6082铝合金筋类锻件热变形行为及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金筋类零件广泛应用于汽车、航空等领域。该种零件形状复杂、精度要求高,并且对于锻件组织和性能的要求也日益提高。目前对于6082铝合金锻造变形过程中材料参数并不完备,而对于筋类锻件金属流动和缺陷形成和演化也不够深入。本文采用有限元模拟和实验相结合的方法,研究了6082铝合金筋类锻件热变形行为、成形过程中缺陷形成的机理,提出了相关变形条件和工艺参数对于锻件组织性能的影响。
     6082铝合金变形激活能Q为145.977kJ/mol。应变速率小于0.1s~(-1)时,应变未达到0.1即已进入稳态流动阶段,之后流动应力略有下降。而当应变速率大于0.1s~(-1)时,应变增大到0.3才开始进入稳态流动阶段,并且进入稳态后应力值不再随应变变化。可采用4阶多项式进行应变补偿,改进后的本构方程对流动应力值的预测更为精确。
     应变速率小于1s~(-1)时,6082铝合金只发生动态回复,晶粒较为粗大;应变速率大于1s~(-1)时,发生动态再结晶。在350oC下变形出现大量破碎的晶粒,随着温度逐渐升高,位错缠结的网状形态逐渐消失,当温度提高到500oC时,晶粒尺寸变大,且排列较为整齐,出现近似等轴晶的形态。
     6082铝合金辊锻变形过程中,同一横截面上温度场和应力应变场分布不均匀,温度相差可达20oC,应力相差可在30MPa左右。制坯变形量45%,预锻和终锻截面面积差在10%之内可有效避免出现折叠、穿筋等各种缺陷。压扁后坯料的夹角增大约2o,为了保证变形匹配,需要对该角度进行补偿。
     6082铝合金在440oC-490oC区间辊锻,热处理后的强度随着温度升高而增大,且强度在310MPa至360MPa之间。制坯后的零件应当立即水冷,以保持较好的组织形态。不宜让其在空气中自然冷却,否则会导致晶粒粗大且不均匀。随着始锻温度和终锻温度的提高,粗晶有减少的趋势。较大的变形程度和均匀的变形对避免和减少粗晶有利。在0到60%的制坯变形程度区间,随着制坯变形程度增大,第二相粒子析出增多,锻后锻件的抗拉强度和屈服强度增大,极大值分别为350MPa和310MPa。
     镦挤变形过程易产生汇流折叠,增大过渡圆角可改善金属流动状态。筋部圆角大于筋部宽度的1/2时,充填饱满,没有缺陷。流线紊乱和折叠缺陷的产生与材料过量有关,应严格控制金属余量。变形温度在480oC,滑块速度5mm/s,摩擦因子0.3时,充填效果很好。
Aluminum alloy forging with ribs has been widely used in automobile andaircraft. This kind of parts has complex shape and high precision. Moreover, therequiremets for microstructures and properties of these parts are increasinglyimproved. At present, the materical data of6082in forging process is scare, andthere is no profoundly research on occurring and evolvement of defects in formingprocess for forging with ribs. Therefore, in this dissertation, the hot deformationbehavior and defect mechanism of6082aluminum alloy forging with ribs werestudied and the influence of forming scheme as well as technical parameters onmicrosturctures and properties was precented.
     For6082aluminum alloy, the calculated activated energy Q was145.977kJ/mol. Stable flow state was entered before stain of0.1following flow stressdescending when strain rate bellow0.1~(-1). The work hardening evidently affect onflow stress which entered in stable flow after stain of0.3and kept constant whenstrain rate above0.1~(-1). The improved constitutive equation compensated by strain of4degree polynomial fit could predict flow stess more exact. Dynamic recovery was themain mechanism and grain size seemed coarse at lower strain rate which less than1;reversely, dynamic recrystallization was dominant at higher strain rate which morethan1. Lot of crash grains were obtained at350oC, the dislocation descended withincreasing temperature and equiaxial grain appeared at500oC.
     During hot deformation of roll forging, distribution of temperature as well asstress or strain was not homogeneous. The deference of temperature could be20oCas the deference of stress being30MPa. Deformation of45%for performing anddeference of sectional area between pre-forging and finish-forging within10%mayavoid folding, rib breaking and other defects. The angle increased2o after busting,which should be compensated for deformation matching in bending.
     When roll forged between440oC and490oC, the strength after heat treatmentincreased with increasing temperature which varied from310MPa to360MPa. Thepreformed blank should be cooled in water to retain fine microstructure while air coolingmay result in coarse and asymmetry grains.
     The coarse grain would be avoided when start forging as well as finish forgingtemperature was increased. The separated second phase particle increased withincreasing performing deformation, which made tension stress as well as yield stressincreased with maximum of350MPa and310MPa respectly.
     Upset extrusion results in confluent folding and enlarging radius could improvemetal flow state. Flow line turbulence and folding in rib was related with material exess,thus the mount of materal should be control strictly. The filling result seemed optimal attemperature of480oC, friction factor of0.3and slide velocity of5mm/s.
引文
[1]林慧国.中外铝合金牌号对照速查手册[M].北京:机械工业出版社,2007
    [2]刘静安.铝合金锻压生产现状及锻件应用前景分析[J].铝加工,2005,2(161):5-9.
    [3]马鸣图,马露露.铝合金在汽车轻量化中的应用及前瞻技术[J].新材料产业,2008(9):43-50
    [4]曾苏民.世界锻造工业的现状与发展前景[J].铝加工,1996(4),54.
    [5]刘静安,盛春磊,王文琴.铝合金锻压生产技术及锻件的应用开发[J].轻合金加工技术,2010,38(1):13-17
    [6]刘静安,张宏伟,谢水生,等.铝合金锻造技术[M].北京:冶金工业出版社,2012
    [7]田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向[J].轻合金加工技术.2005,33(12):1-9
    [8]曾渝,尹志民,潘青林,郑子樵,刘志义.超高强铝合金的研究现状及发展趋势[J].中南工业大学学报.2002,33(6):592-596
    [9]吴一雷,李永伟.超高强度铝合金的发展和应用[J].航空材料学报.1994,14(1):49-55
    [10] A.L.David,M.H.Ray.Aluminum Alloy Development Efforts for Compression DominatedStructure Aircraft [J].Light Metal Age.1991,2(9)11-15
    [11] T.S.Srivatsan,G..Guruprasad,et al.The Quasi Static Deformation and Fracture Behaviouof Aluminum Alloy7150[J].Materials&Design.2008,29(4):742-751
    [12]王洪,付高峰,孙继红,李兴杰,姜澜.超高强铝合金研究进展.材料导报,2006,20(2):58-60
    [13]黄世民.铝合金在飞机结构上的应用和发展[J].轻合金,1985,(1):39-42
    [14]张君尧.铝合金材料的新进展[J].轻合金加工技术,1998,26(5):1-6
    [15]颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望叨.航空制造技术,2003,12:19-25.
    [16]刘兵,彭超群,王日初,大飞机用铝合金的研究现状及展望,中国有色金属学报,2010,20(9):1705-1715
    [17]王乐安.航空工业中的锻压技术及其发展[J].锻压技术,1994,1:57-61
    [18]田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向[J].轻合金加工技术.2005,33(12):1-9
    [19]王祝堂,张新华.汽车用铝合金[J].轻合金加工技术,2011,39(2):1-14
    [20]华林.汽车新材料与先进制造技术[J].汽车工艺与材料,1999,4:7-9
    [21]冯美斌.汽车轻量化技术中新材料的发展及应用[J].汽车工程,2006,(3):4-11.
    [22]黄佩贤.轻质材料铝合金在汽车上的应用[J].上海汽车,2002,1:37-38
    [23] Zener C,Hollomon J H.Effect of strain rate upon the plastic flow of steel[J].Journal ofApplied physics,1944,15(1):22-32.
    [24] D.Mclean, K.F. Hale. Dislocation-free precipitates [J]. Acta Metallurgica,1959,7(6):438-439.
    [25] K.E.Amin, A.K.Mukheriee, J.E.Dorn. A universal law for high-temperature diffusioncontrolled transient creep[J]. Mechanicas and Physics of Solids,1970,18(6):413-426.
    [26] J.E.Dorn. Thermodynamics of stackine faults in binary alloys[J].Acta Metallurgica,1963,11(3):218-219.
    [27] R.L.Stocker, M.F. Ashby. On the empirical constants in the dorn equation[J]. ScriptaMetallurgica,1973,7(1):115-120.
    [28] O.D.Sherby, P.M.Burke. Mechanical behavior of crystalline solids at elevatedtemperature[J].Progress in Materials Science,1968,13:323-390
    [29] S.L.Robinson, O.D.Sherby. Mechanical behavior of polycrystalline tungsten at elevatedtemperature[J]. Acta Metallurgica,1969,17(2):109-125.
    [30] F Garofalo. An empirical relation defining the stress dependence of minimum creep ratein metas[J]. Transaction of American Institute of Mining and MetallurgicalEngineers,1963,227:351-356.
    [31] Jonas J J, Sellars C M, Tegart W J McG.Strength and structure under hot-workingconditions[J].International Metal Reviews,1969,3:1-24.
    [32] S.K. Samanta. Dynamic deformation of aluminium and copper at elevatedtemperatures[J]. Mechanics and Physics of Solids,1971,19(3):117-122.
    [33] Z.Gronostajski.The constitutive equations for FEM analysis[J]. Materials ProcessingTechnology,2000,106:40-44
    [34] R.N.Wright, M.S. Paulson. Constitutive equation development for high straindeformation processing of aluminum alloys[J]. Materials ProcessingTechnology,1998,80-81:556-559.
    [35] H.J. McQueen, N.D. Ryan. Constitutive analysis in hot working[J]. Materials Scienceand Engineering A,2002,322:43-63.
    [36] M.F.Abbod,C.M.Sellars,A.Tanaka,et al. Effect of changing strain rate on flow stressduring hot deformation of Type316L stainless steel[J].Materials Science andEngineering A,2008,491:290-296.
    [37] S.Spigarelli, E.Evangelista, E.Cerri. Constritutive equations for hot deformation of anAl-6061/20%Al2O3composite[J].Materials Science and Engineering A,2001,319-321:721-725.
    [38] Z.J.Gronostajski.Development of constitutive equation of copper-silicon alloys[J].Materials Processing Technology,1996,60:621-627.
    [39] Ji Hyun Sung,Ji Hoom Kim,R.H.Wagoner. A plastic constitutive equation incorporatingstrain,strain-rate,and termperature[J]. International Journal ofPlasticity,2010,26:1746-1771.
    [40] Woei-Shyan Lee.Gen-Wang Yeh.The plastic deformation behaviour of AISI4340alloysteel subjected to high temperature and high strain rate loading conditons[J].MaterialsProcessing Technology,1997,71:224-234.
    [41] A.Rusinek, J.R.Klepaczko. Shear testing of a sheet steel at wide rage of strain rates and aconstitutive relation with strain-rate and temperature dependence of the flow stress[J].International Journal of Plasticity,2001,17:87-115
    [42] Xinjian Duan,Terry Sheppard.The influence of the constitutive equation on thesimulation of a hot rolling process[J]. Materials ProcessingTechnology,2004,150:100-106.
    [43] G.J.Baxter,T.Furu, Q.Zhu,et al.The influence of transient strain-rate deformationconditions on the deformed microstructure of aluminium alloy Al-1%Mg[J].Actamaterialia,1999,47(8):2367-2376.
    [44] J.van de Langkruis, W.H.Kool, S. van der Zwaag. Assessment of constitutive equation inmodeling the hot deformability of some overaged Al-Mg-Si alloys with varying solutecontents[J]. Materials Science and Engineering A,1999,266:135-145.
    [45] M.Zhou,M.P.Clode. Constitutive equations for modeling flow softening due to dynamicrecovery and heat generation during plastic deformation[J].Mechanics ofMaterials,1998,27:63-76.
    [46]沈健.热压缩2091Al-Li合金的流变应力行为[J].稀有金属,1998,22(1):47-50.
    [47]王孟君,杨立斌,甘春雷,等.6063铝合金高温流变本构方程[J].华中科技大学学报(自然科学版),2003,31(6):20-22.
    [48]黄光杰,朱清洋,黄本多.3104铝合金高温塑性本构关系[J].材料导报,2006,20:460-462
    [49]赵培峰,任广升,沈智,等.6061铝合金热压缩变形条件对流变应力的影响及其本构方程的研究[J]塑性工程学报,2007,14(6):130-133
    [50]林高用,张辉,郭武超,等.7075铝合金热压缩变形流变应力[J].中国有色金属学报,2001,11(3):412-415.
    [51]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1996
    [52] B.A.Parker, JanHo.Lim. Microstructure development during the defomation ofaluminum-magnesium alloys[J]. Journal of Materials Processing Technology,1996,60:563-566.
    [53] Jurij j.Sidor, Roumen H.Petrov, Leo A.I.Kestens. Microstructural and texture changes inseverely deformed aluminum alloys[J].Materials Characterization,2011,62:228-236.
    [54] Jun Liu, Ming-Jen Tan, Anders-Eric-Wollmar Jarfors, et al. Formability in AA5083andAA6061alloys for light weight applications[J]. Materials and Design,2010,31:S66-S70.
    [55] Boguslawa Adamczyk-Cieslak, Jaroslaw Mizera, KrzysztofJan Kurzydlowski.Microstructures in the6060aluminium alloy after various severe plastic deformationtreatments[J]. Materials Characterization,2011,62:327-332
    [56] Gutierrez Test I. The effect of coarse second-phase particles and fine precipitates onmicrostructure refinement and mechanical properties of severely deformed Al alloy[J].Materials Science and Engineering A,2005,394:399-410.
    [57] R.Carmona, Q.Zhu, C.M.Sellars, et al.Controlling mechanisms of deformation ofAA5052aluminium alloy at small strains under hot working conditions[J]. MaterialsScience and Engineering A,2005,393:157-163.
    [58] H.E.Hu, L.Zhen, L.Yang,et al. Deformation behavior and microstructure evolution of7050aluminum alloy during high temperature deformation[J]. Materials Science andEngineering A,2008,488:64-71.
    [59] T.Kayser,B.Klusemann, H.-G.Lambers. Characterization of grain microstructuredevelopment in the aluminum alloy ENAW-6060during extrusion[J].Materials Scienceand EngeeringA,2010,527:6568-6573.
    [60] A.Guzel, A.Jager, F.Parvizian. A new method for determining dynamic grain structureevolution during hot aluminum extrusion[J]. Journal of Materials Processing Technology,2012,212:323-330
    [61] A.Brahme, M.H.Alvi, D.Saylor.3D reconstruction of microstructure in a commercialpurity aluminum[J]. Scripta Materialia,2006,55:75-80.
    [62] F.Parvizian,A.Guzel, A.Jager, et al. Modeling of dynamic microstructure evolution of ENAW-6082alloy during hot forward extrusion[J]. Computational Materials Science,2011,50:1520-1525.
    [63]陈诗荪.铝合金锻件涡流、穿流和低倍粗晶[J].热加工工艺,1980,6:28-34
    [64]王成江,屈丽杰,英卫东.铝合金模锻件粗晶缺陷浅析[J].轻合金加工技术,2007,7(35):37-38
    [65]陈诗荪,王承屏.铝合金锻件典型缺陷及其形成原因[J].热加工工艺,1981,1:62-66
    [66]李志广,杜成平.铝合金锻件折叠与裂纹的控制[J].模具工业,2000,3:45-46
    [67] Courant R.Variational Method for Solutions of Problems of Equilibrium andVibrations, Bull.Am.Math.Soc.,1043,49:1-23
    [68] Turner M J, Clough R W, Martin H C,Topp L C.Stiffnes and Deflection Analysisof Complex Structures. J. Aero. Sci.,1956,23:805-823
    [69] Clough R W.The Finite Element Method in Plane Stress Analysis. Proc.2ndASCEConference on Electronic Computation.Pittsburgh,PA.,345-378.
    [70] C. H. Lee, S. Kobayashi. New Solution to Rigid-Plastic DeformationProblems Using a Matrix Method. Trans. ASME, J. Eng. Ind.,1973,95:865-877
    [71] C. C. Chen, S. Kobayashi. Rigid-Plastic Finite Element Analysis of PlaneStrain Closed Die Forging. Process Modeling, ASME, Metal Park, Ohio.1980:167-176
    [72] Li Guoji, S. Kobayshi. Rigid-Plastic Finite Element Analysis of Plane StrainRolling. Trans. ASME, J. Eng. Ind.,1982,104:55-61
    [73] O. C. Zienkiewiez. Numerical Analysis of Forming Process, Edited by J.F.T.Pittmanet al. Wiley Swansea, U.K.,1984
    [74] Weronski W, Gontarz A, Pater Z. The reasons for structural defects arising in forgings ofaluminium alloys analysed using the finite element method[J]. Journal of MaterialsProcessing Technology,1999,92:50-53
    [75] Hyoji Yoshimura, Katsuhisa Tanaka. Precision forging of aluminum and steel[J]. JournalMaterials Processing Technology,2000,98:196-204
    [76] Kopp R. Current development trends in metal forming technology[J]. Journal of MaterialProcessing Technology,1996,60:110-118
    [77]林启权,李应明,王振球.2519铝合金管材热挤压过程的数值模拟[J].机械工程材料,2007,31(12):79-82
    [78]廖旭,周杰,宋立群,等.预压对大型铝合金壳锻件成形的影响[J].塑性工程学报,2007,14(5):71-75
    [79]葛小霞,乔及森,张涵.6005A铝合金反向等温挤压热性能试验及数值模拟[J].特种铸造及有色合金,2010,30(9):797-799.
    [80]董洪波,王高潮,常春.6061铝合金杯形件挤压成形模拟分析及实验研究[J].中国机械工程,2010,21(14):1732-1735
    [81]周杰,王泽文,徐戊矫.汽车铝合金转向节臂锻造成形过程的数值模拟和实验研究[J].热加工工艺,2010,39(3):85-87
    [82]权国政,佟莹,艾百胜,廖旭.大型铝合金壳体锻造成形过程的数值模拟和实验研究[J].中国机械工程,2008,19(13):1582-1585
    [83] J.Talamantes Silva, M.F.Abbod, E.S.Puchi Cabrera,eta. Microstructure modeling of hotdeformation of Al-1%Mg alloy[J]. Materials Science and Engineering A,2009,525:147-158
    [84] T.Sheppard, N.C. Parson, M.A.Zaidi. Dynamic recrystallization in Al-Mg[J].MetalScience,1983,17(10):481-487.
    [85] E.I.Poliak, J.J.Jonas. A one-parameter approach to determing the critical conditions forthe initiation of dynamic recrystallization[J].Acta Materialia,1996,44(1):127-136.
    [86] C.M.Sellars, Q.Zhu. Microstructural modeling of aluminum alloys duringthermomechanical processing[J]. Materials Science and Engineering A,2000,280:1-7.
    [87] D.Duly, G.J.Raxter, H.R.Shercliff, etc. Microstructure and local crystallographicevolution in an Al-1wt%Mg alloy deformed at intermediate temperature and high strainrate[J]. Acta Materialia,1996,44(7):2947-2962.
    [88]黎文献,杨军军,肖于德. Al-Fe-V-Si合金高温变形热模拟[J].中南工业大学学报,2000,31(1):57-61
    [89] J.P.Poirier著,关德林译..晶体的高温塑性变形[M].辽宁:大连理工大学出版社,1989
    [90] S.Spigarelli,M.E,Mehtedi, P.Ricci.Constitutive equations for prediction of the flowbehaviour of duplex stainless steels[J]. Materials Science and EngineeringA,2010,527:4218-4228.
    [91] Sheppard.T,Jackson A. Constitutive equation for use in prediction of flow stress duringextrusion of aluminium alloys[J].Material Science and Technology,1997,13:210
    [92] O.D.Sherby, J.L.Lytton, J.E. Dorn. Activation energies for creep of high-purityaluminum[J]. Acta Metallurgica,1957,5(4):219-227.
    [93]李俊鹏,沈健,许小静等.7050高强铝合金高温塑性变形的流变应力研究[J].稀有金属,2009,33(3):318-322
    [94]同济大学数学系.高等数学[M].北京:高等教育出版社,2007,4
    [95] Wei Li, Hai Li, Zhixiu wang eta, constitutive equations for high temperature flow stressprediction of Al-14Cu-7Ce alloy[J]. Materials Science and Engineering A2011,528:4098-4103
    [96] Sumantra Mandal,V. Rakesh, P.V.Sivaprasad,etc.Constitutive equations to predict hightemperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Scienceand Engineering A,2009,500:114-121.
    [97]王孟君,杨立斌,甘春雷,等.6063铝合金高温流变本构[J].华中科技大学学报(自然科学版).2003,31(6):20-22
    [98] H.J.McQueen, M.G.Akben, J.J.Jones. Mechanical Metallograpgy in hot working[J].Proceedings of the Riso International Symposium on Metallurgy and MatreialsScience.1984,(0108-8599):397-404
    [99]王孟君,甘春雷.6061铝合金低温快速流变行为的研究[J].金属热处理,2003,28(6):16-18
    [100] Lillywhite S J, Prangnell P B, F.J. Humphreys. Interactions between Precepitation andRecrystallization in an Al-Mg-Si Alloy[J]. Material Science and Technology.2000,16(10):1112-1120
    [101] Poirier J P,关德林.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989.52-54.
    [102] R.Q.Liang,S.Akhtar,Khan. A Critical Review of Experimental Results and ConstitutiveModels for BCC and FCC Metals over a Wide Range of Strain Rates and Temperatures[J].International Journal of Plasticity.1999,15(9):963-980
    [103] H.J.McQueen, N.D.Ryan. Constitutive Analysis in Hot Working[J].MaterialsScience&Engineering A.2002,332(1-2):43-63
    [104] Jonas J J,Sellars C M,Tegart W J Mc G.Strength andstructure under hot-workingconditions[J].Int-Metiall.Reviews,1969,3:1-24.
    [105]林高用,张辉,孟力平等.7075铝合金热压缩变形流变应力[J].中国有色金属学报,2001,11(3):412-414
    [106] D.B.Shan, Z.Wang, Y.Lu etal. Study on isothermal precision forging technology for acylindrical aluminium-alloy housing[J]. Journal of Materials Processing Technology,1997,72:403-406
    [107]张小明,张延杰,田锋等.多向锻造对改善7075铝合金性能的作用[J].稀有金属材料与工程,2003,32(5):372-374
    [108] Sidor J, Petrov RH, Kestens LAI. Deformation, recrystallization and plastic anisotropyof asymmetrically rolled aluminum sheets[J]. Materials Science and Engineering A,2010,528:413-424
    [109]沈键,唐京辉,谢水生. Al-Zn-Mg合金的热变形组织演化[J].金属学报,2000,36(10):1033-1036.
    [110]李学朝.铝合金材料组织与金相图谱[M].北京:冶金工业出版社,2010
    [111]冯正海.铝合金前梁模锻件粗晶缺陷及对策[J].轻合金加工技术.2009,37(1):33-34
    [112]蒋汉祥,苌清华,郭红等.ZLD11铝合金晶粒细化分析[J].重庆大学学报(自然科学版),2005,28(6):48-51
    [113] DU F S, WANGM T, LIX T. Research on deformation and microstructure evolutionduring forging of large scale parts[J]. Journal of Materials Processing Technology,2007,187-188:591-594
    [114] Weronski W, Gontarz A, Pater Z. The reasons for structural defects arising in forgings ofaluminium alloys analysed using the finite element method[J]. Journal of MaterialsProcessing Technology,1999,(92):50-53.
    [115]张艳秋,徐福昌,单德彬.变形程度对复杂铝合金锻件组织性能的影响[J].材料科学与工艺,2009,17(6):806-809.
    [116]宁爱林,刘志义,曾苏民.大冷变形对2024铝合金组织和性能的影响[J].金属热处理,2006,,31(9):22-24.
    [117] BEHRENS B A, SCHMIDT I. Improving the properties of forged magnesium parts byoptimized process parameters[J]. Journal of Materials Processing Technology,2007,187-188:761-765.
    [118]陆惠生,王福成.铝合金材料缺陷对其锻件质量的影响[J].林业机械.1990,3:17-19
    [119]李忠胜,牛永发.铝合金锻件强度与塑性指标的调整[J].材料工程.1996,11:48
    [120] PARK J J, HWANG H S. Perform design for precision forging of an asymmetricrib-web type component[J]. Journal of Material Process Technology,2007,187/188:595-599.
    [121] BEWLAY B P,GIGLIOTTI M F X,HARDWICKE C U, KAIBYSHEV OA,UTYASHEV F Z,SALISHEV G A. Net-shape manufacturing of aircraft engine disksby roll forming and hot die forging[J].Journal of Material Process Technology,2003,135(2):324-329.
    [122] DEAN T A. The net-shape forming of gears[J]. Materials and Design,2000,21(4):271-278.
    [123]周飞,彭颖红,雷军等.LD11铝合金活塞裙锻造成形坯料工艺[J].上海交通大学学报,2001,35(1):86-89
    [124]刘世兴,田世兴,陈昌麒.7050铝合金锻件的力学行能和断裂机制研究[J].材料工程.1996,4:34-37
    [125] Krimpenis,P.G. Benardos,G.-C. Vosniakos,A. Koukouvitaki. Simulation-based selectionof optimum pressure die-casting process parameters using neural nets and geneticalgorithms[J]. The International Journal of Advanced Manufacturing Technology,2006,27(5-6).
    [126] M.Arentoft,T.Wanheim.The basis for a design support system to prevent defects inforging [J].Journal of Materials Processing Technology.1997,(69):227-232
    [127] M.Arentoft,P.Henningsen,N.Bay,T.Wanheim. Simulation of Defects in MetalForming-An Example,5th Int.Conf.Metal Forming,J.Mater.Proc.Tech.Amsterdam.1994,(45):236-239
    [128]刘芳,吕炎,杨玉英等.热变形参数对LD7铝合金显微组织的影响[J].金属成形工艺,2003,21(3):26-28
    [129]谭勇敢,彭春华,燕纪全.机车柴油机活塞裙铝合金材料的研究[J].机车车辆工艺,2005,3:1-4
    [130]杨金凤,张宏伟,王玉刚等.带横筋的长条形铝合金模锻件的生产方法研究[J].轻合金加工技术,2010,38(10):31-34
    [131]刘晓晶,刘润广,李哲等.2214铝合金上防扭臂等温模锻工艺的研究[J].哈尔滨工业大学学报,2002,32(5):13-16
    [132]陈有先,黄俊波,曹金华,等.7075铝合金机加框开裂分析[J].失效分析与预防,2007,2(3):50-53.
    [133] SHAN De-bin, LIU Fang, XUWen-chen,etal. Experimental study on process ofprecision forging of an aluminium-alloy rotor [J]. Journal of Materials ProcessingTechnology,2005,170(1-2):412-415
    [134] SHAN De-bin, XUWen-chen, SIChang-hao,etal.Research on local loading method foran aluminium-alloy hatchwith cross ribs and thin webs [J]. Journal of MaterialsProcessing Technology,2007,187-188:480-485.
    [135]朱本,高爱华.铝合金精密模锻润滑剂的研究与应用[J]..中南矿冶学院学报,1991,2(3):294-300。
    [136]李广宇,李春惠,于亚鑫,等.添加剂对7075铝合金润滑性能影响的研究[J].润滑与密封,2010,35(4):52-57
    [137]李伟华,董选普,陈晓君,等.铝合金热模锻润滑机理研究与应用[J].锻压技术,2010,35(3):128-129.
    [138] C.N. Panagopoulos, E.P.Georgiou, A.G.Gavras. Corrosion and wear of6082aluminumalloy[J]. Tribology International,2009,42:886–889.
    [139]尉喆,边翊,张小光.汽车铝合金锻件精密成形技术新技术[J].机械工人,2005,12:14-15
    [140] PETROV P,PERFILOV V,STEBUNOV S. Prevention of lap formation in near net shapeisothermal forging technology of part of irregular shape made of aluminiumalloy[J].Journal of Mater Process Technology,2006,177(1/3):218-223.
    [141] Hyoji Yoshimura, Katsuhisa Tanaka. Precision forging of aluminum and steel[J].Journal Materials Processing Technology,2000,(98):196-204.
    [142]孙建林.轧制工艺润滑原理、技术与应用[M].北京:冶金工业出版社,2010
    [143] CECCHETTO L, ALAIN D, DIDIER D,etal.A silane pre-treatment for improvingcorrosion resistance performances of emeraldine base-coated aluminium samples inneutral environment [J]. Applied Surface Science,2008,254(6):1736-174
    [144]王祝堂,田荣璋.铝合金及其加工手册[M].湖南长沙:中南大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700