液态金属铅凝固过程中微观结构演变特性的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对液态和非晶态金属的微观结构特征,凝固的基本理论,非晶晶化理论,金属的固态相变,以及液态金属凝固过程中的计算机模拟研究的进展进行了简要概述,然后对本文模拟研究方法及微观结构表征方法进行了详细介绍,并对本文所采用的模拟方法的可靠性通过与实验值的比较进行了验证。最后,本文采用分子动力学模拟方法,并结合双体分布函数、键型指数法和团簇类型指数法(CTIM-2)等微观结构表征方法,以及均方位移(Mean Square Displacement,MSD),非高斯参数(Non-Gaussian Parameter, NGP)等时间关联函数从不同角度,系统研究了液态金属铅(Pb)在不同条件下凝固过程中微观结构的演变机理。
     模拟研究了冷速对液态金属Pb凝固过程中微观团簇结构演变的影响,结果表明:冷速对凝固的最终结构起到了决定性的作用,液态金属Pb形成非晶的临界冷速在5×1012与1×1012K.s-1之间。当以高于此临界冷速凝固时,系统形成以1551,1541和1431为主的非晶态结构;而当以低于此临界冷速凝固时,系统最终形成以1421和1422键型(或基本原子团(1200066)和(12000120))为主的hcp和fcc共存的晶态结构。冷速不仅决定系统最终形成晶态还是非晶态,而且还影响到晶体中不同结构的相对比例;冷速越低,fcc结构所占的比例越大,即系统越倾向于形成热力学稳定相fcc晶体结构。
     为了进一步研究凝固过程微观结构演变及bcc-hcp、bcc-fcc晶格转变机制,本文对包含10000个Pb原子的较大体系以5×1011K.s-1冷速的快速凝固过程进行了模拟。结果表明:随着温度的降低,系统经历了两次相变,一次是液固相变,即从液态晶化形成亚稳bcc相,第二次是固固相变,即亚稳bcc相再转变为热力学上更为稳定的hcp和fcc共存的晶体结构;并且,hcp和fcc相表现出相互竞争的趋势。本文采用团簇跟踪法再现了该转变过程,并从模拟上验证了bcc-hcp和bcc-fcc转变分别遵从由Dmitriev等人修订后的Burgers(贝格斯)转变机制和Bain(贝茵)转变机制;这就对理论和实验进行了有力的补充。研究同时发现,在快速加热的过程中hcp和fcc共存相将重新转变为高温bcc相,即在金属Pb中马氏体转变是可逆的。
     对过冷液态和非晶态金属Pb等温弛豫过程进行了模拟,继续采用团簇类型指数法和团簇跟踪法等对等温晶化过程中bcc相的形成和演变特性进行了分析,研究结果表明:等温晶化过程中,亚稳bcc相最先形成并起到了重要的晶化先驱的作用;bcc相的稳定性密切依赖于等温过程的起始温度和结构,而在较高温度下,即过冷液态区,bcc相在本文的模拟范围内保持稳定,而在较低温度下,即非晶态区,bcc相先形成但最终将部分转变为热力学上更为稳定的hcp结构,而当温度进一步降低到153K以下时,bcc,hcp和fcc相将同时增长;从自由能形成势垒的角度,本文对这一现象进行了清晰的解释,在高温下bcc相的自由能形成势垒最低,因此最容易形成并占绝对优势,而随着温度的降低,hcp和fcc相的自由能形成势垒降低,因此在低温下这两个相更容易形成。受结构起伏和动力学因素的影响,虽然自由能形成势垒最低的原则在相变过程中是最大趋势,但也会有一些例外的情况发生,如本文模拟的233K。
     在前文的工作基础上,进一步采用MSD, NGP等动力学参数对系统在等温晶化过程中的动力学特性进行了分析,对动力学特性与微观结构演变之间的关系进行了研究,并相应给出了较为清晰的物理解释。通过对过冷液态和非晶态金属Pb等温弛豫过程中动力学特性研究发现,在过冷液态和非晶态金属Pb等温晶化过程的初始阶段,系统表现出了明显的动力学非均匀性;并且,温度越低,动力学非均匀性越明显。根据晶化过程中的热力学,动力学和微观结构随弛豫时间的演变特性,我们得到了金属Pb温度时间转变动力学图。并且,通过对273K温度下等温晶化过程动力学特性的细致研究发现,系统微观结构演变与系统动力学特性的演变可以有效地联系起来:在β-弛豫阶段,受“笼子效应”的影响,系统只能进行局域原子团的整体运动,而无法进行扩散型的微观结构调整;而在α-弛豫阶段,原子开始冲破笼子进行自由的扩散,从而系统的晶化过程开始;MSD的第二个平台和NGP的非零平台对应于系统晶化过程的结束。过冷液态金属Pb等温晶化过程是一个扩散型相变,呈现出三个明显的阶段式特征:形核,长大和晶粒粗化。
Some basic areas are firstly reviewed briefly, including the characteristic of mi-crostructures in liquid and glass metal, the basic theories on solidification, amorphous-crystallizing and solid-solid phase transition, and the development of the computer sim-ulation for the liquid as well. Then the simulation methods are validated by comparing the computational results with the corresponding experimental results, and several micro-structural quantifications adopted in the present works are introduced in detail. Based on a series of effective approaches (such as the pair distribution function, the cluster index method (CTIM-2), the mean square displacement (MSD), and the non-gaussian parame-ter (NGP)), the mechanism of the microstructure evolution during the solidification under different conditions are studied systematically from different viewpoints.
     A simulation study for the influence of cooling rate on the evolutions of micro-clusters structures has performed. And the results show that there is a critical cooling rate in the range of5x1012and1x1012K·s-1separating glass forming and crystal form-ing. When the cooling rate is higher than the critical cooling rate, amorphous structures are formed mainly with the1551,1541and1431bond-types. When the cooling rate is lower than the critical cooling rate, the crystal structure mainly with the1421and1422bond-types (the basic clusters of (1200066) and (12000120)of hcp and fcc coexisted) are finally formed. At the same time, it has been found that there are obvious effects of the cooling rate on the relative proportion of the fcc basic cluster to the hcp basic clusters, the smaller the cooling rate is, the bigger relative proportion of the fcc basic cluster, and the system tends to form highly perfect fcc crystal structure.
     The rapid solidification process at the cooling rate of5x1011K·s-1for a system containing10,000Pb atoms is simulated to reveal the microstructure evolution focusing on the bcc-hcp, bcc-fcc transformation mechanisms. It is demonstrated that with temper-ature decreasing, the system undergoes twice phase transitions:liquid state→metastable bcc phase→more stable phase-the hcp and fcc coexisted crystal structure. The hcp and fcc crystal structures are also competing to each other during the transformation process. The detailed trace to the concrete transformation processes illustrates that the bcc-hcp and bcc-fcc transformation are corresponding to the revised Burgers mechanism and Bain mechanism respectively, which provides valuable complement to theory and experiment. It is also found that the hcp and fcc coexistence will transformed back to bcc phase at high temperature during the rapid heating process, in other words, the martensitic transforma-tion in metal Pb is revisable.
     Going further, the isothermal relaxation process of supercooled liquid and glassy Pb have been investigated by molecular dynamics simulation. The formation and evolution characteristics of bcc phase during isothermal crystallization are analyzed with the bond-type index method, cluster-type index method and tracing method. It is found that the metastable bcc phase plays an important role as precursor for crystallization. And the stability of the bcc phase strongly depends on the initial temperature and structure:at the higher temperature with the a supercooled liquid initial state, the bcc phases can form and stably maintain in the relaxation processes; while at the lower temperature with a glassy initial state, the bcc phase form at first and then partially transform into hcp phase, just metastable. When the initial temperature is lower than153K, the hcp and fcc phase in-cline to directly form in the glass structure without undergoing a metastable bcc phase. This result can be well explained from the view point of the free energy barrier:at rel-ative high temperatures, the bcc phase has the lowest free energy barrier, so it is easy to form and keep stable; as temperature decreases, the free energy barrier for hcp and fcc phases are lowered, and both the two phases are easy to form and without undergoing the metastable bcc phase. However, take the structure fluctuation and kinetic influence into consideration, the lowest free energy barrier rule is the most probable case, but does not always work, such as the case at233K in our simulation.
     Based on the above work, the correlation of dynamic character with the microstruc-ture evolution is studied, and the physical interpretation has also been provided. Re-sults suggest that, the supercooled liquid and glassy Pb exhibit the dynamic heterogene-ity during the relaxations; and the lower the temperature, the more apparent the dy-namic heterogeneity. According to the time dependence of thermodynamic, dynamic and structural functions in supercooled liquid and glassy Pb, we plot the temperature-time-transformation (TTT) diagram for metal Pb. Furthermore, the simulation study is also found that the relaxation, nucleation and crystallization can be consistently correlated: the β—relaxation regime is corresponding to minor structural rearrangement because of the "cage effect", while the a—relaxation regime relates to a more diffusive movement favoring the microscopic configuration rearrangement, where the nucleation and growth take place; and the appearance of the second plateau of MSD and the non-zero plateau of NGP is corresponding to the completion of crystallization. Therefore, the nucleation and growth is a diffusive atom rearrangement process, which exhibits three distinct stages of nucleation, increase of nuclei and the coarsening of crystalline grain.
引文
[1]Kurz W, Ficher D J. Fundamentals of solidification. Switzerland:Trans Pub. Ltd, 1998
    [2]Fleming M C. Solidification processing. New York:McGraw-Hill Book Co,1974: 53-155
    [3]《高技术新材料要览》编委会.高技术新材料要览。北京:中国科学技术出版社,1993
    [4]柳百成,沈厚发.21世纪的材料形成加工技术与科学.香山科学会议第184次学术讨论会交流材料,P1-9
    [5]Alder B J, Wainwright T E. Phase transition for a hard sphere system. J. Chem. Phys.,1957,27(5):1208-1209
    [6]曾训一,张洛,倪建森等译.金属玻璃译文集.上海:上海科学技术文献出版社,1980,92-130
    [7]Zhang Y N, Wang L, Wang W M. Thermodynamic, dynamic and structural relax-ation in supercooled liquid and glassy Ni below the critical temperature. J. Phys.: Condens. Matter,2007,19:196106-12
    [8]徐延祎,王丽,边秀房.液态Ni原子团簇演变的计算机模拟.原子与分子物理学报,2002,19(1):65-74
    [9]丛红日,边秀房,李辉,王丽.Cu-Ni合金结构的分子动力学模拟.化学物理学报,2002,15(4):288-294
    [10]刘让苏,覃树萍,侯召阳等.液态金属In凝固过程中微观结构转变的模拟研究.物理学报,2004,53(9):3119-3124
    [11]郑采星,刘让苏,董科军等.液态金属大系统急冷过程中微结构转变机制的模拟研究.稀有金属材料与工程,2001,30(2):89-92
    [12]Waseda Y. The structure of non-crystalline meterials:liquids and amorphous solids. McGraw-Hill,New York,1980
    [13]Takamichi iida, Roderick I.L.Guthrie合著.液态金属的物理性能.北京:科学出版社,1988,20-49
    [14]Li H. Shoulder-peak formation in the process of quenching. Phys. Rev. B., 2003,68:024210-5
    [15]惠希东,陈国良.块体非晶合金.北京:化学工业出版社,2007:40-56
    [16]Hafner J. Theory of the formation of metallic glasses. Phys. Rev. B.,1980,21(2): 406-426
    [17]王一禾,杨膺善主编.非晶态合金.北京:冶金工业出版社,1989,90-115
    [18]丁马太著.材料化学导论.厦门:厦门大学出版社,1995,65-69
    [19]张承甫,龚建森等.液态金属的净化与变质.上海:上海科学与技术出版社,1989
    [20]胡赓祥,钱苗根著.金属学.上海:上海科学与技术出版社,1980
    [21]Bernal J D. A geometrical approach to the structure of liquid. Nature, 1959,187(17):141-147
    [22]Scott G D. Packing of spheres. Nature,1960,188:908-909
    [23][美]F.E.卢博斯基博士主编,柯成,唐与谌,罗阳,何开元译.非晶态金属合金.北京:冶金工业出版社,1989,56-75
    [24]Bennett C H. Serially deposited amorphous aggregates of hard spheres. J. Appl. Phys.,1972,43,2727-2734
    [25]Bernal J D. Theoretical calculation of dense random packings of equal and non-equal sized hard spheres applications to amorphous metallic alloys. J. Non-Cryst. Solids,1973,12:46-60
    [26]Liu R S. A model for the structures of amorphous metal-metalloid alloys. Mater. Sci. Eng.,1988,100:L1-L5 [25a]
    [27]刘让苏.非晶态合金的双层单元结构模型与类金属成分范围.湖南大学学报,1984,11(2):56-63
    [28]陈忠伟,介万奇,坚增运.单相合金快速凝固组织形成原理及应用.材料导报,2001,15(8):13-15
    [29]沈福宁,汤亚力,关绍康,张东捷.凝固理论进展与快速凝固.金属学报.1996,32(7):673-873
    [30]张荣生,刘海洪.快速凝固技术.北京:冶金工业出版社,1996
    [31]张承甫,肖理明,黄志光.凝固理论与凝固技术.武汉:华中工学院出版社,1985
    [32]胡壮麟,周尧和,介万奇.凝固技术.北京:机械工业出版社,1998
    [33]谢发勤,张君,毛协民等.深过冷熔体激发快速定向凝固.材料科学与工艺,19964(3):102-106
    [34]周镇华,李建国等.定向凝固及其研究进展.材料导报,1996,6:1-6
    [35]Trivedi R, Kurz W. Dendritic growth. International Metals Reviews.1994,39(2): 49-74
    [36]Boettinger W J, Coriell S R, Trivedi R. Rapid Solidification Processing:Principles and Technologiesm. Edited by Mehrabian R,and Parrish P A.Santa Narbara,1987
    [37]胡汉起主编.金属凝固原理.北京:机械工业出版社,2000:220-275
    [38]徐祖耀主编.相变原理.北京:科学出版社,1988:1-51
    [39]Duwez P. Metastable phases obtained by rapid quenching from the liquid state. Prog. Solid. State. Ch.,1967,3:377-406
    [40]Turnbull D. Under What Conditions can a Glass be Formed?. Contemp. Phys., 1969,10:473
    [41]Uhlmann D R. A kinetic treatment of glass formation. J. Non-Cryst. Solids,1972, 7:337-348
    [42]戴道生,韩汝琪.非晶态物理.北京:电子工业出版社,1988:672
    [43]Inoue A, Zhang T, Masumoto T. Glass-Forming ability of alloys. J.Non-Cryst. Solids,1993,156:473-480
    [44]Lu Z P, Liu C T. Glass formation criterion for various glass-forming systems. Phys. Rev. Lett.,2003,83:2581
    [45]Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia,2002,50:3501-3512
    [46]Huang L J, Lu L, Liang G Y, et al. Crystallization kinetics of Mg65Cu25Nd1O amorphous alloy. J.Non-Cryst. Solids,2008,354:1048-1053
    [47]Hwang S W, Dong H I, Chun I S, et al. Crystallization and structural relaxation of Co48Mn20Ge1OB1OSi12 amorphous alloy. J. Alloys Compd.,2006,413:206-210
    [48]Marcel M. Crystallization of NANOPERM-type amorphous alloys. J.Non-Cryst. Solids,2008,354:5093-5096
    [49]Pasko A, Kolomysev V, Vermaut P, et al. Crystallization of the amorphous phase and martensitic transformations in multicomponent (Ti,Hf,Zr)(Ni,Cu)-based al-loys. J.Non-Cryst. Solids,2007,354:5093-5096
    [50]Michalika S, Saksl K, Sovaka P, et al. Crystallization of Zr60Fe20Cu20 amorphous alloy. J.Non-Cryst. Solids,2008,354:5093-5096
    [51]Erik J A. Atomistic computer simulation of explosive crystallization in pure silicon and germanium. Phys. Rev. B.,2004,70:094110-10
    [52]Ye F, Lu K. Crystallization kinetics of amorphous solids under pressure. Phys. Rev.B.,1999,60:7018-7024
    [53]Schaafsma A S, Snijders H, vander W F, et al. Amorphous to crystalline transfor-mation of Fe8OB2O. Phys. Rev. B.,1979,20:4423-4430
    [54]Thomas M, Paul Z. Relaxation and crystallization processes in partially or com- pletely amorphized metallic systems:An ion bombardment study on In2Au. Phys. Rev. B.,2004,69:224110-8
    [55]Wang W H, Wu E, Wang R J, et al. Phase transformation in a Zr41Ti14-Cu12.5Ni10Be22.5 bulk amorphous alloy upon crystallization. Phys. Rev. B.,2002, 66:104205-5
    [56]Akihiko H, Yoshihiko H, Kenji A, et al. Crystallization process and glass stabil-ity of an Fe48Cr15Mo14C15B6Tm2 bulk metallic glass. Phys. Rev. B.,2008,78: 144205-6
    [57]Mattoni A, Colombo L. Crystallization kinetics of mixed amorphous-crystalline nanosystems. Phys. Rev. B.,2008,78:075408-8
    [58]卢柯.非晶态合金向纳米晶体的相转变.金属学报,1994,30(1):B1-19
    [59]Pei Q X, Lu C, Lee H P. Crystallizaiton of amorphous alloy during isothermal annealing:a molecular dynamics study. J. Phys.:Condens. Matter,2005,17:1493-1504
    [60]Lu K, Zhang X H. Identification of crystal nucleation and growth in an amorphous FeZr2 alloy by means of electrical resistance measurements. Philos. Mag. Lett., 2000,80(12):795-805
    [61]张宏闻,王建强,卢柯.非晶态铝合金晶化过程的形核与长大行为研究.金属学报,2002,38(6):609-612
    [62]孙国元,陈光,陈国良.非晶合金的晶化理论及几种Mg基非晶合金的晶化行为.有色金属,2004,56(4):1-7
    [63]张振忠,宋广生,杨根仓等.深过冷Fe-B-Si共晶块体纳米材料的凝固组织特征.材料研究学报,1999,35(7):693-697
    [64]林艳,刘让苏,田泽安等.冷却速率对液态金属Zn快速凝固过程中微观结构的影响.物理化学学报,2008,24(2):250-256
    [65]侯召阳,刘让苏,李琛珊等.冷速对液态金属Na凝固过程中微观结构影响的模拟研究.物理学报,2005,54(12):5723-5729
    [66]Volmer M, Weber A. Nucleus formation in supersaturated systems. Z. Phys. Chem.,1926,119(1):277-301
    [67]Becher R, Doring W. The kinetic treatment of nuclear formation in supersaturated vapors. Ann. Phys.,1935,24(2):719-771
    [68]Turnbull D, Fisher J C. Rate of nucleation in condensed systems. J. Chem. Phys., 1949,17(1):71-73
    [69]Geyer U, Schneider S, Johnson W L, et al. Atomic diffusion in the supercooled liquid and glassy states of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Phys. Rev. Lett., 1995,175:2364-2367
    [70]Tiwari G P, Ramanujan R V, Gonal M R, et al. Structural relaxation in metallic glasses. Mater. Sc. Eng.,2001, A304-306:499-504
    [71]Ratzke K, Faupel F. Pressure dependence of cobalt diffusion in amorphous Fe39Ni4oB21. J. Non-Cryst. Solids.1995,181:261-265
    [72]Faupel F, Hiippe P W,Ratzke K. Pressure dependence and isotope effect of self-diffusion in a metallic glass. Phys. Rev. Lett.,1990,65:1219-1222
    [73]Heedemann A, Zollmer V,Ratzke K, et al. Evidence of highly collective co dif-fusion in the whole stability range of Co-Zr glasses. Phys. Rev. Lett.,2000,84: 1467-1470
    [74]Ratzke K, Faupel F. Pressure dependence of 60Co diffusion in amorphous Co76.7Fe2-Nb14.3B7. Phys. Rev. B.,1992,45:7459-7465
    [75]Meyer A, Busch R, Schober H. Time-temperature superposition of structural re-laxation in a viscous metallic liquid. Phys. Rev. Lett.,1999,83:5027-5029
    [76]Lou S. Slow motion in a metallic liquid. Phys. Rev. Lett.,1998,80:4454-4457
    [77]Sjorgen L, Gotze W. α-relaxation near the glass transition. J. Non-Cryst. Solids, 1991,131-133:153-160
    [78]C S巴瑞特,T B马萨尔斯基著.金属的结构.北京:机械工业大学出版社,1996,350-373
    [79]康煜平主编.金属固态相变及应用.北京:化学工业出版社,2007,1-12,84-124
    [80]邓永瑞,许洋,邓青编.固态相变.北京:冶金工业出版社,1996
    [81]徐洲,赵连城编.金属固态相变原理.科学出版社,2004
    [82]Burgers W G. On the process of transition of the cubic-body-centered modificaiton into the hexagonal-close-packed modification of zirconium. Physica,1934,1:561-586
    [83]Sanati M, Saxena A, Lookman T, et al. Landau free energy for a bcc-hcp recon-structive phase transformation. Phys. Rev. B.,2000,63:224114-6
    [84]Morris J R, Ho K M. Molecular dynamic simulation of a homogeneous bcc → hcp transition. Phys. Rev. B.,2000,63:224116-9
    [85]Hannelore K, Pierre T. Competition between Burgers mechanism and Bain de-formation in alkaline-earth metals:Host-guest structures of barium and strontium. Phys. Rev. B.,2007,75:174103-9
    [86]Smith H G, Berliner R, Trivisonno J. Absence of precursor effects above the martensitic transformation in a virgin crystal of Li metal. Phys. Rev. B.,1994, 49:8547-8551
    [87]Ackland G J. Simulation of martensitic microstructure. J. Mater. Sci.,2005,40: 3205-3208
    [88]Pinsook U, Ackland G J. Simulation of martensitic microstructural evolution in zirconium. Phys. Rev. B.,1998,58:11252-11257
    [89]Strauss B, Frey F, Petry W, et al. Martenstic transformation and lattice dynamics of fcc cobalt. Phys. Rev. B.,1996,54:6035-6038
    [90]Toledano P, Krexner G, Prem M, et al. Theory of the martensitic transformation in cobalt. Phys. Rev. B.,2001,64:144104-17
    [91]Smith H G, Berliner R, Jorgensen J D, et al. Pressure effects on the martensitic transformation in metallic lithium. Phys. Rev. B.,1990,41:1231-1234
    [92]Lazarev N P, Abromeit C, Schaublin R, et al. Temperature-controlled martensitic phase transformations in a model NiAl alloy. J. Appl. Phys.,2006,100:063520-10
    [93]Blaschko O, Krexner G, Pleschiutschnig J, et al. Coherent Modulated structure during the martenstic hcp-fcc phase transition in Co and in a CoNi alloy. Phys. Rev. Lett.,1988,60:2800-2803
    [94]Shapiro S M, Larese J Z, Noda Y, et al. Neutron-Scattering study of premartensitic behavior in Ni-Al alloy. Phys. Rev. Lett.,1986,57:3199-3202
    [95]Manosa Li, Zarestky J, Lograsso T, et al. Lattice-dynamical study of the premarten-sitic state of the Cu-Al-Be alloys. Phys. Rev. B.,1993,48:15708-15050
    [96]Shapiro S M, Noda Y, Fujii Y, et al. X-ray investigation of the premartensitic phase in Ni46.8Ti50Fe3.2·Phys. Rev. B.,1984,30:4314-4321
    [97]徐祖耀著.马氏体相变与马氏体.北京:科学出版社,1980,1-81
    [98]冯端著.金属物理学(第二卷相变).北京:科学出版社,2000
    [99]Bain E C. The nature of martensite. Trans AIME,1924,70:25-35
    [100]胡立光,李崇谟,吴锁春编著.钢的热处理(原理和工艺).北京:国防工业出版社,2000,82-86
    [101]Dmitriev V P, Gufan Yu M. Theory of the phase diagram of iron and thallium:the Burgers and Bain deformation mechanisms revised. Phys. Rev. B.,1991,44:7248-7255
    [102]Blaschko O, Dmitriev V, Krexner G, et al. Theory of the the martensitic phase transformations in lithium and sodium. Phys. Rev. B.,1999,59:9095-9112
    [103]Ackland Graeme J, Jones A P, Noble-Eddy R. Molecular dynamics simulations of the martensitic phase transition process. Mater. Sci. Eng. A,2008,481-482:11-17
    [104]Francois W, Carlo M. Temperature-induced hcp-bcc phase transformtion in zirco-nium:A lattice and molecular-dynamics study based on an N-body potential. Phys. Rev. Lett.,1989,63:2244-2247
    [105]Rahman A. Correlations in the motion of atoms in liquid argon. Phys. Rev. A, 1964,136:405-411
    [106]Rahman A, Stillinger F H. Molecular Dynamics study of liquid water. J. Chem. Phys,1971,55:3336-3359
    [107]黄海波.L10-TiAl中角度相关势和Ni3Al中点缺陷的分子动力学研究[D].北京:北京航空航天大学,2003
    [108]Heine V, Abarekov V. A new method for the electronic structure of metals. Phil. Mag.,1964,9(99):451-465
    [109]Harrison W A. Model pseudopotential and the kohn effect in lead. Phys. Rev., 1965,139(1A):A179-A185
    [110]Shaw R. Optimum form of a modified heine-abarenkov model potential for the theory of simple metals. Phys. Rev.,1968,174(3):769-781
    [111]Jena P, Das T P, Mahanti S D. Pseudopotential calculation of the knight shift and relaxation time in magnesium. Phys. Rev. B.,1970,2(6):2264-2267
    [112]Appapillai M, Williams A R. The optimized model potential for thirty-three ele-ments. J. Phys. F:Metal. Phys.,1973,3(4):759-770
    [113]Hausleitner C, Hafner. A novel hybridised nearly-free-electrom tight-binding-bond approach to interatomic forces in disordered transition-metal alloys application to the modelling of metallic glasses. J.Phys.:Condens. Matter,1990,2(31):6651-6657
    [114]Woo C H, Wang S, Matsuura M. Electronic structure of metals. I. Energy inde-pendent model pseudopotential formalism. J. Phys. F:Metal. Phys.,1975,5(10): 1836-1848
    [115]Woo C H, Wang S, Matsuura M. Electronic structure of metals. Ⅱ.Phonon spectra and fermi surface distortions. J. Phys. F:Metal. Phys.,1975,5(10):1849-1859
    [116]Wang S, Lai S K. Structure and electrical resistivities of liquid binary alloys. J. Phys. F:Metal. Phys.,1980,10(12):2717-2737
    [117]Lai S K, Wang S. A computer "experiment" on the microstructure of amorphous Cr. J. Chem. Phys.,1987,87(1):599-603
    [192]Li D H, Moore R A, Wang S. A computer and analytic study of the metallic liquid-glass transition. J. Phys. F:Metal Phys.,1986,16(3):309-321
    [119]Lu J, Szpunar J A. Glass formation and crystallization of liquid and glass rubidium: A constant-pressure molecular-dynamics study. J. Chem. Phys.,1992,97(2):1313-1319
    [120]Qi D W, Lu J, Wang S. Crystallization properties of a supercooled metallic liquid. J. Chem. Phys.,1992,96(1):513-516
    [121]Liu C F, Wang S. On the phase transitions of binary A10.86V0.14 glass. J. Phys.: Condens. Matter,1992,4(32):6729-6734
    [122]Jin Z H, Lu K, Gong Y D, et al. Glass transition and atomic structures in super-cooled Gao.15Zno.15Mgo.7 metallic liquids:A constant pressure molecular dynam-ics study. J. Chem. Phys.,1997,106(21):8830-8840.
    [123]Liu R S, Wang S. Anomalies in the structure factor for some rapidly quenched metals. Phys. Rev. B.,1992,46(18):12001-12003
    [124]Liu R S, Qi D W, Wang S. Subpeaks of the structure factors for rapidly quenched metals. Phys.Rev.B.,1992,45(1):451-453
    [125]刘让苏,覃树萍,侯兆阳等.液态金属In凝固过程中微观结构转变的模拟研究.物理学报,2004,53(9):3119-3124
    [126]Dong K J, Liu R S, Yu A B, et al. Simulation study of the evolution mechanisms of clusters in a large-scale liquid Al system during rapid cooling processes. J. Phys.: Condens. Matter.,2003,15:743-753
    [127]张海涛,刘让苏,侯兆阳等.冷速对液态金属Ga凝固过程中微观结构演变影响的模拟研究.物理学报,2006,55(5):2409-2417
    [128]周丽丽,刘让苏,侯兆阳等.冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究.物理学报,2008,57(6):3653-3660
    [129]高庭红,刘让苏,周丽丽等.液态Ca7Mg3合金快速凝固过程中团簇结构的形成特性.物理化学学报,2009,25(10):2093-2100
    [130]周丽丽,刘让苏,田泽安等.凝固条件对液态Ca7Mg3合金纳米结构演变影响的模拟研究.第七届功能材料会议(第七分册),2010:304-308
    [131]Hou Z Y, Liu L X, Liu R S, et al. Short-range and medium-range order in Ca7Mg3 metallic glass. J. Appl. Phys.,2010,107(8):083511-7
    [132]Liu F X, Liu R S, Hou Z Y, et al. Formation mechanism of atomic cluster structures in Al-Mg alloy during rapid solidification processes. Annals of Physics,2009,324: 332-342
    [133]Hou Z Y, Liu L X, Liu R S, et al. Kinetic details of nucleation in supercooled liquid Na:A simulation tracing study. Chem. Phys. Lett.,2010,491(4-6):172-176
    [134]Hou Z Y, Liu L X, Liu R S, et al. Tracing nucleation and growth on atomic level in amorphous sodium by molecular dynamics simulation. Chin. Phys. Lett,2010,27(3):036101-4
    [135]Swope W C, Anderson H C.106 particle molecular-dynamics study of homoge-neous nucleation of crystals in supercooled atomic liquid. Phys. Rev. B.,1991, 41(10):7042-7054
    [136]Streitz F H, Glosli J N, Patel M V. Beyond finite-size scaling in solidification simulations. Phys. Rev. Lett.,2006,96(22):22570-1-4
    [137]Johnson R A. Analytic nearest-neighbor model for fcc metals. Phys. Rev. B.,1989, 37(12):3924-3931.
    [138]Baskes M I. Modified embedded-atom potentials for cubic materials and impuri-ties. Phys. Rev. B.,1992,46:2727-2741.
    [139]Baskes M I. Apllication of the embedded-atom method to covalent materials:A semiempirical potential for silicon. Phys. Rev. Lett.,1987,59:2666-2669.
    [140]Baskes M I, Nelson J S, Wright A F. Semiempirical modified embedded-atom potentials for silicon and germanium. Phys. Rev. B.,1989,40:6085-6109.
    [141]Foiles S M,Baskes M I, Daw M S. Embedded-atom-method function for the fcc metal Cu, Ag,Au,Ni,Pd,Pt and their alloys. Phys. Rev.B.,1986,33(12):7983-7991
    [142]Zhang B W, Ouyang Y F, Liao S Z, et al. An analytic MEAM mode for all BCC transition metals. Physica B,1999,262(3-4):218-225
    [143]Manninen M, Johnson R A. Interatomic interactions in solids:An effective-Medium approach. Phys. Rev.B.,1986,34(12):8486-8495
    [144]Luo W H, Hu W Y, Xiao S F. Melting temperature of Pb nanostructural materials from free energy calculation. J. Chem. Phys,2008,128:074710-9
    [145]Xiao S F, Hu W Y. Comparative study of microstructural evolution during melting and crystallization. J. Chem. Phys,2006,125(1):014503-7
    [146]Sheng H W, He J H, Ma E. Molecular dynamics simulation studies of atomic-level structures in rapidly quenched Ag-Cu nonequilibrium alloys. Phys. Rev. B.,2002, 65(18):184203-10
    [147]Finnis M W, Sinclair J E. A simple empirical n-body potential for transition-metals. Philos.Mag.A.,1984,50(1):45-55
    [148]Ackland G J, Vitek V. Many-body potentials and atomic-scale relaxations in noble- metal alloys[J]. Phys. Rev. B.,1990,41:10324-10333.
    [149]Finney J L. Random packing and the structure of simple liquids. Proc. R. Soc. A, 1970,319(10):479-493.
    [150]Yamamoto R, Doyama M. The polyhedron anc cavity analyses of a structural model of amorphous iron. J. Phys. F:Metal Phys.,1979,9(4):617-627.
    [151]Hsu C S, Rahman A. Interaction potentials and their effect on crystal nucleation and symmetry. J. Chem. Phys.,1979,71(12):4974-4986.
    [152]Watanabe M S, Tsumuraya K. Crystallization and glass formation processes in liquid sodium:a molecular dynamics study. J. Chem. Phys.,1987,87(8):4891-4900.
    [153]Srolovitz D, Maeda K, Takeuch S, et al. Local structure and topology of model amorphous metal. J. Phys. F:Metal Phys.,1981,11(11):2209-2219.
    [154]Takagi T, Ohkubo T, Hirotsu Y, et al. Local structure of amorphous Zr7oPd30 alloy studied by electron diffraction. Appl. Phys. Lett.,2001,79(4):485-487.
    [155]Boudreaux D S, Frost H J. Short-range order in theoretical models of binary metal-lic glass alloys. Phys. Rev. B,1981,23(4):1506-1516.
    [156]Steinhardt P J, Nelson D R, and Ronchetti M. Bond-orientational order in liquids and glasses. Rhys. Rev. B,1983,28(2):784-805.
    [157]Honeycutt J D, Andersen H C. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem.,1987,91(19):4950-4963.
    [158]Qi D W, Wang S. Icosahedral order and defects in metallic liquids and glasses. Phys. Rev. B,1991,44(2):884-887.
    [159]Liu R S, Li J Y, Dong K J, et al. Formation and evolution properties of clusters in larger liquid metal system during rapid cooling processes. Mater. Sci. Eng. B, 2002,94(2-3):141-148.
    [160]Liu R S, Dong K J, Tian Z A, et al. Formation and magic number characteristics of clusters formed during solidification processes. J. Phys.:Condens. Matter,2007, 19(19):196103-17.
    [161]Liu R S, Dong K J, Li J Y, at al. Formation and description of nano-clusters formed during rapid solidification processes in liquid metals. J. Non-Cryst. Solids,2005, 351(6-7):612-617.
    [162]Liu H R, Liu R S, Zhang A L, et al. A simulation study of microstructure evolution during solidification process of liquid metal Ni. Chin. Phys.,2007,16(12):3747-3753.
    [163]Tian Z A, Liu R S, Liu H R, et al. Molecular dynamics simulation for cooling rate dependence of solidification microstructures of silver. J. Non-Cryst. Solids.2008, 354:3705-3712.
    [164]Tian Z A, Liu R S, Zheng C X, et al. Formation and Evolution of Metastable bcc Phase during Solidification of Liquid Ag:A Molecular Dynamics Simulation Study. J. Phys. Chem. A.2008,112:12326-12336.
    [165]Schenk T, Holland-Moritz D, Simonet V, et al. Icosahedral short-range order in deeply undercooled metallic melts. Phys.Rev.Lett.,2002,89:075507-4.
    [166]Lee G W, Gangopadhyay A K, Kelton K F, et al. Difference in icosahedral short-range order in early and late transition metal liquids. Phys.Rev.Lett.,2004,93:037802-4.
    [167]Ganesh P, Widom M. Signature of nearly icosahedral structures in liquid and su-percooled liquid copper. Phys. Rev. B.,2006,74:134205-7.
    [168]Jakse N, Pasturel A. Local order of liquid and supercooled zirconium by ab initio molecular dynamics. Phys. Rev. Lett.,91:195501-4.
    [169]Celino Massimo, Rosato Vittorio,Cicco Andrea Di, et al. Role of defective icosa-hedra in undercooled copper. Phys. Rev. B.,2007,75:174210-5.
    [170]Liu R S, Li J Y, Zhou Z, et al. The high-temperature properties of microstructure transitions in liquid metal Al. Mater. Sci. Eng. B,1999,57:214-217.
    [171]Jund P, Caprion D, Jullien R. Is there ideal quenching rate for an ideal glass? Phys. Rev. Lett.,1997,79:91-94.
    [172]Liu C S, Zhu Z G, Xia J,et al. Cooling rate dependence of structural properties of aluminium during rapid solidification. J. Phys.:Condens. Matter.,2001,13: 1873-1890.
    [173]Vollmayr K, Kob W, Binder K. Cooling-rate effects in amorphous silica:A computer-simulation study. Phys. Rev. B.,1996,54:15808-15827.
    [174]Vollmayr K, Kob W, Binder K. How do the properties of a glass depend on the cooling rate? A computer simulation study of a Lennard-Jones system. J. Chem. Phys.,1996,105(11):4714-4728.
    [175]Liu C S, Xia J C, Zhu Z G, et al. The cooling rate dependence of crystallization for liquid copper:A molecular dynamics study. J. Chem. Phys.,2001,114:7506-7512.
    [176]Lipowski A, Johnston D. Cooling-rate effects in a model of glasses. Phys. Rev. E., 2000,61:6375-6382.
    [177]Gupta A, Jayaraj M E. Effect of quenching rate on the structure and stability of Co-rich metallic glasses. J. Non-Crtst. solids.,1992,149:275-281.
    [178]周晓明,任英磊,姜文辉等.铸造凝固冷速对原位自生(TiW)C/Fe复合材料组织的影响.航空材料学报,2004,24(6):25-28.
    [179]袁子洲,姚林,包石磊等.熔体冷速对Co48Cr15Mo14C15B6Er2块体非晶合金晶化及磁性能的影响.稀有金属材料与工程,2009,38(6):999-1004.
    [180]郑亮.凝固冷速对铸造镍基高温合金K417G显微组织的影响.航空材料学报,2006,26(3):7-11.
    [181]Miyagama H, Hiwatari Y. Molecular-dynamics study of binary soft-sphere glasses:Quench-rate effects and aging effects. Phys. Rev. A.,1989,40:6007-6013.
    [182]Lai S K, Chen H S. The structural and dynamical liquid-glass transition for metallic sodium. J. Phys.:Condens. Matter,1993,5(26):4325-4332.
    [183]Qi D W, Lu J, Wang S. Crystallization properties of a supercooled metallic liquid. J. Chem. Phys.,1992,96(1):513-516.
    [184]Verlet L. Computer'experiments'on classical fluids. Ⅰ. Thermodynamical proper-ties of Lennard-Jones molecules. Phys. Rev.,1967,159(1):98-103.
    [185]Anderson H C. Molecular dynamics simulations at contant pressure and/or tem-perature. J. Chem. Phys.,1980,72(4):2384-2393.
    [186]Hoover W G, Evans D J. Lennard-Lones triple-point bulk and shear viscosities.Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys. Rev. A,1980,22(4):1960-1697.
    [187]Parrinello M, Rahman A. Polymorphic transitions in single crystals:A new molec-ular dynamics method. J. Appl. Phys.,1981,52(12):7182-7190.
    [188]Hoover W G, Ladd A J, Moran B. High-strain-rate plastic flow studied via nonequi-librium molecular dynamics. Phys. Rev. Lett.,1982,48(26):1818-1820.
    [202]Nose S. A molecular dynamics method for simulations in canonical ensemble. Mol. Phys.,1984,52(2):255-268.
    [190]Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett.,1985,55(22):2571-2474.
    [191]张跃,谷景华,尚家香,等编著.计算材料学基础.北京:北京航空航天大学出版社,2006.
    [192]Li D H, Li X R, Wang S. Variational calculation of Helmholz free energies with applications to the sp-type liquid metals. J. Phys. F:Metal. Phys.,1986,16(3): 309-321.
    [193]Harrison W A. Electronic structure and the properties of metals.I.Formation. Phys. Rev.1963,129(6):2503-2511.
    [194]Harrison W A. Electronic structure and the properties of metals.II. Application to Zinc. Phys. Rev.1963,129(6):2512-2524.
    [195]Swope W C, Anderson H C, Berens P H, et al. Computer simulation method for the calculation of equilibrium constants for the formation of physical cluaters of molecules:application to small water clusters. J. Chem. Phys.,1982,76:637-649.
    [196]Beeman D. Some multistep methods for the use in molecular dynamics calcula-tions. J. Comput. Phys.,1976,20:130-139.
    [197]Geer C W. Numerical initial value problems in ordinary dfferential equation. En-glewood Cliffs, NJ:Prentice-Hall,1971,1-54.
    [198]Hovkney R W. The potential calculation and some applications. Methods in Com-putational Physics,1970,9:136-210.
    [199]文玉华,朱如曾,周富信等.分子动力学模拟的主要技术.力学进展,2003,33(1):65-73.
    [200]Hoffmann K H, Schreiber M. Computational Physics. Berlin Herdelberg:Springer-Verlag,1996,268-326.
    [201]Berendsen H J C, Postma J P M, Gunsteren W F V, et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys.,1984,81:3684-3690.
    [202]Nose S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.,1984,81:5-11.
    [203]Hoover W G. Canonical dynamics:Equilibrium phase-space distributions. Phys. Rev. A.,1985,31:1695-1702.
    [204]Hoover W G, Ladd A J, Moran B. High-strain-rate plastic flow studied via nonequi-librium molecular dynamics. Phys. Rev. Lett.,1982,48(26):1818-1820.
    [205]Evans D J. Computer "experiment" for nonlinear thermodynamics of Couette flow. J. Chem. Phys.,1983,78(6):3297-3302.
    [206]Brown D, Clarke J H R. A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids. Mol. Phys.,1984,51(5):1243-1252.
    [207]Anderson H C. Molecular dynamics simulations at constant press and/or temper-ature. J. Chem. Phys.,1980,72:2384-2393.
    [208]Parrinello M, Rahman A. Polymprphic transitions in single crystals:A new molec-ular dynamics method. J. Appl. Phys.,1981,52(12):7182-7190.
    [209]Parrinello M, Rahman A.. Strain fluctuations and elastic constants. J. Chem. Phys., 1982,76:2662-2670.
    [210]Nachtrieb N H. Self-diffusion in liquid metals. Advances in Physics,1967,16(62): 309-323.
    [211]Tanigaki M, Toyota Y, Harada M,et al. Mutual diffusion coefficient in molten lead-bismuth mixtures. J. Chem. Eng. Jpn.,1983,16:92-98.
    [212]Cricchio F, Belonoshko A B, Burakovsky L,et al. High-pressure melting of lead. Phys. Rev. B.,2006,73:140103-3.
    [213]Efrain U B, Alvaro P A, Ignacio L G. Temperature effect on the local order of liquid Ni, Ag, and Pb:A molecular dynamics study.. Phys. Rev. B.,2002,66: 144205-5.
    [214]刘新,孟长功,刘长厚.升温速率对金属铅的熔化和过热行为的影响.物理化学学报,2003,19(8):681-685.
    [215]Akhter J I. Size-dependent superheating in confined Pb(111) films. J. Phys.:Con-dens. Matter,2005,17:53-60.
    [216]Rajesh C, Majumder C, Rajan G R, et al. Isomers of small Pbn clusters (n=2-15) Geometric and electronic structures based on ab initio molecular dynamics simulations. Phys. Rev. B.,2005,72:235411-8.
    [217]边秀房,李辉,张景祥,李玉忱.温度对液态重金属Pb结构变化的影响.无机化学学报,2000,16(1):47-52.
    [218]Liu R S, Dong K J, Li J Y, et al. Molecular dynamics simulation of microstructure transitions in a large-scale liquid metal Al system during rapid cooling processes. Chin. Phys. Lett.,2002,19(8):1144-1147.
    [219]Duijneveldt J S, Frenkel D. Computer simulation study of free energy barriers in crystal nucleation. J. Chem. Phys.,1992,96:4655-4668.
    [220]管立,吴爱玲,张晓茹.液态Au和Ag冷却过程的分子动力学模拟.计算物理,2001,18(4):356-359.
    [221]齐元华,谷延坤,秦敬玉.贵金属Au冷却过程中结构及能量变化的分子动力学计算机模拟.化学物理学报,2000,13(4):455-460.
    [222]张爱龙,刘让苏,梁佳,等.冷却速率对液态Ni凝固过程中微观结构演变影响的模拟研究.物理化学学报,2005,21(4):347-353.
    [223]易学华,刘让苏,田泽安,等.冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究.物理学报,2006,55(10):5386-5393.
    [224]Vanderborgh C A, Vohra Y K, Xia H, et al. bcc lead at 109 GPa:Diffraction studies to 208 GPa. Phys. Rev. B.,1990,41(10):7338-7340.
    [225]Klement J W. Hexagonal close-packed structure in Bi-Pb alloys and the poly-morhism of lead at high pressure. J. Chem. Phys.,1963,38(2):298-299.
    [226]Takahashi T, Mao H K, Bassett W A. Lead:X-ray diffraction study of a high-pressure polymorph. Science,1969,165:1352-1353.
    [227]Mao H K, Wu Y, Shu J F, et al. High-pressure phase transition and equation of state of lead to 238GPa. Solid State Commun,1990,74:1027-1029.
    [228]Cui C X, Cai L C, Feng W X, et al. First-principles study of phase transition of tin and lead under high pressure. Physica Status Solid(b),2008,245(1):53-57
    [229]Liu A Y, Garaia A, Cohem M L, et al. Theory of high-pressure phases of Pb. Phys. Rev. B.,1991,43(2):1795-1798.
    [230]Katzke H, Bismayer U, Toledano P. Theory of high-pressure structural phase tran-sitions in Si, Ge, Sn and Pb. Phys. Rev. B,2006,73:134105-10.
    [231]Guo Y F, Wang Y S, Zhao D L, et al. Mechanisms of martensitic phase transfor-mations in body-centered cubic structural metals and alloys:Molecular dynamics simulations. Acta Materialia,2007,55:6634-6641.
    [232]Suzuki T, Shimono M, Kajiwara K. On the mechanism for martensitic transforma-tion from fcc to bcc. Mater. Sci. Eng. A,2001, a312:104-108.
    [233]Paidar V. Shuffling in displacive phase transformations. Mater. Sci. Eng. A,2008, 481-482:243-246.
    [234]Kuznetsov A R, Gornostyrev Y N, Katsnelson M I, et al. Effect of the dislocations on the kinetics of a martensitic transition MD simulation of bcc-hcp transformation in Zr. Mater. Sci. Eng. A,2001,309-310:168-172.
    [235]Krainyukova N V. On the mechanism of the BCC-HCP transformations in small Lennard-Jones crystals. J Low Temp Phys,2008,150:317-322.
    [236]Schwarz W, Blaschko O,Gorgas I. bcc instability of lithium at low temperatures. Phys. Rev. B,1991,44:6785-6790.
    [237]Maier C,Glas R, Blaschko O. Low-temperature phase transformation in Li-10 at.% Mg. Phys. Rev. B,1995,51:779-783.
    [238]Sanati M, Saxena A, Lookman T. Domain wall modeling of bcc to hcp reconstruc-tive phase transformation metals. Phys. Rev. B,2001,64:092101-4.
    [239]Honeycutt J D, Anderson H C. Small system size artifacta in the molecular dynam-ics simulation of homogeneous crystal nucleation in supercooled atomic liquids. J. Phys. Chem.,1986,90(8):1585-1589.
    [240]Rubini S, Dimitropoulos C, Gotthardt R, et al. Martensitic transformation in a Cu-Zn-Al alloy studied by 63Cu and 27Al NMR. Phys. Rev. B,1991,44(5):2019-2029.
    [241]Hou Z Y, Liu R S, Liu H R, et al. Formation mechanism of critical nucleus during nucleation process of liquid metal sodium. J. Chem. Phys.2007,127:174503-9.
    [242]Hou Z Y, Liu R S, Liu H R, et al. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation. Chin. Phys. Lett.2010, 27:036101-4.
    [243]Hou Z Y, Liu R S, Liu H R, et al. Simulation study on the formation and evolution properties of nano-clusters in rapid solidification structures of sodium. Modeling Simul. Mater. Sci. Eng.2007,15:911-922.
    [244]Mountain R D, Basu P K. Molecular dynamics study of homogeneous nucleation for liquid rubidium. J. Chem. Phys.,1983,78:7318-7322.
    [245]Li D H, Moore R A, Wang S. A computer and analytic study of the metallic liquid-glass transition.Ⅱ.Structure and mean square displacements. J. Chem. Phys.,1988, 89:4309-4312.
    [246]Chen F F, Zhang H F, Qin F X,et al. Molecular dynamics studdy of atomic transport properties in rapidly cooling liquid cooper. J. Chem. Phys.,2004,120(4):1826-1831.
    [247]Pang H, Jin Z H, Lu K. Relaxation, nucleation, and glass transition in supercooled liquid Cu. Phys. Rev. B,2003,67:094113-7.
    [248]Zhang Y N, Wang L, Wang W M. Thermodynamic, dynamic, and structural relaxation in supercooled liquid and glassy Ni below the critical temperature. J.Phys.:Condens. Matter,2007,19:196106-12.
    [249]Ostwald W. Studien uber die Bildung und Umwandlung fester Korper. Z. Phys. Chem.,1897,22:289-293.
    [250]Strank IN, Totomanow D. Kembildumgsgeschwindigkeit und ostwaldsche stufen-regel. Z. Phys. Chem.,1933,163:399-408.
    [251]Alexander S, McTague J., Should all crystals be bcc? Landau theory of solidifica-tion and crystal nucleation. Phys. Rev. Lett.,1978,41(10):702-705.
    [252]Klein W, Leyvraz F. Crystalline nucleation in deeply quenched liquids.. Phys. Rev. Lett.,1986,57(22):2845-2848.
    [253]Cech R E. Evidence for solidification of a metastable phase in iron-nickel alloys. J. Met,1956,8:585-589.
    [254]Mandalp P, Tiwari R S, Srivastava O N. bcc metastable phase coexisting with the icosahedral phase in rapidly quenched Fe28Ti68Si4 alloys. Phys. Rev. B,1991, 44(21):11683-11688.
    [255]Liu Y S, Nie H F, Bansil R. Kinetics of disorder-to-fcc phase transition via an intermediate bcc state. Phys. Rev. E.,2006,73:061803-6.
    [256]Honeycutt J D, Anderson H C. Small system size artifacts in the molecular dynam-ics simulation of homogeneous crystal nucleation in supercooled atomic liquids. J. Phys. Chem.,1986,90:1585-1589.
    [257]Desgranges C, Delhommelle J. Molecular simulation of the crystallization of alu-minum from the supercooled liquid. J. Chem. Phys.,2007,127:144509-6.
    [258]Desgranges C, Delhommelle J. Molecular simulation of the nucleation and growth of gold nanoparticles. J. Phys. Chem. C.,2009,113:3607-3611.
    [259]ten Wolde P R, Ruiz-Montero M J, Frenkel D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys.,1996,104(24):9932-9947.
    [260]Desgranges C, Delhommelle J. Insights into the molecular mechanism underlying polymorph selection. J. Am. Chem. Soc,2006,128:15104-15105.
    [261]Desgranges C, Delhommelle J. Controlling polymorphism during the crystalliza-tion of an atomic fluid. Phys. Rev. Lett.,2007,98:235502-4.
    [262]Poole P H, Glotzer S C, Coniglio A, et al. Emergence of fast local dynamics on cooling toward the Ising spin glass transition. Phys. Rev. Lett.,1996,78:3394-3397.
    [263]Wang L, Peng C X, Wang Y Q, et al. Relation nucleation to dynamical and struc-tural heterogeneity in supercooled liquid metal. Phys. Lett. A.,2006,350:69-74.
    [264]Zhang Y N, Wang L, Wang W M. Rlaxation, crystallization, and glass transition in supercooled liquid Ni. Phys. Lett. A.,2008,372:690-694.
    [265]Shen Y C, Oxtoby D W. bcc Symmetry in the crystal-melt interface of Lennard-Jones fluid exammined through density function theory. Phys. Rev. Lett.,1996, 77(17):3585-3588.
    [266]Kesavamoorthy R, Sood A K, Tata B V R, et al. The split in the second peak in the structure factor of binary colloidal suspensions:glass-like order. J Phys C:Solid State Phys.,1988,21(27):4737-4747
    [267]Li H, Ding F, Bian X F, et al. Molecular dynamics study of icosahedral ordering and defect in the Ni3Al liquid and glasses. Chem. Phys. Lett.,2002,354:466-473
    [268]Auer S, Frenkel D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature,2001,49:1020-1023.
    [269]Bai X M, Li M. Test of classical nucleation theory via molecular-dynamics simu-lation. J. Chem. Phys,2005,122(22):224510-3.
    [270]Gasser U, Weeks E R, Schofield A, et al. Real-space imaging of nucleation and growth in colloidal crystallization. Science,2001,292:258-261.
    [271]Hsu C S, Rahman A. Crystal nucleation and growth in liquid rubidiuma. J. Chem. Phys,1979,70(11):5234-5240.
    [272]Quigley D, Rodger P M. Metadynamics simulations of ice nucleation and growth. J. Chem. Phys,2008,128(15):154518-7.
    [273]Ruckenstein E, Djikaev Y S. Recent developments in the kinetic theory of nucle-ation. Adv. Colloid Interface Sci.,2005,118:51-72.
    [274]Gatze W, Sjogren L. Liquids, freezing and the glass transition. Rep. Prog. Phys, 1992,55:241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700