细胞膜仿生聚合物囊泡作为药物微载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有独特空腔结构的聚合物囊泡由于在药物与基因传递、人工细胞模型、生物微反应器等多方面的潜在应用价值,已经吸引越来越多的关注。特别是利用囊泡作为各种药剂分子的载体展现出光明的应用前景。本论文通过合成基于磷酸胆碱的双嵌段共聚物和研究共聚物在水溶液中的组装行为,致力于构建新型的细胞膜仿生聚合物囊泡。并探索了这种具有良好生物相容性的聚合物囊泡作为药物微载体的潜在应用。研究围绕着细胞膜仿生囊泡构建、囊泡的形成机理以及降解诱导的可控药物释放,分别展开了以下工作:
     1.利用原子转移自由基聚合(ATRP)技术,合成了两亲双嵌段共聚物聚乳酸-b-聚磷酸胆碱(PLA-b-PMPC)。通过研究其在水溶液中的组装行为,发现不同亲疏水比例的PLA-b-PMPC可以组装为囊泡和胶束。通过设计PMPC嵌段的亲水分数fPC爪为50%左右,采用溶剂注射法获得了微米尺寸和纳米尺寸的囊泡。发现亲水分数fPC在囊泡的尺寸和形貌两方面起到控制作用。细胞膜仿生界面、空心结构和可控微米尺寸实现了PLA-b-PMPC囊泡对生物活细胞的结构模拟。这种可降解细胞膜仿生囊泡为开发新型生物相容性药物微载体和人工细胞模型提供了可能。
     2.以巯基磷酸胆碱修饰的量子点(PC@QD)为亲水分子模型,探索了PLA-b-PMPC囊泡对亲水药物的包封效率。透射电子显微镜、流式细胞仪测试表明聚合物囊泡能够有效地将亲水量子点包封在其亲水空腔内。说明这种细胞膜仿生的聚合物囊泡可以作为亲水药物的有效载体。此外,TEM观察发现还有一部分PC@QD沿着囊泡壁的内外表面均匀分布。我们认为这种特殊吸附是由于量子点表面上和囊泡内外表面上的磷酸胆碱分子间形成的静电离子对造成。通过包封实验结果和量子点在囊泡壁上的特殊吸附,我们提出了囊泡的形成机理。认为囊泡在形成的过程中,两亲双嵌段共聚物首先在水溶液中形成球形胶束,然后再转变为蠕虫状和圆盘状胶束,最后卷曲闭合形成聚合物囊泡。
     3.制备了可降解性细胞膜仿生囊泡作为抗癌药物纳米载体。首先成功地将亲水和疏水抗癌药物分别载入囊泡的亲水空腔和疏水膜中。体外释放试验表明药物的释放是高度pH依赖性的,对比于生理条件pH7.4,在酸性pH5.0条件下药物释放速度更快。进一步发现,在相同的pH条件下,亲水药物的释放速度要比疏水药物快。这种pH依赖性的释放速率归功于PLA-b-PMPC囊泡的降解。酸性pH加速囊泡的水解并诱导囊泡转变为胶束形貌,并释放负载药物。细胞实验表明,载药囊泡能够快速被肝癌细胞内吞,内质溶酶体的酸性环境会加速载药囊泡的降解并增强药物在细胞质内的释放。
     4.聚乙二醇PEG和聚磷酸胆碱PMPC都是具有良好生物相容性的聚合物。以此为出发点,合成了全亲水的双嵌段共聚物PEG-b-PMPC.利用a-环糊精与PEG-b-PMPC的超分子嵌套络合作用,在水溶液中不引入有机溶剂直接构建了一种新型的PEG-b-PMPC/α-CD细胞膜仿生囊泡。由于构建囊泡的材料全都是亲水的低细胞毒性生物材料,细胞活性评价结果表明PEG-b-PMPC/α-CD囊泡具有十分优异的生物相容性,可作为亲水抗癌药物的载体应用于药物传递领域。亲水抗癌药物阿霉素DOX·HCl能被成功地包封进囊泡的亲水内腔,载药量和载药效率分别为10.3%和30%。细胞膜仿生囊泡包载药物后能显著降低自由药物的毒性。荧光显微镜表明,载药囊泡同时能够有效地将药物传送到肝癌细胞内。
Polymersomes, self-assembled vesicles of amphiphilic copolymers, usually possess an aqueous interior separated from the outside by the hydrophobic membrane with both external and internal surfaces formed by hydrophilic shells. In recent years, this unique morphology has attracted considerable attention due to their potential applications in biomedicine as drug and gene delivery carriers, artificial cells and bioreactors. However, the utilization of the polymersome as carriers for various therapeutic agents may be the most promising. In this paper, we synthetized diblock copolymers based on phosphorylcholine molecules and studied their self-assembly behavior to construct cell membrane mimetic polymersomes. The potential application of such biocompatible polymersomes as durg carriers was also explored. The main work in this paper foucses on the construction and the formation mechanism of cell-membrane mimetic polymersomes, and the degradation-induced controllable release:
     (1) The poly(D,L-lactide)-block-poly(2-methacryloyloxyethyl phosphorylcholine)(PLA-b-PMPC) was specially designed to develop biomimetic giant polymersomes and nano-sized polymersomes via a simple spontaneous assemble in aqueous solution. The weight fraction of the hydrophilic PMPC block (fPC) was proved to play an important role in the size and morphology control of the self-assembled aggregates. The large polymersomes with controlled micro-meter size and biomimetic PMPC corona have great potential as artificial cell models. The nano-sized polymersomes can be used as drug carriers for cancer therapy.
     (2) For polymersomes to achieve their potential as effective delivery vehicles, they must efficiently encapsulate therapeutic agents into either the aqueous interior or the hydrophobic membrane. Cell membrane-mimetic polymersomes were prepared from amphiphilic PLA-b-PMPC diblock copolymers and were used as encapsulation devices for water-soluble molecules. Thioalkylated zwitterionic phosphorylcholine protected quantum dots (PC@QDs) were chosen as hydrophilic model substrates and successfully encapsulated into the aqueous polymersome interior, as evidenced by transmission electron microscopy (TEM) and flow cytometry. In addition, we also found a fraction of the PC@QDs was bounded to both the external and internal surfaces of the polymersome. This interesting immobilization might be due to the ion-pair interactions between the phosphorylcholine groups on the PC@QDs and polymersomes. The experimental encapsulation results support amechanism of PLA-b-PMPC polymersome formation, in which PLA-b-PMPC copolymer chains first form spherical micelles, then worm-like micelles, and finally disk-like micelles which close up to form polymersomes.
     (3) Nano-sized biocompatible and biodegradable polymersomes were prepared based on PLA-b-PMPC diblock copolymers and applied for the release anti-cancer drugs. Hydrophobic doxorubicin (DOX) and hydrophilic doxorubicin hydrochloride (DOX·HCl) were successfully loaded into the polymersome membrane and polymersome interior, respectively. The in vitro release studies demonstrated that the release of DOX and DOX·HCl from polymersomes was highly pH-dependent, i.e. significantly faster drug release at mildly acidic pH of5.0compared to physiological pH7.4. Furthermore, DOX·HCl-loaded polymersomes exhibited faster drug release than DOX-loaded polymersomes under the same pH conditions. The highly pH-depended release behavior was attributed to the hydrolysis of PLA-b-PMPC, which would result in morphological transformation from polymersome to micelle with a triggered release of the encapsulated drugs. The drug-loaded polymersomes were shown to rapidly enter HepG2cells, localize in their endosome/lysosomes with acidic pH environment and display enhanced intracellular release of the drugs into the cytosol. These biocompatible and acid pH-sensitive polymersomes might have great potential for cancer therapy.
     (4) PEO and PMPC are biocompatible polymers that have delivered clinically proven benefits in various biomedical applications. Biocompatible polymer polymersomes were prepared on basis of the inclusion complexation between α-cyclodextrins (α-CDs) and double-hydrophilic PEO-b-PMPC in aqueous media without using organic solvent. The supramolecular structure of the nano-sized vesicles was demonstrated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). The biocompatibility of PEO-b-PMPC block copolymers and PEO-b-PMPC/a-CDs vesicles were studied by cell viability test, and the results revealed that both of them showed excellent cytocompatibility. Hydrophilic doxorubicin (DOX·HCl) was successfully loaded into the vesicle with loading content of10.3%and loading efficiency of30%. The DOX·HCl loaded vesicles showed lower cytotoxicity than free drugs, and could efficiently deliver and release the drug into HepG2cells as confirmed by fluorescence microscope (FM). With these properties, the polymer vesicles are attractive as drug carriers for pharmaceutical applications.
引文
[1]Ferrari, M., Cancer nanotechnology:opportunities and challenges. Nat Rev Cancer, 2005,5,161-171.
    [2]Duncan, R., The dawning era of polymer therapeutics. Nat Rev Drug Discov,2003, 2,347-360.
    [3]Kataoka, K., Harada, A., Nagasaki, Y., Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev,2001,47, 113-131.
    [4]Christian, D. A., Cai, S., Bowen, D. M., Kim, Y., Pajerowski, J. D., Discher, D. E., Polymersome carriers:From self-assembly to siRNA and protein therapeutic. European J. Pharm. Biopharm,2009,71,463-474.
    [5]Kataoka, K., Harada, A., Nagasaki, Y. Block copolymer micelles for drug delivery:design, characterization and biological significance. Adv Drug Deliv Rev, 2001,47,113-131.
    [6]Lavasanifar,A., Sanuel, J., Kwon, G. S. Poly(ethylene oxide)-block-poly (L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev,2002,54,169-190.
    [7]Nishiyama, N., Bae, Y., Miyata, K., Fukushima, S., Kataoka, K. Smart polymeric micelles for gene and drug delivery. Drug Discov Today Technol,2005,2,21-26.
    [8]Nishiyama, N., Kataoka, K. Nanostructured devices based on block copolymer assemblies for drug delivery:designing structures for enhanced drug function. Adv Polym Sci,2006,193,67-101.
    [9]La, S. B., Okano, T., Kataoka, K.. Preparation and characterization of the micelle-forming polymeric drug:Indomethacin-incorporated poly (ethylene oxide)-poly(β-benzyl L-aspartate) block copolymer micelles. J Pharm Sci,1996,85,85-90.
    [10]Yamamoto, Y., Yasugi, K., Harada, A., Nagasaki, Y., Kataoka, K. Temperature-related change in the properties relevant to drug delivery of poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles in aqueous milieu. J Control Release, 2002,82,359-371.
    [11]Kataoka, K., Togawa, H., Harada. A., Yasugi. K., Matsumoto, T., Katayose, S. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules,1996,29,8556-8557.
    [12]Seymour, L. W., Duncan, R., Strohalm, J.,& Kopecek, J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copoly-mers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. JBiomed Mater Res,1987,21,1341-1358.
    [13]Stolnik, S., Illum, L., Davis, S. S. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev,1995,16,195-214.
    [14]Mosqueria, V. C. F., Legrand, P., Gulik, A., Bourdon, O., Gref, R., Labarre, D., Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanoparticles. Biomaterials,2001, 22,2967-2979.
    [15]Jeon, S. I., Lee, J. H., Andrade, J. D.,& De Gennes, P. G. Protein-surface interactions in the presence of polyethylene oxide:I. Simplified theory. J Colloid Interface Sci,1991,142,149-158
    [16]Matsumura, Y., Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumu-lation of proteins and the antitumor agent Smancs. Cancer Res,1986,46,6387-6392.
    [17]Mosqueria, V. C. F., Legrand, P., Gulik, A., Bourdon, O., Gref, R., Labarre, D., et al. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanoparticles. Biomaterials,2001, 22,2967-2979.
    [18]Bae, Y., Nishiyama, N., Kataoka, K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjugate Chem,2007,18,1131-1139.
    [19]Yokoyama, M., Sugiyama, T., Okano, T., Sakurai, Y., Naito, M., Kataoka, K. Analysis of micelle formation of an adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer by gel permeation chromatography. Pharm s,1993,10.895-899.
    [20]Yokoyama, M., Okano, T., Sakurai, Y.,& Kataoka, K. Improvedsynthesis of adriamycin-conjugated poly(ethylene glycol)-poly(asparticacid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J Control Release.1994,32,269-277.
    [21]Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V.,& Langer, R. Biodegradable long-circulating polymeric nanospheres. Science,1994,263, 1600-1603.
    [22]Jeong, Y.-I., Cheon, J.-B., Kim, S.-H., Nah, J.-W., Lee, Y.-M., Sung, Y.-K., Clonazepam release from core-shell type nanoparticles in vitro. J Control Release, 1998,51,169-178.
    [23]Minchinton, A. I., Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer,2006,6,583-592.
    [24]Kamb, A. What's wrong with our cancer models? Nat. Rev. Drug Discovery,2005, 4,161-165.
    [25]Maruyama, K., Ishida, O., Takizawa, T.,& Moribe, K. Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev,1999,40,89-102.
    [26]Weitman, S. D., Lark, R. H., Coney, L. R., Fort, D. W., Frasca, V., Zurawski,V. R., Jr., et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res,1992,52,3396-3401.
    [27]Bae, Y., Jang, W.-D., Nishiyama, N., Fukushima, S., Kataoka, K. (b). Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst,2005,1,242-250.
    [28]Lee, E. S., Na, K.,& Bae, Y. H. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release,2003,91,103-113.
    [29]Miyata, K., Kakizawa, Y., Nishiyama, N., Harada, A., Yamasaki, Y., Koyama, H., et al. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J Am Chem Soc,2004,126, 2355-2361.
    [30]Katayama, Y., Sonoda, T., Maeda, M. A polymer micelle responding to the protein kinase A signal. Macromolecules,2001,34,8569-8573.
    [31]Forster, S., Plantenberg, T. From self-organizing polymers to nanohybrid and biomaterials, Angew. Chem., Int. Ed.2002,41,689-714.
    [32]Riess, G. Micellization of block copolymers, Prog. Polym. Sci.2003,28,1107-1170.
    [33]Woodle, M.C., Lasic, D.D. Sterically stabilized liposomes, Biochim. Biophys.Acta, 1992,1113,171-199.
    [34]Molineux, G., Pegylation:engineering improved pharmaceuticals for enhanced therapy, Cancer Treat. Rev.2002,28,13-16.
    [35]Lee, J.H., Lee, H.B., Andrade, J.D. Blood compatibility of polyethylene oxide surfaces, Prog. Polym. Sci.1995,20,1043-1079.
    [36]Benahmed, A., Ranger, M., Leroux, J.C. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide), Pharm. Res.2001,18,323-328.
    [37]Inoue, T., Chen, G., Nakamae, K., Hoffman, A.S. An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs, J. Control. Release,1998,51,221-229.
    [38]Kabanov, A.V., Batrakova, E.V., Alakhov, V.Y. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery, J. Control. Release,2002,82, 189-212.
    [39]Kwon, G.S., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., Kataoka, K. Physical entrapment of adriamycin in AB block-copolymer micelles, Pharm. Res. 1995,12,192-195.
    [40]Hagan, S.A., Coombes, A.G.A., Garnett, M.C., Dunn, S.E., Davis, M.C., Illum, L., Davis, S.S., Harding, S.E., Purkiss, S., Gellert, P.R. Polylactide-poly (ethylene glycol) copolymers as drug delivery systems.1. Characterization of water dispersible micelle-forming systems, Langmuir.1996,12,2153-2161.
    [41]Liggins, R.T., Burt, H.M., Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations, Adv. Drug Deliv. Rev.2002,54,191-202.
    [42]Allen, C., Han, J., Yu, Y. Maysinger, D. Eisenberg, A. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone, J. Control. Release,2000,63,275-286.
    [43]Letchford, K., Zastre, J., Liggins, R., Burt, H. Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly (caprolactone) diblock copolymers, Colloids Surf., B Biointerface,2004,35,81-91.
    [44]Zhang, Z., Grijpma, D.W., Feijen, J. Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) films to micellar-like nanoparticles, J. Controlled. Release,2006,112,57-63.
    [45]Israelachvili, J. Intermolecular & Surface Forces,2nd edn, Academic Press, London,1991.
    [46]Discher, D. E., Ahmed, F. Polymersomes, Annu. Rev. Biomed. Eng.,2006,8, 323-341.
    [47]Discher D. E., Eisenberg, A. Polymer vesicle, Science,2002,297,967-973.
    [48]Discher, B.M., Won, Y.-Y., Ege, D.S., Lee, J. C-M., Bates, F.S., Discher, D.E., Hammer, D.A. Polymersomes:Tough Vesicles Made from Diblock Copolymers, Science,1999,284,1143-1145.
    [49]Aranda-Espinoza, H., Bermudez, H., Bates, F.S. Discher, D.E. Electromechanical,limits of polymersomes, Physical Review Letters,2001,87,20.
    [50]Bermudez, H., Brannan, A.K., Hammer, D.A. Bates, F.S., Discher, D.E. Molecular weight dependence of polymersome membrane structure, elasticity, and stability, Macromolecules,2002,35,8203-8208.
    [51]Soo, P. L., Eisenberg, A., Preparation of block copolymer vesicles in solution, J. Polym. Sci:Polym. Phys.,2004,42,923-938.
    [52]Kita-Tokarczyk, K., Grumelard, J., Haefele, T. Meier, W., Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes, Polymer,2005,46,3540-3563.
    [53]Nikova, A. T., Gordon, V.D., Cristobal, G., Talingting, M. R., Bell, D. C., Evans, C., Joanicot, M., Zasadzinski, J. A., Weitz, D. A. Swollen Vesicles and Multiple Emulsions from Block Copolymers, Macromolecules,2004,37,2215-2218.
    [54]Reinecke, A. A., Doebereiner, H.-G., Slow Relaxation Dynamics of Tubular Polymersomes after Thermal Quench, Langmuir,2003,19,605-608.
    [55]Lee, J. C.-M., Bermudez, H., Discher, B.M., Sheehan, M. A., Won, Y.-Y., Bates, F. S., Discher, D. E., Preparation, stability, and in vitro performance of vesicles made with diblock copolymers, Biotech and Bioeng.,2001,73,135-145.
    [56]Du, J. Z., Armes, S. P. Preparation of Biocompatible Zwitterionic Block Copolymer Vesicles by Direct Dissolution in Water and Subsequent Silicification within Their Membranes, Langmuir,2009,25,9564-9570.
    [57]Koide, A., Kishimura, A., Osada, K., Jang, W.D., Yamasaki, Y., Kataoka, K. Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers:physiologically stable micro-nano con tainers of water-soluble macromolecules, J. Am. Chem. Soc.,2006,128, 5988-5989.
    [58]Blanazs, A., Armes, S. P., Ryan, A. J. Self-Assembled Block Copolymer Aggregates:From Micelles to Vesicles and their Biological Applications, Macromol. Rapid Commun.2009,30,267-277.
    [59]Gao, K.-J., Li, G., Lu, X., Wu, Y. G., Xu, B.-Q., Fuhrhop, J.-H. Giant vesicle formation through self-assembly of chitooligosaccharide-based graft copolymers, Chem. Commun.2008,12,1449-1451.
    [60]Kishimura, A., Koide, A., Osada, K., Yamasaki, Y., Kataoka, K., Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers:a physiologically available oxygen carrier, Angew. Chem., Int. Ed.2007,46,6085-6088.
    [61]Photos, P.J., Bacakova, L., Discher, B., Bates, F.S., Discher, D.E., Polymer vesicles in vivo:correlations with PEG molecular weight. Journal of Controlled Release,2003,90,323-334.
    [62]Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review, Journal of Controlled Release.2000,65,271-284.
    [63]Christian, D.A., Cai, S., Bowen, D.M., Kim, Y., Pajerowski, D.J., Discher, D.E. Polymersome carriers:From self-assembly to siRNA and protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics,2009,71,463-474.
    [64]Ivanova, T., Panaiotov, I., Boury, F., Proust, J. E., Benoit, J. P., Verger, R. Hydrolysis kinetics of poly(D,L-lactide)monolayers spread on basic or acidic subphases. Colloids Surf, B,1997,8,217-225.
    [65]Grayson, A. C., Cima, M. J., Labnger, R. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and micro-reservoir device performance. Biomaterials,2005,26,2137-2145.
    [66]Meng, F., Hiemstra, C., Engbers, G.H.M., Feijen, J. Biodegradable Polymersomes. Macromolecules,2003,36,3004-3006.
    [67]Meng, F.H., Engbers, G.H.M., Feijen, J., Biodegradable polymersomes as a basis for artificial cells:encapsulation, release and targeting, J. Control. Release,2005, 101,187-198.
    [68]Ahmed, F., Hategan, A., Discher, D.E., Discher, B.M., Block copolymer assemblies with cross-link stabilization:from single-component monolayers to bilayer blends with PEO-PLA, Langmuir,2003,19(16),6505-6511.
    [69]Wang, F., Wang, Y.-C., Yan, L.-F., Wang, J. Biodegradable vesicular nanocarriers based on poly(3-caprolactone)-block-poly(ethyl ethylene phosphate) for drug delivery. Polymer,2009,50,5048-5054.
    [70]Wang, Y.C., Liu, X.Q., Sun, T.M., Xiong, M.H., Wang, J. Functionalized micelles from polyphosphoester and poly(e-caprolactone) block copolymer for receptor-mediated drug delivery, JControll Release,2008,128,32-40.
    [71]Zhao, Z., Wang, J., Mao, H.Q., Leong, K.W., Polyphosphoesters in drug and gene delivery, Adv Drug Deliv Rev,2003,55,483-99.
    [72]Cheng, J., Ding, J.X., Wang, Y.C., Wang, J. Biodegradable Vesicular Nanoparticles Based on Block Copolymer of Poly(e-Caprolactone) and Poly(Ethyl Ethylene Phosphate) for Drug Delivery, Polymer,2008,49,4784-4790.
    [73]Fletcher, J. I., Haber, M., Henderson, M. J., Norris, M. D., ABC transporters in cancer:more than just drug efllux pumps. Nat. Rev.2010, Cancer 10,147-156.
    [74]Robey, R. W., To, K. K. K., Polgar, O., Dohse, M., Fetsch, P., Dean, M., Bates, S. E., ABCG2:A perspective. Adv. Drug Delivery Rev.2009,61,3-13.
    [75]Wong, H. L., Bendayan, R., Rauth, A. M., Xue, H. Y., Babakhanian, K., Wu, X. Y., A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther.2006,317,1372-1381.
    [76]Dong, X.W., Mattingly, C. A., Tseng, M. T., Cho, M. J., Liu, Y., Adams, V. R., Mumper, R. J., Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP, Cancer Res.2009,69,3918-3926.
    [77]Kabanov, A. V., Batrakova, E. V., Alakhov, V. Y., Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Delivery Rev.2002,54,759-779.
    [78]Meng, H. A., Liong, M., Xia, T. A., Li, Z. X., Ji, Z. X., Zink, J. I., and Nel, A. E. Engineered design of mesoporous silica nano-particles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010.4,4539-4550. Fuvier, C., Roblottreupel, L., Millot, J.M., Lizard, G., Chevillard, S., Manfait, M., Couvreur, P., Poupon, M. F., Doxorubicin-loaded nanospheres bypass tumor-cell multidrug resistance. Biochem. Pharmacol.1992,44,509-517. deVerdiere, A. C., Dubernet, C., Nemati, F., Soma, E., Appel, M., Ferte, J., Bernard, S., Puisieux, F., Couvreur, P., Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles:Towards a mechanism of action. Br. J. Cancer,1997,76,198-205.
    [81]Nemati, F., Dubernet, C., Deverdiere, A. C., Poupon, M. F., Treupelacar, L Puisieux, F., Couvreur, P., Some parameters influencing cytotoxicity of free doxorubicin and doxorubicin-loaded nanoparticles in sensitive and multidrug-resistant leukemic murine cells-incubation-time, number of nanoparticles per cell. Int. J. Pharm.1994,102,55-62.
    [82]Soma, C. E., Dubernet, C., Barratt. G., Nemati. F., Appel, M.,Benita, S., and Couvreur, P. Ability of doxorubicin-loaded nanoparticles to overcome multidrug resistance of tumor cells after their capture by macrophages. Pharm. Res.1999,16, 1710-1716.
    [83]Ahmed, F., Pakunlu, R. I., Brannan, A., Bates, F., Minko, T., Discher, D. E., Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug, Journal of Controlled Release,2006,116,150-158.
    [84]Ahmed, F., Discher, D.E., Self-porating polymersomes of PEG-PLA, PEG-PCL: hydrolysis-triggered controlled release vesicles, Journal of Controlled Release, 2004,96,37-53.
    [85]Ahmed, F., Pakunlu, R.I., Brannan, A., Bates, F., Minko, T., Discher, D.E., Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug, Journal of Controlled Release,2006,116,150-158.
    [86]Gillies, E.R., Frechet, J.M.J., A new approach towards acid sensitive copolymer micelles for drug delivery, Chem. Commun.2003,1640-1641.
    [87]Murthy, N., Campbell, J., Fausto, N., Hoffman, A.S., Stayton, P.S., Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intra-cellular delivery of oligonucleotides, J. Control. Release,2003,89,365-374.
    [88]Gillies, E.R., Acetals as pH-sensitive linkages for drug delivery, Bioconjug. Chem. 2004,15,1254-1263.
    [89]Gillies, E.R., Frechet, J.M.J., pH-responsive copolymer assemblies for controlled release of doxorubicin, Bioconjug. Chem,2005,16,361-368.
    [90]Jain, R., Standley, S.M., Frechet, J.M.J., Synthesis and degradation of pH-sensitive linear poly(amidoamine)s, Macromolecules,2007,4,452-457.
    [91]Paramonov, S.E., Bachelder, E.M., Beaudette, T.T., Standley, S.M., Lee, C.C., Dashe, J., Frechet, J.M.J., Fully acid-degradable biocompatible polyacetal microparticles for drug, delivery, Bioconjug. Chem.2008,19,911-919.
    [92]Bachelder, E.M., Beaudette, T.T., Broaders, K.E., Dashe, J., Frechet, J.M.J., Acetal-derivatized dextran:an acid-responsive biodegradable material for therapeutic applications, J. Am. Chem. Soc.2008,130,10494-10495.
    [93]Chan, Y., Bulmus, V., Zareie, M.H., Byrne, F.L., Barner, L., Kavallaris. M., Acid-cleavable polymeric core-shell particles for delivery of hydrophobic drugs, J. Control. Release,2006,115,197-207.
    [94]Chen, W., Meng, F.H., Li, F., Ji, S.-J., Zhong, Z.Y., pH-Responsive biodegradablemicelles based on acid-labile polycarbonate hydrophobe:synthesis and triggered drug release, Biomacromolecules,2009,10,1727-1735.
    [95]Chen, W., Meng, F., Cheng, R., Zhong, Z., pH-Sensitive degradable polymersomes for triggered release of anticancer drugs:A comparative study with micelles. Journal of Controlled Release,2010,142,40-46.
    [96]Discher, B.M., Won, Y.Y., Ege, D.S., Lee, J.C.M., Bates, F.S., Discher, D.E. Hammer, D.A., Polymersomes:tough vesicles made from diblock copolymers, Science,1999,284,1143-1146.
    [97]Photos, P.J., Bacakova, L., Discher, B., Bates, F.S., Discher, D.E., Polymer vesicles in vivo:correlations with PEG molecular weight, Journal of Controlled Release,2003,90,323-334.
    [98]Choucair, A., Soo, P.L., Eisenberg, A., Active loading and tunable release of doxorubicin from block copolymer vesicles, Langmuir,2005,21,9308-9313.
    [99]Li, S.L., Byrne, B., Welsh, J., Palmer, A.F., Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers, Biotechnology Progress, 2007,23,278-285.
    [100]Christian, N.A., Milone, M.C., Ranka, S.S., Li, G.Z., Frail, P.R., Davis, K.P., Bates, F.S., Therien, M. J., Ghoroghchian, P.P., June, C.H., Hammer, D.A., Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling, Bioconjugate Chemistry,2007,18,31-40.
    [101]Lin, V.S.Y., Dimagno, S.G., Therien, M.J., Highly conjugated, acetylenyl bridged porphyrins-new models for light-harvesting antenna systems, Science,1994,264. 1105-1111.
    [102]Ghoroghchian, P. P., Frail, P. R.. Li, G., Zupancich, J. A., Bates, F.S., Hammer, D. A., Therien, M. J., Chem. Mater.2007.19,1309-1318.
    [103]Amadori, D., Frassineti, G. L., Zoli, W., Milandri, C., Serra, P., Tienghi, A., Ravaioloi, A., Gentile, A., Salzano, E. Doxorubicin and paclitaxel (sequential combination) in the treatment of advanced breast cancer. Oncology,1997,4,30-33.
    [104]Ahmed, F., Pakunlu, R.I., Srinivas, G., Brannan, A., Bates, F., Klein, M.L. Minko, T., Discher, D.E., Shrinkage of a rapidly growing tumor by drug-loaded polymersomes:pH-triggered release through copolymer degradation, Molecular Pharmaceutics,2006,3,340-350.
    [105]Kerbel R, Folkman J., Clinical translation of angiogenesis inhibitors. Nat Rev Cancer,2002,2,727-739.
    [106]Harries M, Smith I., The development and clinical use of trastuzumab (Herceptin). Endocr Relat Cancer,2002,9(2):75-85.
    [107]Marshall, H. Anti-CD20 antibody therapy is highly effective in the treatment of follicular lymphoma. Trends Immunol,2001,4,183-184.
    [108]Schrama, D., Reisfeld, R. A., Becker, J.C., Antibody targeted drugs as cancer thera-peutics. Nat Rev Drug Discov,2006,5,147-159.
    [109]Torchilin, V. P., Lukyanov, A.N., Peptide and protein drug delivery to and into tumors:challenges and solutions. Drug Discov Today,2003,8,259-266.
    [110]Parveen, S., Sahoo, S.K., Nanomedicine-clinical applications of polyethylene glycol conjugated proteins and drugs, Clinical Pharmacokinetics,2006,45,965-988.
    [111]Harris, J.M., Chess, R.B., Effect of pegylation on pharmaceuticals, Nature Reviews Drug Discovery,2003,2,214-221.
    [112]Wittemann, A., Azzam, T., Eisenberg, A. Biocompatible Polymer Vesicles from Biamphiphilic Triblock Copolymers and Their Interaction with Bovine Serum Albumin. Langmuir,2007,23,2224-2230.
    [113]Liu, G., Ma, S., Li, S., Cheng, R., Meng, F., Liu, H., Zhong, Z. The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes. Biomaterials,2010,31,7575-7585.
    [114]Rameez, S., Alosta, H., Palmer, A. F. Biocompatible and Biodegradable Polymersome Encapsulated Hemoglobin:A Potential Oxygen Carrier. Bioconjugate Chem.2008,19,1025-1032.
    [115]Korobko, A.V., Backendorf, C., van der Maarel, J.R.C., Plasmid DNA encapsulation within cationic diblock copolymer vesicles for gene delivery, Journal of Physical Chemistry B,2006,110,14550-14556.
    [116]Korobko, A.V., Jesse, W., van der Maarel, J.R.C., Encapsulation of DNA by cationic diblock copolymer vesicles, Langmuir,2005,21,34-42.
    [117]Dias, R.S., Lindman, B., Miguel, M.G., Compaction and decompaction of DNA in the presence of catanionic amphiphile mixtures, Journal of Physical Chemistry B,2002,106,12608-12612.
    [118]Dias, R.S., Lindman, B., Miguel, M.G., DNA interaction with catanionic vesicles, Journal of Physical Chemistry B,2002,106,12600-12607.
    [119]Bonincontro, A., LaMesa, C., Proietti, C., Risuleo, G., A biophysical investigation on the binding and controlled DNA release in a cetyltrimethylammonium bromide-sodium octyl sulfate cat-anionic vesicle system, Biomacromolecules, 2007,8,1824-1829.
    [120]Kim, Y., Tewari, M., Pajerowski, J.D., Cai, S.S., Sen, S., Williams, J., Sirsi, S., Lutz, G., Discher, D.E., Polymersome delivery of RNAi and antisense oligonucleotides, Journal of Controlled Release,2009,134,132-140.
    [121]Singer, S.J., Nicolson, G. L. Fluid mosaic model of the structure of cell membranes. Science,1972,175,720-731.
    [122]Hayward, J.A., Chapman, D., Biomembrane surfaces as models for polymer design:the potential for haemocompatibility. Biomaterials,1984,5,135-142.
    [123]Bird, R., Hall, B., Chapman, D., Hobbs, K.E.F. Material thrombelastography:an assessment of phosphorylcholine compounds as models for biomaterials. Thromb. Res.1988,51,471-483.
    [124]Ishihara, K., Iwasaki, Y., Nakabayashi, N. Polymer lipid nanosphere consisting of water-soluble poly(2-methacryloyloxyethyl phosphorycholine-co-n-butylmethacrylate). Polymer Journal, 1999,31,1231-1236.
    [125]Konno, T., Watanabe, J., Ishihara, K., Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorycholine polymers. J. Biomed. Mater. Res. Part A,2003,2,209-214.
    [126]Xu, J., Ji, J., Chen, W., Ji, J., Shen, J. Sythesis and the micellar characteristics of a novel biomimetic surfactant. Macromolecular Bioscience,2005,5,164-171.
    [127]Xu, J., Ji, J., Ji, J., Shen, J. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. Journal of Controlled Release,2005,107,502-512.
    [128]Du, J. Z., Tang, Y. P., Lewis, A. L., Armes, S. P. pH-Sensitive Vesicles Based on a Biocompatible Zwitterionic Diblock Copolymer, J. Am. Chem. Soc.2005,127, 17982-17983.
    [129]Lomas, H., Canton, I., MacNeil, S., Du, J., Armes, S. P., Ryan, A. J., Lewis, A. L. Battaglia, G. Biomimetic pH Sensitive Polymersomes for Efficient DNA Encapsulation and Delivery. Adv. Mater.2007,19,4238-4243.
    [130]Discher, B. M.; Won, Y.-Y.; Ege, D.; Lee, J. C.-M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Polymersomes:Tough Vesicles Made from Diblock Copolymers, Science,1996,284,1143-1146.
    [131]Zhou, Y., Yan, D., Supramolecular Self-Assembly of Giant Polymer Vesicles with Controlled Sizes, Angew. Chem. Int. Ed.2004,43,4896-4899.
    [132]Sun, J., Chen, X., Deng, C., Yu, H., Xie, Z., Jing, X., Direct Formation of Giant Vesicles from Synthetic Polypeptides, Langmuir,2007,23,8308-8315.
    [133]Gao, K.-J., Li, G., Lu, X., Wu, Y. G., Xu, B.-Q., Fuhrhop, J.-H., Giant vesicle formation through self-assembly of chitooligosaccharide-based graft copolymers, Chem Commun,2008,12,1449-1451.
    [134]Zhang, L., Eisenberg, A., Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions, Macromolecules,1996,29,8805-8815.
    [135]Mai, Y., Zhou, Y., Yan, D., Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether, Real-Time Hierarchical Self-Assembly of Large Compound Vesicles from an Amphiphilic Hyperbranched Multiarm Copolymer, Small,2007,3,1170-1173.
    [136]Adams,D.J.,Kitchen,C.,Adams,S.,Furzeland,S.,Atkins,D.,Schuetz,P., Fernyhough,C.M.,Tzokova,N.,Ryan,A.J.,Butler,M.F.,On the mechanism of formation of vesicles from poly(ethylene oxide)-block-poly(caprolactone) copolymers,Soft Matter,2009,5,3086-3096
    [137]Adams,D.J.,Adams,S.,Atkins,D.,Butler,M.F.,Furzeland,S.,Impact of mechanism of formation on encapsulation in block copolymer vesicles,Journal of Controlled Release,2008,128,165-170.
    [138]Jin,Q.,Xu,J.-P.,Ji,J.,Shen,C.-J.,Zwitterionic phosphorylcholine as a better ligand for stabilizing large biocompatible gold nanoparticles,Chem.Commun., 2008,36,3058-3060.
    [139]Nallani,M.,Woestenenk,R.,de Hoog,H.-P. M.,van Dongen,S.F.M.,Boezeman, J.,Cornelissen,J.J.L.M.,Nolte,R.J.M.,van Hest,J.C.M.,Sorting Catalytically Active Polymersome Nanoreactors by Flow Cytometry,Small,2009,5,1138-1143.
    []40]Chen,S.,Zheng,J.,Li,L.,Jiang,S.Y.,Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:Insights into Nonfouling Properties of Zwitterionic Materials,J.Am.Chem.Soc.2005,127,14473-14478.
    [141]Geng,Y.,Discher,D.E.,Hydrolytic Degradation of Poly(ethylene oxide)-block-Polycaprolactone Worm Micelles,J.Am.Chem.Soc.,2005,127,12780-12781.
    [142]Geng,Y.,Discher,D.E.,Visualization of degradable worm micelle breakdown in relation to drug release,Polymer,2006,47,2519-2525.
    [143]Gu,C.,Chen,D.,Jiang,M.,Short-Life Core-Shell Structured Nanoaggregates Formed by the Self-Assembly of PEO-b-PAA/ETC(1-(3-Dimethylamino propyl)-3-ethylcarbodiimide Methiodide)and Their Stabilization,Macromolecules,2004, 37,1666-1669.
    [144]Manakker,F., Vermonden,T.,Van Nostrum C.F.,Hennink,W. E., Cyclodextrin-Based Polymeric Materials:Synthesis, Properties, and Pharmaceutical/Biomedical Applications,Biomacromolecules,2009,10,3157-3175.
    [145]Harada,A.,Hashidzume,A.,Takashima,Y.,Cyclodextrin-based supramolecular polymers,Adv.Polym.Sci.,2006,201,1-43.
    [146]Huang, J., Ren, L. Chen, Y. M., Hydrophilic Block Copolymer Aggregation in Solution Induced by Selective Threading of Cyclodextrins, Macromol. Chem. Phys.,2006,207,1764-1772.
    [147]Liu, J., Sondjaja, H. R., Tam, K. C., α-Cyclodextrin-Induced Self-Assembly of a Double-Hydrophilic Block Copolymer in Aqueous Solution, Langmuir,2007,23, 5106-5109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700