一维ZnO纳米结构的制备、性能和器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准一维纳米材料,包括纳米线/棒、纳米针、纳米带、纳米同轴电缆和纳米管等,近年来引起了极大的研究热潮。在这些材料中,氧化物半导体一维纳米材料又受到了特殊的关注,这不仅因为丰富多样的氧化物纳米结构不断被制备出来,更因为氧化物中阳离子价态可变、氧空位浓度可调,从而氧化物半导体的性质可以有效调控。本文主要对准一维纳米材料ZnO进行了研究。研究了ZnO纳米棒,纳米粒子的制备新方法,并讨论了影响ZnO纳米结构的生长因素和生长机理。对合成的ZnO纳米棒的光学特性进行了研究,并研究了不同的ZnO纳米结构形貌对光学性能的影响。对新方法进行改进合成无衬底,高质量的,单晶ZnO纳米棒密堆积阵列,并对它的生长机制进行研究。用ZnO密堆积阵列为气敏材料做成高性能酒精传感器。并对它的高灵敏度的酒敏机理进行研究。用相同的方法制得形状为n型ZnO纳米棒,并研究了它的生长机理和酒敏性。主要完成以下工作:
     1.我们用一种简单的新方法合成ZnO纳米棒,直径为25—100nm,长度为0.2—1um,长径比为10-40。测试结果表明ZnO纳米棒为单晶,属于六方晶系,晶形很好,很少或者没有结构缺陷,具有沿[0001]方向择优生长的特征。单晶ZnO纳米棒的制备成功为开发其潜在应用,制作各种纳米电子器件及光电子器件提供了一条简单廉价的途径,也为研究Graetzel型太阳能电池的电子传输机理、大幅度提高光电转换效率提供了一个可能的方法。同时为制备其它一维半导体纳米材料提供了一条崭新的途径。
     2.我们研究了影响ZnO结构的生长因素,在其它条件不变下,随着柠檬酸的浓度增加,纳米棒的长度减少,直径增大。在其它条件不变下,随着煅烧温度的升高,纳米ZnO的形态由棒状向颗粒状转变,并且粒子之间发生明显的团聚,当其它条件不变下,随着煅烧时间的增加,ZnO纳米棒的直径增加长度减少。
     3.我们用前面介绍的方法合成了ZnO纳米棒,通过IR,PL,UV-vis研究了ZnO纳米棒的光学特性,我们发现ZnO纳米棒有着很好的晶体质量和优秀的光学特性。同时我们研究了ZnO纳米棒和ZnO纳米粒子的光学特性,发现不同的形貌对ZnO的光学特性有一定的影响。
     4.对新方法进行改进制得无衬底,高质量的,单晶ZnO纳米棒密堆积阵列。ZnO密堆积阵列每一根棒都沿着[0001]方向,平均直径为50nm,平均长度为0.5μm,长径比为10。ZnO纳米棒密堆积阵列在紫外一可见光吸收谱在372nm有着一个强烈的激子吸收锋,相对于体材料(387nm)发生蓝移。研究了ZnO纳米棒密堆积阵列的生长机制。
     5.我们用ZnO密堆积阵列为气敏材料做成高性能酒精传感器。在1PPm酒精中,灵敏度为10,我们认为高灵敏度由密堆积耗尽和全面接触引起的。我们的结果表明ZnO密堆积阵列是合成气体传感器最适合的气敏材料。
     6.我们用前面介绍的方法制得形状为n型ZnO纳米棒。这些纳米棒以一个薄的片状物的基底来相互平行生长成形状为n型ZnO纳米棒,薄的片状物基底的宽度为50到130nm。直径长度为25到60nm,长度为0.2—0.6μm。用它作成的酒精传感器对酒精很敏感。在1PPm的乙醇中有灵敏度达到3.5,结果证明形状为n型的ZnO纳米棒是合成气体传感器最适合的气敏材料。
Quasi-one-dimensional (1D) nanomaterials, including nanowires (rods), nanoneedles, nanobelts, nanotubes/nanocables, etc, are attracting considerable attention recently. Among these materials, functional oxide semiconductor nanostructures can be used as fundamental ingredients of intellgent systems, because their physical and chemical properties can be tuned through adjusting cation valence state and anion deficiency. In this dissertation, we focus on one dimensional ZnO nanomaterial. A new method of synthesizing ZnO nanorods and ZnO nanoparticles is researched. We discuss the growth factor, the growth mechanism of ZnO nanostructure and study optical property of ZnO nanorods. The optical property of different ZnO nanostructure is discussed. High-quality single-crystalline ZnO nanorod close-packed arrays are successfully fabricated in a substrate-free manner by improving new method. The growth mechanism of ZnO nanorod close-packed arrays is proposed. We report the fabrication and characterization of ethanol sensors with extremely high sensitivity using ZnO nanorod closed-packed arrays as the sensing materials. The ethanol sensing mechanism about it are studyed. N-shape ZnO nanorods are fabricated by the same method. We study growth mechanism and ethanol sensing of N-shape ZnO nanorods. The main contents and conclusions are summarized as:
     1. We synthesize ZnO nanorods of 25-100 nm in diameter and lengths from 0.2 to 1μm in length. The aspect ratio is 10-40. The results show ZnO nanorods possess a single crystal hexagonal structure. There is few or no structure defect. The growth direction of ZnO nanorods is [0001]. The fabrication of single crystal ZnO nanorod provides a simple inexpensive way for developing its latent application, manufacturing all kinds of nanoelectronic device and the photoelectronic device. It also provide a possibility method for studying the Graetzel solar cell’s electronic transmission mechanism and improving photoelectric transformation efficiency. This new route may be extended to the controllable formation of a wide variety of one-dimensional semiconductor nanomaterial.
     2. We study affected growth factor of ZnO structure. When other conditions are invariable, The length decreases but the diameter increases with addition of the mass of citric acid at the same temperature;With the rising of the calcining heat, the shape of ZnO changes from rod to granule for a given amount of citric acid and the granules have the obvious reunion. With extension of calcine time, the diameter of ZnO nanorod increases but the length decreases.
     3. We synthesize ZnO nanorods bythe frontal method. We study optical property of ZnO nanorod by IR,PL,UV-vis. We find that ZnO nanorods have very good crystal quality and the excellent optical property. We discover that the different appearance of ZnO have certain influence on ZnO optical property by studying optical property of ZnO nanorods and ZnO particles.
     4. ZnO nanorod close-packed arrays are successfully fabricated in a substrate-free manner by improving new method. Each nanorod of ZnO nanorod close-packed arrays grows along the [0001] direction and is single crystalline with an average diameter of 50 nm, and an average length of 0.5μm. The aspect ratio is 10.The ZnO nanorod close-packed arrays show a strong exciton absorption peak at 372 nm in UV–visible absorption spectra, exhibiting a blue-shift relative to the bulk exciton absorption (387 nm). Finally, a new growth mechanism is proposed for the substrate-free preparation of ZnO nanorod close-packed arrays.
     5. We report the fabrication and characterization of ethanol sensors with extremely high sensitivity using ZnO nanorod closed-packed arrays as the sensing materials. The sensitivity of the sensors is about 10 to 1 ppm ethanol.The high sensitivity is explained in terms of closed-packed surface-depletion and full face contact model. Our results demonstrate that ZnO nanorod closed-packed arrays are very promising materials for fabricating gas sensors.
     6. N-shaped ZnO nanorods were first synthesized by glacial acetic acid assisted annealing process. These nanorods grow from a thin platelet base and are parallel to each other to form n-shaped ZnO nanorods. The widthes of thin platelet bases range from 50 to 130nm. The diameters of the nanorods are 25~60nm and their lengths are 0.2~0.6um. Sensors realized from n-shaped ZnO nanorods were very sensitive to ethanol gases. The sensitivity was as high as 3.5 at 1 ppm ethanol exposure. These experimental results strongly suggested that n-shaped ZnO nanorods could be an excellent candidate for applications in gas sensors at the industry level.
引文
[1] Lijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56
    [2] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947
    [3] Dai Z R, Pan Z W, Wang Z L. Ultra-long single crystalline nanoribbons of tin oxide. Solid State Communications, 2001, 118: 351
    [4] Pan Z W, Dai Z R, Wang Z L, Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Applied Physics Letters, 2002, 80: 309
    [5] Ma C, Moore D, Li J, Wang Z L. Nanobelts, Nanocombs and Nano-windmills of Wurtzite ZnS. Advanced Materials, 2003, 15: 228
    [6] Wang Z L. Nanowires and Nanobelts-Materials, Properties and Devices. 清华大学出版社, 2004
    [7] 郭玉国, 张亚利, 孙典亭. 巨磁电阻多层结构——从多层膜到多层纳米线. 材料导报, 2001, 9: 12
    [8] Baibich M N, Broto J M, Fert A, et al. Giant Magnetoresistance of (001) Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 1988, 61: 2472
    [9] Attenborough K, Hart R, Lane S J, et al. Magnetoresistance in electrodeposited Ni---Fe---Cu/Cu multilayers. Journal of Magnetism and Magnetic Materials, 1995, 148: 334
    [10] Wang L, Zhang K Yu, Metrot A, et al. TEM study of electrodeposited Ni/Cu multilayers in the form of nanowires. Thin Solid Films, 1996, 288: 86-89
    [11] Au F C K, Wong K W, Tang Y H, et al. Electron field emission from silicon nanowires. Applied Physics Letters,1999, 75: 1700
    [12] Gui Y, Duan X, Hu J, Lieber C M. Doping and Electrical Transport in Silicon Nanowires. Journal of Physical Chemistry B, 2000, 104(22): 5213
    [13] Holmes J D, Johnston K P, Doty C R, et al. Control of Thickness and Orientation of Soloution-Grown Silicon Nanowires. Science, 2000, 287: 1471
    [14] Cui Y, Lieber C M. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks.Science, 2001, 291: 851
    [15] Hu J, Li L S, Yang W, et al. Linearly Polarized Emission From Colloidal Semiconductor Quantum Rods. Science, 2001, 292: 2060
    [16] Yu D P, Hang Q L, Ding Y, et al. Amorphous silica nanowires: Intensive bluelight emitters. Applied Physics Letters, 1998, 73(21): 3076
    [17] Huang M H, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001, 292: 1897
    [18] Duan X, Huang Y, Cui Y, et al. Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. Nature, 2001, 409: 66
    [19] Friedlander S K. Synthesis of nanoparticles and their agglomerates: aerosol reactors. In R&D status and trends, ed. Siegel et al, 1998
    [20] Suenaga K, Colliex C,Demoncy N, et al. Synthesis of Nanotubes with Well- Separated Layers of Boron Nitride and Carbon. Science, 1997, 278: 654
    [21] Meng G W, Zhang L D, Mo C. M et al. Preparation of β-SiC nanorods with and without amorphous SiO2 wrapping layers. Journal of Materials Research, 1998, 13(9): 2533-2538
    [22] Zhang Y, Suenaga K, Colliex C, et al. Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon. Science, 1998, 281: 973
    [23] Wu J J, Liu S C, Wu C T, et al. Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes. Applied Physics Letters, 2002, 81: 1312
    [24] Li Q, Wang C R. Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation. Applied Physics Letters, 2003, 82: 1398
    [25] Golberg D, Dorozhkin P S, Bando Y, Dong Z C, et al. Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx (x<0.1). Applied Physics A: Materials Science & Processing, 2003, 76(4): 499
    [26] Lauhon L J, Gudiksen M S, Wang D, Lieber C M. Epitaxial-coreshell and coremultishell, nanowire heterostructures. Nature, 2002, 420: 57
    [27] Ku J R, Vidu R, Talroze R, Stroeve P. Fabrication of Nanocables by Electrochemical Deposition Inside Metal Nanotubes. Journal of the American Chemical Society, 2004, 126(46): 15022
    [28] Zhu Y Q, Hu W B, Hsu W K, Terrones M, et al. SiC–SiOx heterojunctions in nanowires. Journal of Materials Chemistry, 1999, 9: 3173
    [29] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415: 617
    [30] 张立德, 牟季美. 开拓原子和物质的中间领域——纳米微粒与纳米固体. 物理, 1992, 21(3), 167
    [31] Guo Y G, Wan L J, Zhu C F, et al. Ordered Ni-Cu nanowire array with enhanced coercivity. Chemistry of Materials, 2003, 15(3): 664
    [32] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlatticestructures for nanoscale photonics and electronics. Nature, 2002, 415: 617
    [33] Wu Y Y, Fan R, Yang P D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Letters, 2002, 2(2): 83
    [34] Wu Y, Xiang J, Yang C, Lu W et al. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 2004, 430: 61
    [35] Bjork M T, Thelander C, Hansen A E, et al. Few-Electron Quantum Dots in Nanowires. Nano Letters, 2004, 4: 1621
    [36] Hu J, Ouyang M, Yang P, Lieber C M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature, 1999, 399: 48
    [37] Xia Y, Yang P, Sun Y, et al. One-Dimensional Nanostructures: Synthesis, Char -acterization, and Applications. Advanced Materials, 2003, 15: 353
    [38] R.N?tzel, K.H.Ploog. Direct synthesis of semiconductor quantum-wire and quantum-dot structures. Advanced Materials, 1993, 5: 22
    [39] Weller H. Quantized semiconductor particles: a novel state of matter for material science. Advanced Materials, 1993, 5: 88
    [40] Fendler J H. Atomic and Molecular Clusters in Membrane Mimetic Chemistry. Chemical Reviews, 1987, 87: 877
    [41] Trentler T J, Hickman K M, Buhro W E, et al. Solution-Liquid-Solid Growth Of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science, 1995, 270: 1791
    [42] Buhro W E, Hickman K M, Trentler T J. Turning down the heat on semiconducto r growth: Solution-chemical syntheses and the solution-liquid-soli d mechanism. Advanced Materials, 1996, 8: 685
    [43] Feldman Y, Wasserman E, Srolovitz D J, et al. High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic and Nanotubes. Science, 1995, 267: 222
    [44] Zhan J H, Yang X G, Wang D W, et al. Polymer-Controlled Growth of CdS Nanowires. Advanced Materials, 2000, 12: 1348
    [45] Tang Z Y, Kotov N A, Giersig M, Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science, 2002, 297: 237
    [46] Kobayashi S, Hanabusa K, Hamasaki N, et al. Preparation of TiO2 Hollow- Fibers Using Supramolecular Assemblies.Chemistry of Materials, 2000, 12(6): 1523
    [47] 李永军, 刘春艳, 张志颖. 包裹定向排列纳米氯化银的二氧化硅纳米纤维. 过程工程学报, 2002, 2(4): 361
    [48] A.Huczko. Template-based synthesis of nanomaterials. Applied Physics A: Materials Science & Processing, 2000, 70: 365
    [49] Martin B R, Dermody D J, Reiss B D, et al. Orthogonal self-assembly on colloidal gold-platinum nanorods. Advanced Materials, 1999, 11: 1021
    [50] Schnenberger C, Van der Zande B M I, Fokkink L G, et al. Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology. The Journal of Physical Chemistry B, 1997, 101(28): 5497
    [51] Pena D J, Mbindyo J K N, Carado A J, et al. Template Growth of Photoconductive Metal-CdSe-Metal Nanowires. The Journal of Physical Chemistry B, 2002, 106(30): 7458
    [52] Sun L, Searson P C, Chien C L. Electrochemical Deposition of Nickel Nanowire Arrays in Single Crystal Mica Films. Applied Physics Letters, 1999, 74: 2803
    [53] Zhu Y Q, Hsu W K, Kroto H W, et al. An Alternative Route to NbS2 Nanotubes. The Journal of Physical Chemistry B, 2002, 106(53): 7623
    [54] Ajayan P M, Stephan O, Redilich Ph,et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375: 564
    [55] Sloan J, Wright D M, Woo H G, et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes.Chemical Communications, 1999, 8: 699
    [56] Govindaraj A, Satishkumar B C, Nath M, et al. Metal Nanowires and Intercalated Metal Layers in Single-Walled Carbon Nanotube Bundles. Chemistry of Materials, 2000, 12(1): 202
    [57] Pradhan B K, Kyotani T, Tomita A. Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes. Chemical Communications, 1999, 14: 1317
    [58] Huber C A, Huber T E, Sadoqi M, et al. Nanowire Array Composites, Science, 1994, 263: 800
    [59] Zhang Z, Gekhtman D, Dresselhaus M S, Ying J Y. Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires. Chemistry of Materials, 1999, 11(7): 1659
    [60] Wang Y W, Zhang L D, Meng G W,et al. Fabrication of Ordered Ferromagnetic- Nonmagnetic Alloy Nanowire Arrays and their Magnetic Property Dependence on Annealing Temperature. The Journal of Physical Chemistry B, 2002, 106(10): 250 2
    [61] Lakshmi B B, Patrissi C J, Martin C R. Sol-Gel Template Synthesis ofSemiconductor Oxide Micro- and Nanostructures. Chemistry of Materials, 1997, 9(11): 2544
    [62] Zhang X Y, Zhang L D, Meng G W, et al. Synthesis of Ordered Single Crystal Silicon Nanowire Arrays. Advanced Materials, 2001, 13: 1238
    [63] Lyu S C, Zhang Y, Ruh H, Lee H J, et al. Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chemical Physics Letters, 2002, 363(1-2): 134
    [64] Hernandez B A, Chang K S, Fisher E R, et al. Sol-Gel Template Synthesis and Characterization of BaTiO3 and PbTiO3 Nanotubes. Chemistry of Materials, 2002, 14(2): 480
    [65] Liu S M, Gan L M, Liu L H, et al. Synthesis of Single-Crystalline TiO2 Nanotubes. Chemistry of Materials, 2002, 14(3): 1391
    [66] Zelenski C M, Dorhout P K. Template Synthesis of Near-Monodisperse Microscale Nanofibers and Nanotubules of MoS2. Journal of the American Society, 1998, 120(4): 734
    [67] Han Y J, Kim J M, Stucky G D, Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chemistry of Materials, 2000, 12(8): 2068
    [68] Huang M H, Choudrey A, Yang P D. Ag nanowire formation within mesoporous silica. Chemical Communications, 2000, 12: 1063
    [69] Yang C M, Sheu H S, Chao K J, Templated Synthesis and Structural Study of Densely Packed Metal Nanostructures in MCM-41 and MCM-48. Advanced Functional Materials, 2002, 12(2): 143
    [70] Lee K B, Lee S M, Cheon J. Size-Controlled Synthesis of Pd Nanowires Using a Mesoporous Silica Template via Chemical Vapor Infiltration. Advanced Materials, 2001, 13: 517
    [71] Leon R, Margolese D, Stucky G, et al. Nanocrystalline Ge filaments in the pores of a mesosilicate. Physical Review B, 1995, 52(4): 2285
    [72] Moller K, Bein T. Inclusion Chemistry in Periodic Mesoporous Hosts. Chemistry of Materials, 1998, 10(10): 2950
    [73] Coleman N R B, Morris M A, Spalding T R, et al. Synthesis and Characterization of Dimensionally Ordered Semiconductor Nanowires within Mesoporous Silica. Journal of the American Chemical Society, 2001, 123(1): 187
    [74] Coleman N R B, Osulivan N, Ryan K M, et al. Synthesis and Characterization ofDimensionally Ordered Semiconductor Nanowires within Mesoporous Silica. Journal of the American Chemical Society, 2001, 123: 7010
    [75] Yin Y, Lyu Y, Gates B, et al. Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. Journal of the American Chemical Society, 2001, 123(36): 8718
    [76] Yin Y D, Lu Y, Xia Y N. Assembly of monodispersed spherical colloids into one-dimensional aggregates characterized by well-controlled structures and lengths. Journal of Materials Chemistry, 2001, 11(4): 987
    [77] Lu Y, Yin Y, Ii Z Y, Xia Y. Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids. Nano Letters, 2002, 2(7): 785
    [78] Huang L M, Wang H T, Wang Z B, et al. Nanowire Arrays Electrodeposited from Liquid Crystalline Phases. Advanced Materials, 2002, 14: 61
    [79] Murphy C J, Jana N R. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Advanced Materials, 2002, 14(1): 80
    [80] Sun Y, Xia Y. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding. Polyol Process, Advanced Materials, 2002, 14(1): 833
    [81] Murphy C J, Jana N R, Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Advanced Materials, 2002, 14(1): 80
    [82] Sun Y, Xia Y. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft. Advanced Materials, 2002, 14: 833
    [83] Sun X M, Chen X, Deng Z X, et al. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Materials Chemistry and Physics, 2002, 78(1): 99
    [84] An C H, Tang K B, Liu X M, et al. Hydrothermal preparation of α-MnS nanorods from elements. Journal of crystal growth, 2003, 252(4): 575
    [85] Zang W, Yang Z, Huang X, et al. Low temperature growth of bismuth sulfide nanorods by a hydrothermal method, Solid State Communications, 2001, 119(3): 143
    [86] Yan L, Zhuang J, Sun X, et al. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Materials Chemistry and Physics, 2002, 76(2): 119
    [87] Wang J W, Deng Z X, Li Y D. Synthesis and characterization of Sb2Se3 nanorods. Materials Research Bulletin, 2002, 37(3): 495
    [88] Zhang W X, Yang Z H, Zhan J H, et al. Hydrothermal synthesis of marcasite iron ditelluride FeTe2 nanorods at low temperature. Materials Letters, 2001,47(6): 367
    [89] Hu J Q, Deng B, Zhang W X, et al. A convenient hydrothermal route to mineral Ag3CuS2 nanorods. International journal of inorganic materials, 2001, 3(7): 639
    [90] Hu J Q, Lu Q Y, Deng B, et al. A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorganic Chemistry Communications, 1999, 2(12): 569
    [91] Wang C R, Tang K B, Yang Q, et al. Characterization of PbSnS3 Nanorods Prepared via an Iodine Transport Hydrothermal Method. Journal of Solid State Chemistry, 2001, 160(1): 50
    [92] Li W J, Shi W, Chen Z Z, et al. Hydrothermal synthesis of MoS2 nanowires. Journal of Crystal Growth, 2003, 250(3-4): 418
    [93] Zhang Y X, Li G H, Jin Y X, et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chemical Physics Letters, 2002, 365(3-4): 300
    [94] Shao M W, Mo M S, Cui Y, et al. The effect of agitation states on hydrothermal synthesis of Bi2S3 nanorods. Journal of Crystal Growth, 2001, 233(4): 799
    [95] Zhu D L, Zhu H, Zhang Y H. Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method. Journal of Crystal Growth, 2003, 249(1-2): 172
    [96] Seo D S, Lee J K, Kim H. Preparation of nanotube-shaped TiO2 powder. Journal of Crystal Growth, 2001, 229(1-4): 428
    [97] Azambre B, Hudson M J. Growth of copper nanoparticles within VOx nanotubes. Material letters, 2003, 57(20): 3005
    [98] Chen, C Q, Shi Y, Zhang Y S, et al. Size Dependence of Young's Modulus in ZnO Nanowires. Physical Review Letters, 2006, 96(7): 075505
    [99] Huang M H, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001, 292 (5523): 1897-1899
    [100] Yan H Q, He R R, Johnson J, et al. Dendritic Nanowire Ultraviolet Laser Array. Journal of the American Chemical Society, 2003, 125(16): 4728-4729
    [101] Johnson J C, Yan H Q, Yang P D, et al. Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides. Journal of Physical Chemistry B, 2003, 107(34): 8816-8828
    [102] Yan H Q, Johnson J, Law M, et al. ZnO Nanoribbon Microcavity Lasers. Advanced Materials, 2003, 15(22): 1907
    [103] Law M, Sirbuly D J, Johnson J C, et al. Nanoribbon Waveguides for Subwavelength Photonics Integration. Science, 2004, 305(5688): 1269-1273
    [104] Cui Y, Wei Q Q, Park H K, Lieber C M. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 2001, 293(5533): 1289-1292
    [105] Cui Y, Lieber C M. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science, 2001, 291(5505): 851-853
    [106] Huang Y, Duan X F, Cui Y, et al. Logic Gates and Computation from Assembled Nanowire Building Blocks. Science, 2001, 294(5545): 1313-1317
    [107] Park W I, Kim J S, Yi G C, et al. Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Appllied Physics Letters, 2004, 85(21): 5052-5054
    [108] Park W I, Kim J S, Yi G C, et al. ZnO Nanorod Logic Circuits. Advanced Materials, 2005, 17(11): 1393-1397
    [109] Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453): 622-625
    [110] Kolmakov A, Zhang Y X, Cheng G S, Moskovits M. Detection of CO and O2 Using Tin Oxide Nanowire Sensors. Advanced Materials, 2003, 15(12): 997
    [111] Li C, Zhang D H, Liu, X L, Han S, Tang T, Han J, Zhou C W. In2O3 nanowires as chemical sensors. Applied Physics Letters, 2003, 82(10): 1613-1615
    [112] Zhou X T, Hu J Q, Li C P, et al. Silicon nanowires as chemical sensors. Chemical Physics Letters, 2003, 369(1-2): 220-224
    [113] Seiyama T, Kato A, Fulishi K, Nagatani M. A new detector for gaseous components using semiconductive thin films. Analytical Chemistry, 1962, 34(11): 1502
    [114] Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Li J P, Lin C L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 2004, 84(18): 3654-3656
    [115] Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Gao X G, Li J P. Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Applied Physics Letters, 2004, 84(16): 3085-3087
    [116] Fan Z Y, Wang D W, Chang P C, Tseng W Y, Lu J G. ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters, 2004, 85(24): 5923-5925
    [117] Wen X G, Fang Y, Pang Q, Yang C, Wang J, Ge W, Wong K S, Yang S. ZnO Nanobelt Arrays Grown Directly from and on Zinc Substrates: Synthesis, Characterization, and Applications. Journal of Physics Chemistry B, 2005,109(32): 15303-15308
    [118] Rout C S, Krishna S H, Vivekchand S R C, Govindaraj A, Rao C N R. Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chemical Physics Letters, 2006, 418(4-6): 586-590
    [119] Wang C H, Chu X F, Wu M M, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sensors and Actuators B, 2006, 113(1): 320-323
    [120] Zhang D H, Liu Z Q, Li C, Tang T, Liu X L, Han S, Lei B, Zhou C W. Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano Letters, 2004, 4(10): 1919-1924
    [121] Fowler R H, Nordheim L W. Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A, 1928, 119(781): 173
    [122] Deheer W A, Chatelain A, Ugarte D A. Carbon nanotube field-emission electron source. Science, 1995, 270(5239): 1179-1180
    [123] Au F C K, Wong K W, Tang Y H, Zhang Y F, Bello L, Lee S T. Electron field emission from silicon nanowires. Applied Physics Letters, 1999, 75(12): 1700-1702
    [124] Chen J, Deng S Z, Xu N S, Wang S H, Wen X G, Yang S H, Yang C L, Wang J N, Ge W K. Field emission from crystalline copper sulphide nanowire arrays. Applied Physics Letters, 2002, 80(19): 3620-3622
    [125] Li Y B, Bando Y, Golberg D, Kurashima K. Field emission from MoO3 nanobelts. Applied Physics Letters, 2002, 81(26): 5048-5050
    [126] Wu Z S, Deng S Z, Xu N S, Chen J, Zhou J, Chen J. Needle-shaped silicon carbide nanowires: Synthesis and field electron emission properties. Applied Physics Letters, 2002, 80(20): 3829-3831
    [127] Bai X D, Wang E G, Gao PX, Wang Z L. Measuring the Work Function at a Nanobelt Tip and at a Nanoparticle Surface. Nano Letters, 2003, 3(8): 1147-1150
    [128] Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H, Lee H J. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters, 2002, 81(19): 3648-3650
    [129] Zhu Y W, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters, 2003, 83(1): 144-146
    [130] Wang R C, Liu C P, Huang J L, et al. ZnO Nano-pencils: Efficient FieldEmitters. Applied Physics Letters, 2005, 87: 013110
    [131] Banerjee D, Jo S H, Ren Z F. Enhanced field emission of ZnO nanowires. Advanced Materials, 2004, 16(22): 2028
    [132] Huang Y, Duan X, Wei Q, Lieber C M. Directed Assembly of One- Dimensional Nanostructures into Functional Networks. Science, 2001, 291: 630
    [133] Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415: 617
    [134] Cui Y, Lieber C M. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science, 2001, 291: 851
    [135] Li C, Zhang D H, Liu X L, Han S, Tang T, Han J, Zhou C W. In2O3 nanowires as chemical sensors. Applied Physics Letters, 2003, 82: 1613
    [136] Zhang D H, Li C, Liu X L, Han S, Tang T, Zhou C W. Doping dependent NH3 sensing of indium oxide nanowires. Applied Physics Letters, 2003, 83: 1845
    [137] Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C W. Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano Letters, 2004, 4(10): 1919
    [138] Nguyen P, Ng H T, Yamada T, Smith M K, Li J, Han J, Meyyappan M. Direct Integration of Metal Oxide Nanowire in Vertical Field-Effect Transistor. Nano Letters, 2004, 4(4): 651
    [139] Seiyama T, Kato A, Fulishi K, Nagatani M. A new detector for gaseous components using semiconductive thin films. Analytical Chemistry, 1962, 34(11): 1502
    [140] Poirier G E, Cavicchi R E, Semancik S, Ultrathin heteroepitaxial SnO2 films for use in gas sensors. The Journal of Vacuum Science and Technology A, 1993, 11:1392
    [141] Giulio M Di, Manno D, Micocci G, et al. Sputter deposition of tungsten trioxide for gas sensing applications. Journal of Material Science: Materials in Electronics, 1998, 9(4): 317
    [142] Lee D S, Rue G H, Huh J S, Choi S D, Lee D D. Sensing characteristics of epitaxially-grown tin oxide gas sensor on sapphire substrate. Sensors and Actuators B, 2001, 77(1-2): 90
    [143] Patel N G, Patel P D, Vaishnav V S. Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sensors and Actuators B,2003, 96(1-2): 180
    [144] Subramanian N S, Santhi B, Sornakurnar T, Subbaraj G K, Vinoth C, Murugan G. Studies on pyrolytically sprayed SnO2 and Sb-SnO2 thin films for LPG sensor applications. Ionics, 2004, 10(3-4): 273
    [145] Kotsikau D, Ivanovskaya M, Orlik D, Falasconi M. Gas-sensitive properties of thin and thick film sensors based on Fe2O3–SnO2 nanocomposites. Sensors and Actuators B, 2004, 101(1-2): 199
    [146] Esfandyarpour B, Mohajerzadeh S, Famini S, Khodadadi A, Soleimani E A. High sensitivity Pt-doped SnO2 gas sensors fabricated using sol–gel solution on micromachined (100) Si substrates. Sensors and Actuators B, 2004, 100(1-2): 190
    [147] Sinner-Hettenbach M, G?thelid M, Weiβ T, Barsan N, Weimar U, Von Schenck H, Giovanelli L, Lay L G. Electronic structure of SnO2(110)-4×1 and sputtered SnO2 (110) revealed by resonant photoemission. Surface Science, 499, (2002): 85
    [148] Xu C N, Tamaki J, Miura N, Yamazoe N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors and Actuators B, 1991, 3(2): 147
    [149] Dai Z R, Gole J L, Stout J D, Wang Z L. Tin Oxide Nanowires, Nanoribbons, and Nanotubes. Journal of Physics Chemistry B, 2002, 106(6): 1274
    [150] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947
    [151] Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Li J P, Lin C L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 2004, 84: 3654
    [152] Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho K J. Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. Nano Letters, 2003, 3(3): 347
    [153] Novak J P, Snow E S, Houser E J, Park D, Stepnowski J, Mcgill R A. Nerve agent detection using networks of single-walled carbon nanotubes. Applied Physics Letters, 2003, 83: 4026
    [154] Comini E, Faglia G, Sberveglieri G, Wang Z L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81: 1069
    [155] Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C. Detection of NO2down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano Letters, 2004, 4(10): 1919
    [156] 康昌鹤, 唐省吾等. 气湿敏感器件及其应用. 北京: 科学出版社, 1988
    [157] Fowler R H, Nordheim L. Electron Emission in Intense Electric Fields. Proceedings of the Royal Society of London. Series A, 1928, 119(781): 173
    [158] Stratton R. Field Emission from Semiconductors. Proceedings of the Physical Society. Section B, 1955, 68(10): 746
    [159] 薛增泉, 吴全德, 电子发射与电子能谱. 北京: 北京大学出版社,1992
    [160] Wan Q, Yu K, Wang T H. Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Applied Physics Letters, 2003, 83: 2253
    [161] Xu N S, Deng S Z, Chen J. Nanomaterials for field electron emission: preparation, characterization and application. Ultramicroscopy, 2003, 95: 19
    [162] Li Q H, Wan Q, Chen Y J, Wang T H, Jia H B, Yu D P. Stable field emission from tetrapod-like ZnO nanostructures. Applied Physics Letters, 2004, 85: 636
    [163] Chen Y J, Li Q H, Liang Y X, et al. Field-emission from long SnO2 nanobelt arrays. Applied Physics Letters, 2004, 85: 5682
    [164] Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y, Goto T. High temperature excitonic stimulated emission from ZnO epitaxial layers. Applied Physics Letters, 1998, 73: 1038
    [165] Wong E M, Searson P C. ZnO quantum particle thin films fabricated by electrophoretic deposition. Applied Physics Letters, 1999, 74: 2939
    [166] Kim S W, Fujita S, et al. Self-organized ZnO quantum dots on SiO2/Si substrates by metalorganic chemical vapor deposition. Applied Physics Letters, 2002, 81: 5036
    [167] Madler L, Stark W J, Pratsinis S E. Rapid synthesis of stable ZnO quantum dots. Journal of Applied Physics, 2002, 92: 6537
    [168] Park W I, Kim D H, Jung S, Yi G C. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters, 2002,80: 4232
    [169] Hu J Q, Ma X L, Xie Z Y,Wong N B,Lee C S,Lee S T. Characterization of Zinc Oxide crystal whiskers grown by thermal evaporation. Chemical Physics Letters, 2001, 344(1-2): 97
    [170] Andres-Verges M, Mifsud A, Sema C J. Formation of rod-like zinc microcrystals in homogeneous solutions. Journal of the Chemical Society,Faraday Transactions, 1990, 86(6): 959
    [171] 吴金桥,王玉琨,纳米材料的液相制备技术及其进展. 西安石油学院学报, 2002, 17(3): 31
    [172] Wang J M, Gao L. Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. Journal of Materials Chemistry, 2003, 13(10): 2551
    [173] Cheng B, Samulski E T. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios.Chemical Communications, 2004, (8): 986
    [174] Ji Y L, Guo L, Xu H B, Simon P, Wu Z. Regularly shaped, single-crystalline ZnO nanorods with Wurtzite Structure. Journal of the American Chemical Society, 2002, 124(50): 14864
    [175] McBride R A, Kelly J M, McCormack D E. Growth of well defined ZnO microparticles by hydroxideion hydrolysis of zinc salts. Journal of Materials Chemistry, 2003, (13): 1196
    [176] 方云,杨澄宇,陈明清,纳米技术与纳米材料(I)-纳米技术与纳米材料简介. 日用化学工业,2003,33(1): 55
    [177] 李玲编著,表面活性剂与纳米技术,北京:化学工业出版社, 2003
    [178] Pileni M P, Ninham B W, Gulik-Krzywicki T. Direct Relationship between Shape and Size of Template and Synthesis of Copper Metal Particles. Advanced Materials, 1999, 11(16): 1358
    [179] Peng X, Manna L, Yang W, Wickham J. Shape control of CdSe nanocrystals. Nature, 2000, 404(6773): 59
    [180] Kim D, Choj J W. Size Control of Polyaniline Nanoparticle by polymer Surfactant. Macromolecules, 2002, 35(13): 5314
    [181] Sun X M, Chen X, Deng Z X, Li Y D. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Materials Chemistry and Physics, 2003, 78(1): 99
    [182] Liu B, Zeng H C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. Journal of the American Chemical Society, 2003, 125(15): 4430
    [183] Gengmin Zhang, Qifeng Zhang, Yi Pei, Liang Chen. Field emission from nonaligned zinc oxide nanowires. Vacuum, 2004, 77(1): 53-56
    [184] Debasish Banerjee, Sung Ho Jo, Zhi Fen Reng. Enhanced Field Emission of ZnO Nanowires. Advanced Materials. 2004, 16: 2028-2032
    [185] Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth. Applied Physics Letters, 2004, 85: 1407-1409
    [186] Liao L, Li J C, Liu D H, Liu C, Wang D F, Song W Z, Fu Q. Self-assembly of aligned ZnO nanoscrews:Growth, configuration, and field Emission. Applied Physics Letters, 2005, 86: 083106
    [187] Zhu Y W, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P. Efficient field emission from Zn0 nanoneedle arrays. Applied Physics Letters, 2003, 83: 144-146
    [188] Mao D S, Wang X, Li W, Liu X H, Li Q, Xu J F. Electron field mission From hydrogen-free amorphous carbon-coated ZnO tip array. Journal of Vacuum Science and Technology B, 2002, 20(1): 278-281
    [189] Jo S H, Lao J Y, Ren, Z F et al. Field-emission studies on thin films of zinc oxide nanowires. Applied Physics Letters, 2003, 83: 4821-482
    [190] Cui J B, Daghlian C P, Gibson U J, et al. Low –temperature growth and field emission of ZnO nanowire arrays. Applied Physics Letters, 2005, 97: 044315
    [191] Li Q H, Wan Q, Chen Y J, et al. Stable field emission from tetrapod-like ZnO nanostructures. Applied Physics Letters, 2004, 85: 636- 638
    [192] Dong L F, Jiao J, Tuggle D W, et al. ZnO nanowires formed on tu ngstens substrates and their electron field emission properties. Applied Physics Letters, 2003, 82: 1096-1098
    [193] Zhong J, Muthukumar S, ChenY, et al. Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition. Applied Physics Letters, 2003, 83: 3401-3403
    [194] Feng X J, Feng L, Jin M H, et al. Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films. Journal of the American Chemical Society. 2004, 126(1): 62-63
    [195] Goldberger J, Sirbuly D J, Law M, et al. ZnO Nanowire Transistors. Journal of Physical Chemistry B, 2005, 109(1): 9-14
    [196] Fan Z Y, Wang D W, Chang P C, et al. ZnO nanowire field-efect transistor and oxygen sensing property. Applied Physics Letters, 2004, 85: 5923-5925
    [197] Arnold M S, Avouris P, Pan Z W, Wang Z L. Field- EffectTransistors Based on Single Semiconducting Oxide Nanobelts. Journal of Physical Chemistry B. 2003, 107(3): 659-663
    [198] Park W L, Kim J S, Yi G C, et al. Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Applied PhysicsLetters, 2004, 85: 5052-5054
    [199] Heo Y W, Tien L C, Kwon Y, et al. Depletion-mode ZnO nanowire field-efect transistor. Applied Physics Letters, 2004, 85: 2 274-2276
    [200] Ng Hou T, Han J, Yamada Toshishige et al. Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor, Nano Letter, 2004, 4(7): 1247-1252
    [201] Li Q H , Liang Y X, Wan Q , Wang T H. Oxygen sensing characteristics of individual ZnO nanowire transistors. Applied Physics Letters, 2004, 85: 6389-6391
    [202] Heo Y W, Tien L C, Norton D P. Pt/ZnO nanowire Schottky diodes. Applied Physics Letters, 2004, 85: 3107-3109
    [203] Harnack O, Pacholski C, Weller H, et al. Rectifying Behavior of E lectrically Aligned ZnO Nanorods. Nano.Letter, 2003, 3(8): 1097-1101
    [204] Huang M H, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001, 292: 1897-1899
    [205] Johnson J C, Yan H Q, Schaller R D. Single Nanowire Lasers. Journal of Physical Chemistry B, 2001, 105(46): 11387-11390
    [206] Govender K, Boyle D S, Paul O, et al. Room-temperature lasing observed from Zn0 nanocolunms grown by aqueous solution deposition. Advanced Materials, 2002, 14: 1221-1224
    [207] Liu C H, Zapien J A, Yao Y, et al. High-density, ordered Ultraviolet light-emiting ZnO nanowire arrays. Advanced Materials, 2003, 15: 838-841
    [208] Yan H Q, He R R, Johnson J, et al. Dendritic Nanowire Ultraviolet Laser Array. Journal of the American Chemical Society, 2003, 125: 4728-4729
    [209] Johnson J C, Knutsen K P, Yan H Q. et al. Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers. Nano Letter, 2004, 4(2): 197-204
    [210] Johnson J C, Yan H Q, Schaller R D, et al. Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires. Nano Letter, 2002, 2(4): 279-283
    [211] Kind H, Yan H Q, Messer B. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14: 158-160
    [212] Dloczik L, Engelhardt R, Ernst K et al. Zinc sulfide columns by chemical co nversion of zinc oxide. Sensors and Actuators B: Chemical, 2002, 84: 33-36
    [213] Goldberger J, He R R, Zhang Y F, et al. Single-crystal gallium Nitride nanitubes. Nature, 2003, 422: 599-60
    [214] Huang M H, Wu Y Y, Feick H N, et al. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Advanced Materials, 2001, 13: 113-116
    [215] Zhang Y, Jia H B, Luo X H, et al. Synthesis Microstructure, and Growth M echanism of Dendrite ZnO Nanowires. Journal of Physical Chemistry B, 2003, 107(33): 8289-8293
    [216] Gao P X, Wang Z L. Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals. Journal of the American Chemical Society, 2003, 125(37): 11299-11305
    [217] Pan Z W, Dai Z R, Wang Z L. Nanobelts of Semiconducting Oxides. Science, 2001, 291, 1947-1949
    [218] Yan H Q, He R R, P J, et al. Morphogenesis of One-Dimensional ZnO Nano-and Microcrystals. Advanced Materials, 2003, 15: 402-405
    [219] Dai Z R, Pan Z W, Wang Z L. Novel Nanstructures of Functional Oxides Synthesized By Thermal Evaporation. Advanced Functional Materials, 2003, 13(1): 9- 24
    [220] Bundesmann C, Ashkenov N, Schubert M, et al. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Applied Physics Letters, 2003, 83: 1974
    [221] Arguello C A, Rousseau D L, Porto S P S. First-Order Raman Effect in Wurtzite-Type Crystals. Physical Review, 1969, 181: 1351
    [222] 王步国, 仲维卓, 施尔畏, 夏长泰, 李文军, 华素坤, 殷之文. ZnO 晶体的极性生长习性与双晶的形成机理. 人工晶体学报, 1997, 26(2): 102
    [223] 华素坤, 仲维卓, 晶体生长基元与结晶习性机理. 人工晶体学报, 1991, 20(l): 82
    [224] Li W J, Shi E W, Zhong W Z, Yin Z W. Growth mechanism and growth habit of oxide crystals. Journal of Crystal Growth, 1999, 203(1-2): 186
    [225] 仲维卓, 华素坤.晶体生长形态学. 北京: 科学出版社, 1999, 60-65
    [226] Smith C A, Lee H W H, Leppert V J, et al. Ultraviolet-blue emission and electron-hole states in ZnSe quantum dots. Applied Physics Letters, 1999, 75 (12): 1688-1690
    [227] Rensmo H, Keis K, et al. High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes. Journal of Physics Chemistry B, 1997, 101 (14): 2598-2601
    [228] Tang Z K, Wong G K L,Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. AppliedPhysics Letters, 1998, 72(25): 3270-3272
    [229] Wong E M, Searson P C. ZnO quantum particle thin films fabricated by electrophoretic deposition. Applied Physics Letters, 1999, 74: 2939
    [230] ANDRéS VERGéS M, MIFSUD A, SERNA C J. Formation of rod-like zinc oxide microcrystals in homogeneous solutions. Journal of the Chemical Society, Faraday Transactions, 1990, 86 (6): 959
    [231] Sigoli F A, Davolos M R, Jafelicci M. Morphological evolution of zinc oxide originating from zinc hydroxide carbonate. Journal of Alloys and Compounds, 1997, 262-263: 292
    [232] Kleinwechter H, Janzen C, knipping J, Wiggers H, Roth P. Formation and properties of ZnO nano-particles from gas phase synthesis processes. Journal of Materials Science, 2002, 37(20): 4349
    [233] Chris G, Van de Walle. Defect analysis and engineering in ZnO. Physica B, 2001, 308-310: 899
    [234] Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B. The electronic structure and spectral properties of ZnO and its defects. Nuclear Instruments and Methods in Physics Research B, 2003, 199: 286
    [235] Zhang S B, Wei S H, Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physics Review B, 2001, 63(7): 075205
    [236] 张继森, 王海宇, 鄂书林等. 纳米 ZnO 的晶格畸变和光学性质. 北京第九届全国发光学术会议, 2001, 156-160
    [237] 贺永宁, 朱长纯, 刘卫华等. 基于 ZnO 纳米晶薄膜的紫外半导体激光器件的材料设计. 纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(下卷), 2003, 5-8
    [238] Wu Y Y, Yan H Q, Huang M H, Messer B, Song J H, Yang P D. Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties. Chemistry - A European Journal, 2002, 8(6): 1260
    [239] Hu J, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research, 1999, 32(5): 435-445
    [240] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897-1899
    [241] Cui J B, Daghlian C P, Gibson U J, et al. Low-temperature growth and field emission of ZnO nanowire arrays. Journal of Applied Physics, 2005, 97:044315
    [242] Zheng M J, Zhang L D, Li G H and Shen W Z. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters, 2002, 363(1-2): 123-128
    [243] Wang X D, Summers C J, Wang Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor nrrays. Nano Letters, 2004, 4(3): 423-426
    [244] Li Y B, Bando Y, Sato T, Kurashima K. ZnO nanobelts grown on Si substrate. Applied Physics Letters, 2002, 81: 144-146
    [245] Wu J J, Liu S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Advanced Materials, 2002, 14: 215-218
    [246] Yu H D, Zhang Z P, Han M Y, Hao X T, Zhu F R. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. Journals of the American Chemical Society, 2005, 127(8): 2378-2379
    [247] Vayssieres L, Keis K, Lindquist S E, Hagfeldt A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. Journals of Physical Chemistry B, 2001, 105(17): 3350-3352
    [248] Vayssieres L, Keis K, Hagfeldt A, Lindquist S E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chemistry of Materials, 2001, 13(12): 4395-4398
    [249] Zhang H, Yang D R, Ma X Y, Que D L. Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction. Journals of Physical Chemistry B, 2005, 109(36): 17055-17059
    [250] Kajikawa Y, Noda S, Komiyama H. Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films. Chemical Vapor Deposition, 2002, 8(3): 99-104
    [251] Chen W, Lin Z J, Wang Z G, Lin L Y. Some new observation on the formation and optical properties of CdS clusters in zeolite-Y. Solid State Communication s, 1996, 100(2): 101-104
    [252] Yoshida T, Tochimoto M, Schlettwein D, Wohrle D, Sugiura T, Minoura H. Self-assembly of zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition. Chemistry of Materials, 1999, 11(10): 2657-2667
    [253] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots tonanorods. Angewandte Chemie International Edition, 2002, 41(7): 1188-1191
    [254] Penn R L, Banfield J F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science, 1998, 281: 969-971
    [255] Zhang Z, Sun H, Shao X, Li D, Yu H, Han M. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Advanced Materials, 2005, 17: 42-47
    [256] Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Li J P, Lin C L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 2004, 84: 3654-3656
    [257] Lin C C, Chem S Y, Cheng S Y, Lee H Y. Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering. Applied Physics Letters, 2004, 84: 5040-5042
    [258] Xu J Q, Pan Q Y, Shun Y A, Tian Z Z. Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical, 2000, 66: 277-279
    [259] Feng P, Wan Q, Wang T H. Contact-controlled sensing properties of flowerlike ZnO nanostructures. Applied Physics Letters, 2005, 87: 213111
    [260] Chen Y J, Xue X Y, Wang Y G, Wang T H. Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Applied Physics Letters, 2005, 87: 233503
    [261] MA Y, Wang W L, Liao K J, Kong C Y. Study on Sensitivity of Nano-Grain ZnO Gas Sensors. Journal of Wide Bandgap Materials, 2002, 10(2): 113
    [262] Giulio M D, Manno D, Micocci G, Serra A, Tepore A. Gas-sensing properties of sputtered thin films of tungsten oxide. Journal of Physics D: Applied Physics, 1997, 30: 3211-3215
    [263] Comini E, Faglia G, Sberveglieri G, Pan Z W, Wang Z L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81: 1869-1871
    [264] Halperin W P. Quantum size effects in metal particles. Reviews of Modern Physics, 1986, 58(3): 533-606
    [265] Feng P, Xue X Y, Liu Y G, Wang T H. Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact. Applied Physics Letters, 2006, 89: 243514
    [266] Huang M H, Mao S, Feick H,et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001, 292: 1897
    [267] Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journals of the American Chemical Society, 2003, 125(15): 4430-4431
    [268] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947-1949
    [269] Vayssieres L, Keis K, Hagfeldt A, Lindquist S-E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chemistry of Materials, 2001, 13(12): 4395-4398
    [270] Hu J Q, Li Q, Meng X M, Lee C S, Lee S T. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes. Chemistry of Materials, 2003, 15(1): 305-308
    [271] Milliron D J, Hughes S T, Cui Y, Manna L, Li J, Wang L W, Alivisatos A P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 2004, 430: 190-195
    [272] Ledwith D, Pillai S C, Watson G. W, Kelly J M. Microwave induced preparation of a-axis oriented double-ended needle-shaped ZnO microparticles. Chemical Communications, 2004, (20): 2294-2295
    [273] Hu P, Liu Y, Wang X,et al. Tower-like structure of ZnO nanocolumns. Chemical Communications, 2003, 11, 1304
    [274] Tian Z R, Voigt J A, Liu J, Mckenzie B, Mcdermott M J. Biomimetic arrays of oriented helical ZnO nanorods and columns. Journals of the American Chemical Society, 2002, 124(44): 12954-12955
    [275] Zhang Y, Jia H, Luo X, Chen X, Yu D, Wang R. Synthesis, microstructure, and growth mechanism of dendrite ZnO nanowires. Journals of Physical Chemistry B, 2003, 107(33): 8289-8293
    [276] Lao J Y, Huang J Y, Wang D Z, Ren Z F. Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: Catalyst-modified carbon-silica composite aerogels. Nano Letters, 2003, 3(2): 235-238
    [277] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters, 2003, 3(12): 1625-1631
    [278] Yan H, He R, Johnson J, Law M, Saykally R J, Yang P. Dendritic nanowire ultraviolet laser array. Journals of the American Chemical Society, 2003, 125(16): 4728-4729
    [279] Gao P, Wang Z L, Self-assembled nanowire-nanoribbon junction arrays of ZnO. Journals of Physical Chemistry B, 2002, 106(49): 12653-12658
    [280] Wang R H, Xin J H, Tao X M, Daoud W A. ZnO Nanorods grown on cotton fabrics at low temperature. Chemical Physics Letters, 2004, 398(1-3): 250-255
    [281] Dai Y, Zhang Y and Wang Z L. The octa-twin tetraleg ZnO nanostructures. Solid State Communications, 2003, 126(11): 629-633
    [282] Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Li J P, Lin C L, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 2004, 84: 3654
    [283] Feng P, Wan Q, Wang T H. Contact-controlled sensing properties of flowerlike ZnO nanostructures. Applied Physics Letters, 2005, 87: 213111
    [284] Windischmann H, Mark P. A model for the operation of a thin-film SnOx conductance-modulation carbon monoxide sensor. Journals of Electrochemical Society, 1979, 126(4): 627-633
    [285] Xu J Q, Pan Q Y, Shun Y A, Tian Z Z. Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical, 2000, 66: 277-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700