. lett.,1995,74(17):3307-3311
    [70]Wu S, Yu S, M(?)lmer K. Complementarity of information sent via different bases. Phys. Rev. A,2009,79(2):022320
    [71]Berta M, Christandl M, Colbeck R, et al. The uncertainty principle in the presence of quantum memory. Nature Phys.,2010,6:659-662
    [72]Li C, Xu J, Xu X, et al. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nature Phys.,2011,7:752-756
    [73]Massar S, Popescu S. Optimal extraction of information from finite quantum en-sembles. Phys. Rev. lett.,1995,74(8):1259-1263
    [74]Fuchs C S. Just two nonorthogonal quantum states.1998, arXiv:quant-ph/9810032v1
    [75]Horodecki M, Horodecki P, Horodecki R, et al. Quantumness of ensemble from no-broadcasting principle.2005, arXiv:quant-ph/0506174v1
    [76]Vedral V, Plenio M B, Rippin M A, et al. Quantifying Entanglement. Phys. Rev. Lett.,1997,78(12):2275-2279
    [77]Modi K, Paterek T, Son W, et al. Unified view of quantum and classical correla-tions. Phys. Rev. Lett.,2010,104(8):080501
    [78]Jozsa R. Fidelity for mixed quantum states. J. Mod. Opt.,1994,41(12):2315-2323
    [79]Jones K R. Fundamental limits upon the measurement of state vectors. Phys. Rev. A,1994,50(5):3682-3699
    [80]Barnum H, Caves C M, Fuchs C A, et al. Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett.,1996,76(15):2818-2821
    [81]Gisin N, Massar S. Optimal quantum cloning machines Phys. Rev. Lett.,1997, 79(11):2153-2156
    [82]Mor T. No cloning of orthogonal states in composite systems. Phys. Rev. Lett., 1998,80(14):3137-3140
    [83]Buzek V, Hillery M. Quantum copying:Beyond the no-cloning theorem. Phys. Rev. A,1996,54(3):1844-1852
    [84]Bru β D, Cinchetti M, D'Arino G M, et al. Phase-covariant quantum cloning. Phys. Rev. A,2000,62(1):012302
    [85]Werner R F. Optimal cloning of pure states. Phys. Rev. A,1998,58(3):1827-1832
    [86]Duan L M, Guo G C. Probabilistic cloning and identification of linearly indepen-dent quantum states. Phys. Rev. Lett.,1998,80(22):4999-5002
    [87]Dang G F, Fan H. Optimal broadcasting of mixed states. Phys. Rev. A,2007,76(2): 022323
    [88]Bartkiewicz K, Miranowicz A, Ozdemir S K. Optimal mirror phase-covariant cloning. Phys. Rev. A,2009,80(3):032306
    [89]Pang S, Wu S. Unambiguously determining the orthogonality of multiple quantum states. Phys Rev. A,2010,82(4):042311
    [90]Jimenez O, Bergou J, Delgado A. Probabilistic cloning of three symmetric states. Phys. Rev. A,2010,82(6):062307
    [91]Bru B D. Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett.,1998,81(14):3018-3021
    [92]Bechmann-Pasquinucci H, Gisin N. Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Phys. Rev. A,1999,59(6):4238-4248
    [93]Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography Rev. Mod. Phys.,2002, 74(1):145-195
    [94]Huttner B, Ekert A K. Information gain in quantum eavesdropping. J. Mod. Opt., 1994,41(12):2455-2466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700