超声强化金刚石膜电极电化学氧化降解有机污染物的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中难生化降解的有机污染物呈现出种类多、浓度高、毒性强、结构复杂的特点,因此高级氧化技术(AOP)受到广泛的关注和重视。但采用单一技术往往难以达到理想的降解效果,因此多种高级氧化技术的联用是研究的必然趋势之一。
     超声强化电化学氧化是一种非常有前途的联用技术。众多研究表明超声可以加快电化学氧化的反应速率,但是目前仍存在以下两个问题。第一,电化学氧化的核心是电极,目前已有的许多电极材料并不能适用于超声强化电化学氧化技术或者不能体现出超声强化的作用。金刚石膜(BDD)电极是近几年内国际上研制出的一种具有电势窗口宽、析氧电位高、背景电流低、化学性能稳定等优点的电极,电化学氧化处理污染物降解的能力强,是未来水处理的理想电极材料。但金刚石膜电极能否在超声的极端情况下稳定、高效地工作,尚需要进一步的论证。第二,由于污染物在电极上发生电化学氧化降解本身就是一个复杂的过程,而超声强化电化学氧化的实质目前研究较少,尤其缺少定量分析的机制研究。
     本论文从上述两个角度对超声强化电化学氧化降解有机污染物进行了研究,为这一联用技术的实际应用提供了理论基础。论文研究工作取得了以下成果:
     (1)系统、全面地从电化学氧化的传质过程、吸附与脱附、电极反应三个步骤,研究了超声强化BDD电极电化学降解苯酚和邻苯二甲酸。超声可以增强传质过程,这种强化作用仅取决于超声的强度。污染物在BDD电极表面的电化学吸附特性决定了超声对吸附与脱附过程的作用。超声促进了苯酚的中间产物的脱附,有利于直接氧化;对于邻苯二甲酸,超声使得吸附量进一步减小,导致直接氧化消失。超声可以显著提高BDD电极的降解效率,而且对苯酚降解的促进作用更为明显,这主要是因为超声可以同时强化苯酚的直接氧化和间接氧化,但对于邻苯二甲酸,间接氧化得到了强化,但直接氧化消失。
     (2)在详细地比较了超声对BDD电极和Pt电极降解苯酚的协同强化效果的实验基础上,证实BDD电极是一种非常适宜于超声电化学协同降解处理工艺的性能优异的电极。超声对BDD电极降解苯酚的强化作用更为明显,并从理论上解释了超声造成BDD和Pt电极强化效果差异的原因。苯酚在两种电极表面的电化学氧化均受扩散过程控制,超声使得BDD电极的扩散系数增大了375%,远大于Pt电极的42%;苯酚在两种电极表面都有很强的吸附,而超声对BDD电极的更新和活化作用更强;同时超声更有利强化污染物在BDD电极表面的电化学反应速率。采用BDD电极降解产生的中间产物种类少于Pt电极;超声的强化作用不会使得中间产物的种类发生改变,但会加快产物产生和进一步氧化降解的速率,缩短达到最高浓度的时间,而这一促进效果在BDD电极上更为明显。
     (3)比较了苯在金刚石膜电极上的电化学氧化和超声电化学氧化的机理。超声能够促进反应过程中中间产物的脱附,有利于电极表面反应的进行。对于氧化电位高达2.8 V的苯,超声可以极大地促进电化学氧化速率,完全矿化所需时间缩短了49.1%。在电化学氧化过程中,苯首先氧化生成苯酚、对苯二酚、间苯二酚、邻苯二酚和苯醌这些苯环类中间产物,然后进一步氧化生成顺丁烯二酸和草酸,最终实现完全矿化。而在超声强化电化学过程中,超声能够促进中间产物的生成和降解过程。
Advanced Oxidation Processes (AOPs) are of great interest because of the increasing variety and amount of non-biodegradable pollutants with complex structures and high toxicity, but it is difficult for a single oxidation process to meet the requirement for wastewater treatment in some cases. Hence, the combination of several oxidation processes has been becoming one of the active research fields in recent years.
     Ultrasound-enhanced electrochemical oxidation is a promising treatment technology. It has been demonstrated that ultrasound can improve electrochemical oxidation rate effectively, but there still exist two problems. First, the key of electrochemical oxidation is electrode. Many electrodes are not suitable for ultrasound-enhanced electrochemical oxidation, or show the enhanced effect of ultrasound. Boron-doped diamond (BDD) electrode has received wide attention in recent investigations for its excellent properties, such as wide electrochemical potential window, high oxygen evolution potential, low background current and high anodic stability, which is a suitable material for water treatment in the future. But whether BDD electrode can work steadily and efficiently with ultrasound has not been proved. Second, degradation on electrode is a complex process. The influences of US on electrochemical oxidation have not been understood clearly up to now, especially lacking of quantitative analysis.
     In this paper, ultrasound-enhanced electrochemical oxidation is studied from the two points above, which is of great significance on the applications of this combinative process in environmental engineering. Several study results have been gained:
     (1) The mechanism of ultrasound-enhanced electrochemical oxidation process for phenol (Ph) and phthalic acid (PA) is investigated from the three steps of electrochemical (EC) oxidation including mass transport process, adsorption and desorption, and electrochemical reaction roundly. Ultrasound (US) has remarkable influences on all steps, which cause the enhancement of degradation for both pollutants. Mass transport process can be greatly accelerated by US. The adsorption amount of Ph decreases with desorption of polymer intermediates promoted by US, which do benefits to direct oxidation. For PA, the adsorption amount decreases by US, with no direct oxidation happens. US can efficiently reduce the average electrochemical oxidation energy consumption, and the enhancement on degradation of Ph is more effective, because mass transport process does not affect degradation efficiency, but the difference in electrochemical properties leads to different oxidation pathway.
     (2) The enhancement of electrochemical oxidation of Ph on BDD and Pt electrodes assisted by US are compared in detail, and BDD electrode is demonstrated a suitable electrode for ultrasound-enhanced electrochemistry oxidation technology with excellent performance. the difference is explained from mass transport, adsorption and desorption, and electrochemical reaction. The enhanced effect on BDD electrode by US is much greater than that on Pt electrode, and the reason for the difference between BDD and Pt electrodes is explained. Diffusion process is found the controlling step of Ph degradation on both electrodes, and US enlarges the diffusion coefficient on BDD electrode by 375%, much higher than 42% on Pt electrode. Without US, both electrodes are inactivated with large adsorption amount of Ph. With US, the surface of BDD electrode is renewed and activated more effectively. The improvement on electrochemical reaction of BDD electrode by US is much more significant. The variety of intermediates produced on BDD electrode is found less than that on Pt electrode. US can increase production and degradation rates of intermediates, and reduce the time to reach the highest concentration and promote their degradation, without changing the variety of intermediates.
     (3) The mechanism of degradation of benzene on BDD electrode by electrochemical oxidation and ultrasound-enhanced electrochemical oxidation is compared. US can accelerate desorption of intermediates and promote oxidation on electrode surface. US can improve oxidation efficiency of benzene with the high oxidation potential of 2.8 V largely, and the time needed for total degradation is decreased by 49.1%. In electrochemical process, benzene is oxidated into aromatic compounds such as Ph, hydroquinone, resorcin, pyrocatechin and benzoquinone, then comes to maleic acid and oxalic acid, and is mineralized into CO_2 and H_2O finally. In ultrasound-enhanced electrochemical process, ultrasound can promote producing and degradation of these intermediates.
引文
铩颷1]Bernata X,Fortuny A,Stuber F,et al.Recovery of iron(Ⅲ)from aqueous streams byultrafiltration.Desalination,2008,Vol.221(1-3):413-418
    [2]Bandala E R,Pelaez M A,Garcia-Lopez A J,et al.Photocatalytic decolourisation ofsynthetic and real textile wastewater containing benzidine-based azo dyes.ChemicalEngineering and Processing:Process Intensification,2008,Vol.47(2):169-176
    [3]Bandala E R,Pelaez M A,Salgado M J,et al.Degradation of sodium dodecyl sulphate inwater using solar driven Fenton-like advanced oxidation processes.Journal of HazardousMaterials,2008,Vol.151(2-3):578-584
    [4]Yetilmezsoy K,Sakar S.Improvement of COD and color removal from UASB treatedpoultry manure wastewater using Fenton's oxidation.Journal of Hazardous Materials,2008,Vol.151(2-3):547-558
    [5]Wojnarovits L,Takacs E.Irradiation treatment of azo dye containing wastewater:Anoverview.Radiation Physics and Chemistry,2008,Vol.77(3):225-244
    [6]Adewuyi Y G.Sonochemistry in environmental remediation.1.combinative and hybridsonophotochemical oxidation processes for the treatment of pollutants in water.Environmental Science & Technology,2005,Vol.39(10):3409-3420
    [7]Chen G.Electrochemical technologies in wastewater treatment.Separation and PurificationTechnology,2004,Vol.38(1):11-41
    [8]刘冬莲,黄艳斌.·OH的形成机理及在水处理中的应用.环境科学与技术,2003,Vol.26(1):44-46
    [9]郭照冰,郑正,袁守军,等.超声与其他技术联合在废水处理中的应用.工业水处理,2003,Vol.23(7):8-12
    [10]王金刚,郭培全,王西奎,等.空化效应在有机废水处理中的应用研究.化学进展,2005,Vol.17(3):549-553
    [11]王建信,李义久,曾新平,等.水中有机污染物超声强化氧化技术研究进展.环境污染治理技术与设备,2003,Vol.4(4):66-69
    [12]Destaillats H,Alderson I T,Hoffmann M R.Applications of ultrasound in NAPL remediation:Sonochemical degradation of TCE in aqueous surfactant solutions.Environmental Science &Technology,2001,Vol.35(14):3019-3024
    [13]Destaillats H,Hung H M,Hoffmann M R.Degradation of alkylphenol ethoxylate surfactantsin water with ultrasonic irradiation.Environmental Science & Technology,2000,Vol.34(2):311-317
    [14]Mahalik J P,Madras G.Effect of alkyl group substiruents,temperature,and solvents on theultrasonic degradation of Poly(n-alkyl acrylates).Industrial and Engineering Chemistry Research,2005,Vol.44(17):6572-6577
    铩颷15]Zhou C,Ma H.Ultrasonic Degradation of polysaccharide from a red algae(Porphyrayezoensis).Journal of Agricultural and Food Chemistry,2006,Vol.54(6):2223-2228
    [16]王西奎,陈贯虹,国伟林.水溶液中甲基橙的超声化学降解动力学研究.环境污染与防治,2004,Vol.26(1):6-13
    [17]Yim B,Nagata Y,Maeda Y.Sonolytic Degradation of phthalic acid esters in aqueoussolutions.Acceleration of hydrolysis by sonochemical action.Journal of Physical ChemistryA,2002,Vol.106(1):104-107
    [18]Adewuyi Y G,Appaw C.Sonochemical oxidation of carbon disulfide in aqueous solutions:reaction kinetics and pathways.Industrial and Engineering Chemistry Research,2002,Vol.41(20):4957-4964
    [19]Peller J,Wiest O,Kamat P V.Sonolysis of 2,4-dichlorophenoxyacetic acid in aqueoussolutions.Evidence for·OH-radical-mediated degradation.Journal of Physical Chemistry A,2001,Vol.105(13):3176-3181
    [20]Beckett M A,Hua I.Elucidation of the 1,4-dioxane decomposition pathway at discreteultrasonic frequencies.Environmental Science & Technology,2000,Vol.34(18):3944-3953
    [21]Nakui H,Okitsu K,Maeda Y,et al.Effect of coal ash on hydrazine degradation under stirringand ultrasonic irradiation conditions.Ultrasonics Sonochemistry,2008,Vol.15(4):472-477
    [22]Gao Z,Yang S,Sun C,et al.Microwave assisted photocatalytic degradation ofpentachlorophenol in aqueous TiO_2 nanotubes suspension.Separation and PurificationTechnology,2007,Vol.58(1):24-31
    [23]Zhang Z,Yuan Y,Liang L,et al.Sonophotoelectrocatalytic degradation of azo dye on TiO_2nanotube electrode.Ultrasonics Sonochemistry,2008,Vol.15(4):370-375
    [24]Bremner D H,Carlo S D,Chakinala A G,et al.Mineralisation of 2,4-dichlorophenoxyaceticacid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fentonprocess.Ultrasonics Sonochemistry,2008,Vol.15(4):416-419
    [25]Bahena C L,Martinez S S,Guzman D M,et al.Sonophotocatalytic degradation of alazineand gesaprim commercial herbicides in TiO_2 slurry.Chemosphere,2008,Vol.71(5):982-989
    [26]Minero C,Pellizzari P,Maurino V,et al.Enhancement of dye sonochemical degradation bysome inorganic anions present in natural waters.Applied Catalysis B:Environmental,2008,Vol.77(3-4):308-316
    [27]Hua I,Hoffmann M R.Kinetics and mechanism of the sonolytic degradation of CCl_4:intermediates and byproducts.Environmental Science & Technology,1996,Vol.30(3):864-871
    [28]Kang J W,Hoffmann M R.Kinetics and mechanism of the sonolytic destruction of Methyltert-butyl ether by ultrasonic irradiation in the presence of ozone.Environmental Science &Technology,1998,Vol.32(20):3194-3199
    [29]Destaillats H,Colussi A J,Joseph J M,et al.Synergistic effects of sonolysis combined withozonolysis for the oxidation of azobenzene and methyl orange.Journal of Physical Chemistry A,2000,Vol.104(39):8930-8935
    铩颷30]郭照冰,郑正,胡文勇,等.2,4-二硝基酚的超声波及协同降解研究.环境科学学报,2004,Vol.24(2):237-241
    [31]Stock N L,Peller J,Vinodgopal K,et al.Combinative sonolysis and photocatalysis for textiledye degradation.Environmental Science & Technology,2000,Vol.34(9):1747-1750
    [32]安太成,刘国光.超声协同纳米TiO2光催化降解活性染料的初步研究.中山大学学报:自然科学版,2004,Vol.40(5):131-132
    [33]Gogate P R,Mujumdar S,Pandit A B.A sonophotochemical reactor for the removal offormic acid from wastewater.Industrial and Engineering Chemistry Research,2002,Vol.41(14):3370-3378
    [34]Chen Y C,Smimiotis P.Enhancement of photocatalytic degradation of phenol andchlorophenols by ultrasound.Industrial and Engineering Chemistry Research,2002,Vol.41(24):5958-5965
    [35]Wang J,Farrell J.Electrochemical inactivation of triclosan with boron doped diamond filmelectrodes.Environmental Science & Technology,2004,Vol.38(19):5232-5237
    [36]Li Y,Wang F,Zhou G,et al.Aniline degradation by electrocatalytic oxidation.Chemosphere,2003,Vol.53(10):1229-1234
    [37]Feng Y J,Li X Y.Electro-catalytic oxidation of phenol on several metal-oxide electrodes inaqueous solution.Water Research,2003,Vol.37(10):2399-2407
    [38]Li X-y,Cui Y-h,Feng Y-j,et al.Reaction pathways and mechanisms of the electrochemicaldegradation of phenol on different electrodes.Water Research,2005,Vol.39(10):1972-1981
    [39]Panizza M,Michaud P A,Cerisola G,et al.Electrochemical treatment of wastewaterscontaining organic pollutants on boron-doped diamond electrodes:Prediction of specificenergy consumption and required electrode area.Electrochemistry Communications,2001,Vol.3(7):336-339
    [40]Diniz A V,Ferreira N G,Corat E J,et al.Efficiency study of perforated diamond electrodesfor organic compounds oxidation process.Diamond and Related Materials,2003,Vol.12(3-7):577-582
    [41]Chen X,Chen G,Gao F,et al.High-performance Ti/BDD electrodes for pollutant oxidation.Environmental Science & Technology,2003,Vol.37(21):5021-5026
    [42]赵国华,肖小娥,祁源,等.金刚石膜电极电化学处理污染物的研究.工业水处理,2005,Vol.25(6):17-20
    [43]Iniesta J,Michaud P A,Panizza M,et al.Electrochemical oxidation of phenol at boron-dopeddiamond electrode.Electrochimica Acta,2001,Vol.46(23):3573-3578
    [44]只金芳.金刚石薄膜电化学.化学进展,2005,Vol.17(1):55-63
    [45]赵国华,李明利,吴薇薇,等.金刚石膜电极对有机污染物的电催化特性.环境科学学报,2004,Vol.25(5):163-167
    [46]赵国华,李明利,祁源,等.苯酚在金刚石膜电极上的电化学氧化降解过程.中国环境科学 2005,Vol.25(3):370-374
    铩颷47]Zhi J F,Wang H B,Nakashima T,et al.Electrochemical incineration of organic pollutants onboron-doped diamond electrode.Evidence for direct electrochemical oxidation pathway.Journal of Physical Chemistry B,2003,Vol.107(48):13389-13395
    [48]Jeong J,Kim J Y,Yoon J.The role of reactive oxygen species in the electrochemicalinactivation of microorganisms.Environmental Science & Technology,2006,Vol.40(19):6117-6122
    [49]Arslan G;Yazici B,Erbil M.The effect of pH,temperature and concentration onelectrooxidation of phenol.Joumal of Hazardous Materials,2005,Vol.124(1-3):37-43
    [50]Panizza M,Michaud P A,Cerisola G,et al.Anodic oxidation of 2-naphthol at boron-dopeddiamond electrodes.Joumal of Electroanalytical Chemistry,2001,Vol.507(1-2):206-214
    [51]Morao A,Lopes A,Pessoa de Amorim M T,et al.Degradation of mixtures of phenols usingboron doped diamond electrodes for wastewater treatment.Electrochimica Acta,2004,Vol.49(9-10):1587-1595
    [52]Canizares P,Lobato J,Paz R,et al.Electrochemical oxidation of phenolic wastes withboron-doped diamond anodes.Water Research,2005,Vol.39(12):2687-2703
    [53]Trabelsi F,Ait-Lyazidi H,Ratsimba B,et al.Oxidation of phenol in wastewater bysonoelectrochemistry.Chemical Engineering Science,1996,Vol.51(10):1857-1865
    [54]Henley I E,Fisher A C,Compton R G,et al.Computational electrochemistry:finite elementsimulation of a disk electrode with ultrasonic acoustic streaming.Journal of PhysicalChemistry B,2005,Vol.109(16):7843-7849
    [55]傅敏,丁培道,蒋永生,等.超声波与电化学协同作用降解硝基苯溶液的实验研究.应用声学,2004,Vol.23(5):36-40
    [56]Durant A,Francois H,Reisse J,et al.Sonoelectrochemistry:The effects of ultrasound onorganic electrochemical reduction.Electrochimica Acta,1996,Vol.41(2):277-284
    [57]Abramov V O,Abramov O V,Gekhman A E,et al.Ultrasonic intensification of ozone andelectrochemical destruction of 1,3-dinitrobenzene and 2,4-dinitrotoluene.UltrasonicsSonochemistry,2006,Vol.13(4):303-307
    [58]Matysik F M,Matysik S,Brett A M O,et al.Ultrasound-enhanced anodic strippingvoltammetry using perfluorosulfonated ionomer-coated mercury thin-film electrodes.Analytical Chemistry,1997,Vol.69(8):1651-1656
    [59]Kruusma J,Banks C E,Nei L,et al.Electroanalytical detection of zinc in whole blood.Analytica Chimica Acta,2004,Vol.510(1):85-90
    [60]Banks C E,Hyde M E,Tomcik P,et al.Cadmium detection via boron-doped diamondelectrodes:surfactant inhibited stripping voltammetry.Talanta,2004,Vol.62(2):279-286
    [61]Akkermans R P,Roberts S L,Marken F,et al.Methylene Green Voltammetry in aqueoussolution:studies using thermal,microwave,laser,or ultrasonic activation at platinumelectrodes.Journal of Physical Chemistry B,1999,Vol.103(45):9987-9995
    [62]Aleboyeh A,Olya M E,Aleboyeh H.Electrical energy determination for an azo dyedecolorization and mineralization by UV/H_2O_2 advanced oxidation process.Chemical Engineering Journal, 2008, Vol. 137(3): 518-524
    [63] Arslan-Alaton I, Gursoy B H, Schmidt J-E. Advanced oxidation of acid and reactive dyes: effect of Fenton treatment on aerobic, anoxic and anaerobic processes. Dyes and Pigments, 2008, Vol. 78(2): 117-130
    [64] Dhanalakshmi K B, Anandan S, Madhavan J, et al. Photocatalytic degradation of phenol over TiO2 powder: the influence of peroxomonosulphate and peroxodisulphate on the reaction rate. Solar Energy Materials and Solar Cells, 2008, Vol. 92(4): 457-463
    [65] Benitez F J, Acero J L, Leal A I, et al. Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters. Journal of Hazardous Materials, 2008, Vol. 152(1): 373-380
    [66] Kim H S, Choung Y-K, Ahn S, et al. Enhancing nitrogen removal of piggery wastewater by membrane bioreactor combined with nitrification reactor. Desalination, 2008, Vol. 223(1-3): 194-204
    [67] Kepa U, Stanczyk-Mazanek E, Stepniak L. The use of the advanced oxidation process in the ozone + hydrogen peroxide system for the removal of cyanide from water. Desalination, 2008, Vol. 223(1-3): 187-193
    [68] Pera-Titus M, Garcia-Molina V, Banos M A, et al. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 2004, Vol. 47(4): 219-256
    [69] Martin H B, Eaton S C, Landau U, et al. Electrochemical effects on diamond surfaces: wide potential window, reactivity, spectroscopy, doping levels and surface conductivity. Diamond Electrochemistry. Amsterdam: Elsevier Science, 2005. p.26-50.
    [70] Fujishima A, Einaga Y, Rao T N, et al. Fundamental and applied aspects of diamond electrodes. Diamond Electrochemistry. Amsterdam: Elsevier Science, 2005. p.556-574.
    [71] Comninellis C, Duo I, Michaud P-A, et al. Application of synthetic boron-doped diamond electrodes in electrooxidation processes. Diamond Electrochemistry. Amsterdam: Elsevier Science, 2005. p.449-476.
    [72] Boye B, Brillas E, Marselli B, et al. Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode. Electrochimica Acta, 2006, Vol. 51(14): 2872-2880
    [73] Fernandes A, Morao A, Magrinho M, et al. Electrochemical degradation of Acid Orange. Dyes and Pigments, 2004, Vol. 61(3): 287-296
    [74] Lissens G, Pieters J, Verhaege M, et al. Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochimica Acta, 2003, Vol. 48(12): 1655-1663
    [75] Pacheco M J, Morao A, Lopes A, et al. Degradation of phenols using boron-doped diamond electrodes: A method for quantifying the extent of combustion. Electrochimica Acta, 2007, Vol. 53(2): 629-636
    [76] Murugananthan M, Yoshihara S, Rakuma T, et al. Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode. Journal of Hazardous Materials, Vol. In Press
    [77] Murugananthan M, Yoshihara S, Rakuma T, et al. Electrochemical degradation of 17[beta]-estradiol at boron-doped diamond (Si/BDD) thin film electrode. Electrochimica Acta, 2007, Vol. 52(9): 3242-3249
    [78] Fu H, Sun R P S, Chimchirian R F, et al. Ultrasound-induced destruction of low levels of estrogen hormones in aqueous solutions. Environmental Science & Technology, 2007, Vol. 41(16): 5869-5874
    [79] Yang L, Sostaric J Z, Rathman J F, et al. Effect of ultrasound frequency on pulsed sonolytic degradation of octylbenzene sulfonic acid. Journal of Physical Chemistry B, 2008, Vol. 112(3): 852-858
    [80] Zhao L, Zhao G, Chen F, et al. Different Effects of microwave and ultrasound on the stability of (all-E)-astaxanthin. Journal of Agricultural and Food Chemistry, 2006, Vol. 54(21): 8346-8351
    [81] Antti G, Pentti P, Hanna K. Ultrasonic degradation of aqueous carboxymethylcellulose: Effect of viscosity, molecular mass, and concentration. Ultrasonics Sonochemistry, 2008, Vol. 15(4): 644-648
    [82] Matouq M A, Al-Anber Z A, Tagawa T, et al. Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave. Ultrasonics Sonochemistry, Vol. In Press
    [83] Walton D J, Iniesta J, Plattes M, et al. Sonoelectrochemical effects in electro-organic systems. Ultrasonics Sonochemistry, 2003, Vol. 10(4-5): 209-216
    [84] Adewuyi Y G. Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environmental Science & Technology, 2005, Vol. 39(22): 8557-8570
    [85] Comninellis C, Pulgarin C. Anodic oxidation of phenol for waste water treatment. Journal of Applied Electrochemistry, 1991, Vol. 21: 703-708
    [86] Rodrigo M A, Michaud P A, Duo I, et al. Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. Journal of the Electrochemical Society, 2001, Vol. 148(5): 60-64
    [87] Gherardini L, Michaud P A, Panizza M, et al. Electrochemical oxidation of 4-chlorophenol for wastewater treatment. Definition of normalized current efficiency (j). . Journal of the Electrochemical Society, 2001, Vol. 148(6): 78-82
    [88] Osteryoung R A. Chronocoulometry. Application to the study of adsorption at an electrode-solution interface.. American Chemical Society, Division of Fuel Chemistry, 1967, Vol. 11(1): 60
    [89] Zhao G H, Oi Y, Tian Y. Simultaneous and direct determination of tryptophan and tyrosine at boron-doped diamond electrode. Electroanalysis, 2006, Vol. 18(8): 830-834
    [90] Beck F, Krohn H, Kaiser W, et al. Boron doped diamond/titanium composite electrodes for electrochemical gas generation from aqueous electrolytes. Electrochimica Acta, 1998, Vol. 44(2-3): 525-532
    [91] Torres R A, Torres W, Peringer P, et al. Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes.: attempt of a structure-reactivity relationship assessment. Chemosphere, 2003, Vol. 50(1): 97-104
    [92] Vigier F, Coutanceau C, Leger J M, et al. Polyoxymethylenedimethylether (CH_3O(CH_2O)_nCH_3) oxidation on Pt and Pt/Ru supported catalysts. Journal of Power Sources, 2008, Vol. 175(1): 82-90
    [93] Brillas E, Boye B, Sires I, et al. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. ElectrochimicaActa, 2004, Vol. 49(25): 4487-4496
    [94] Zhu X, Shi S, Wei J, et al. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. Environmental Science & Technology, 2007, Vol.41(18): 6541-6546
    [95] Koparal A S, Yavuz Y, Gurel C, et al. Electrochemical degradation and toxicity reduction of Basic Red 29 solution and textile wastewater by using diamond anode. Journal of Hazardous Materials, 2007, Vol. 145(1-2): 100-108
    [96] Butron E, Juarez M E, Solis M, et al. Electrochemical incineration of indigo textile dye in filter-press-type FM01-LC electrochemical cell using BDD electrodes. Electrochimica Acta, 2007, Vol. 52(24): 6888-6894
    [97] Carvalho C, Fernandes A, Lopes A, et al. Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment. Chemosphere, 2007, Vol. 67(7): 1316-1324
    [98] Nava J L, Nunez F, Gonzalez I. Electrochemical incineration of p-cresol and o-cresol in the filter-press-type FM01-LC electrochemical cell using BDD electrodes in sulfate media at pH 0. Electrochimica Acta, 2007, Vol. 52(9): 3229-3235
    [99] Faouzi A M, Nasr B, Abdellatif G Electrochemical degradation of anthraquinone dye Alizarin Red S by anodic oxidation on boron-doped diamond. Dyes and Pigments, 2007, Vol. 73(1): 86-89
    [100] Zhao G H, Xiao X E, Qi Y, et al. Electrochemical treatment of pollutants by using diamond film electrode. Industrical Water Treatment, 2005, Vol. 25(6): 17-20
    [101] Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications. New York: Wiley, 1980.
    
    [102] Zhang L, Jiang X, Wang E, et al. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosensors and Bioelectronics, 2005, Vol. 21(2): 337-345
    [103] Ricci P F, Rice D, Ziagos J, et al. Precaution, uncertainty and causation in environmental decisions. Environment International, 2003, Vol. 29(1): 1-19
    
    [104] Liu Z Q, Zhang Y H, Li G H, et al. Sensitivity of key factors and uncertainties in health risk assessment of benzene pollutant. Journal of Environmental Sciences, 2007, Vol. 19(10): 1272-1280
    铩颷105]Lee J-F,Liao P-M,seng D-H,et al.Behavior of organic polymers in drinking waterpurification.Chemosphere,1998,Vol.37(6):1045-1061
    [106]Scherer G.Biomonitoring of inhaled complex mixtures - Ambient air,diesel exhaust andcigarette smoke.Experimental and Toxicologic Pathology,2005,Vol.57(Supplement 1):75-110
    [107]吴梅芬.金刚石膜电极电化学氧化降解有机污染物:[硕士学位论文].上海:同济大学化学系,2006
    [108]Mahamuni N N,Pandit A B.Effect of additives on ultrasonic degradation of phenol.Ultrasonics Sonochemistry,2006,Vol.13(2):165-174
    [109]Yu X J,Wang H,Wu L.Degradation of phenol in the electrolytic cell with a diaphragm byelectrocatalytic oxidation.Matreials Science & Technology,2004,Vol.12(3):303-306
    [110]王辉,于秀娟,孙德智.一种新型电化学体系降解苯酚的机理研究.环境科学学报,2005,Vol.25(7):901-907
    [111]Muna G W,Tasheva N,Swain G M.Electro-oxidation and amperometric detection ofchlorinated phenols at boron-doped diamond electrodes:a comparison of microcrystallineand nanocrystalline thin films.Environmental Science & Technology,2004,Vol.38(13):3674-3682

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700