土壤—中草药重金属含量及中药中砷汞生物可给性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过对中草药种植区土壤、各生产阶段中草药及中成药样品的分析,旨在揭示中药(本文中指中草药和中成药)外源重金属(本文的主要研究对象为铅、镉、砷、汞,砷因其对生物的毒性与重金属元素相似,为行文方便包括在“重金属”之列)的主要来源;通过人工胃肠体外模拟系统(In Vitro test)对中草药和中成药重金属的人体生物可给性进行探索性研究;并在此基础上对中药中砷、汞对人体的健康风险进行了初步的评价。主要研究结果如下:
     (1)中草药种植区土壤重金属含量分析
     通过预试验,筛选出硝酸—双氧水体系为土壤重金属铅、镉、砷、汞全量分析的最适消解酸体系,采用高压密闭消解,石墨炉原子吸收法和氢化物发生—原子荧光光谱法分别分析中草药种植区土壤样品中铅、镉、砷、汞含量。结果表明,各采样点土壤样品铅、镉、砷、汞含量均符合或优于《国家土壤环境质量标准》二级标准。
     (2)中草药对土壤中重金属的富集及重金属主要来源分析
     通过对中草药药用部位重金属富集系数的分析发现,不同中草药对重金属的富集能力存在差异。各种中草药对于四种重金属的富集系数范围分别为铅:0.01~0.07,镉:0.20~1.17,砷:0.01~0.04,汞:0.72~2.97。
     对不同生产阶段中草药重金属含量的分析显示,绝大多数(95%)草药样品的重金属铅、镉、砷、汞含量低于《药用植物及制剂外经贸绿色行业标准》的相关限量标准。在采收—晾晒、储运—加工和炮制过程中,约80%中草药重金属含量未表现出明显变化(如白芷、北沙参等),说明其所含重金属主要来自种植过程中对土壤中重金属的吸收,且含量较低;而部分(约20%)中草药在上述过程中重金属含量呈增加趋势(如知母、天花粉),说明这部分中草药在这一过程中容易受到外源重金属的污染,特别是在加工、炮制阶段。
     (3)含雄黄、朱砂复方中成药中砷、汞含量分析
     结果显示:含雄黄中成药样品中砷全量为9.9×10~2~8.8×10~4mg/kg,均超过2.0mg/kg的砷限量标准值;同时含雄黄、朱砂中成药中砷全量范围9.2×10~3~1.2×10~5mg/kg,汞全量为5.0×10~3~3.5×10~4mg/kg,均超过0.2mg/kg的标准值。
     (4)中草药—中成药中砷、汞生物可给性的研究
     中草药中砷、汞生物可给性结果分析显示:不同中草药品种中砷、汞的生物可给性差异较大。各中草药粉末样品中砷的胃阶段生物可给性范围为5.75%~85.31%,小肠阶段为7.84%~66.03%;对于煎煮后样品,砷的胃阶段生物可给性范围为11.29%~51.31%,肠阶段为17.57%~44.19%;对于中草药粉末中的汞,胃阶段生物可给性范围为10.96%~68.04%,肠阶段范围5.78%~43.11%;对于煎煮样品,胃阶段生物可给性范围在5.24%~46.37%,肠阶段为2.48%~23.07%。
     含雄黄中成药砷的生物可给性在胃阶段为0.20%~2.17%,小肠阶段砷可给性在0.26%~2.43%范围内;同时含雄黄、朱砂中成药中砷的生物可给性在胃阶段为0.37%~5.23%,小肠阶段为0.36%~5.94%。汞的生物可给性在胃阶段为0.002%~0.057%,肠阶段砷可给性在0.002%~0.048%范围内。
     (5)中草药、中成药中砷、汞的健康风险初步评价
     以世界卫生组织每日允许摄入量(ADI)为标准,对中草药中重金属人体风险评价,结果表明:总体上砷、汞两元素,总量、肠阶段草药粉末可给含量及肠阶段煎煮样品的可给含量所对应的人体健康风险依次降低。对于砷元素而言,由于中草药中较高的砷可给性,即使经煎煮处理的某些样品,还是对人体的健康具有一定的风险;而对于汞,由于其在中草药中可给性很低,所分析的样品中汞对于人体健康基本不存在风险。
     对含雄黄、朱砂等重金属矿物成分的中成药中砷、汞人体健康风险评价结果显示:若以全量结果衡量,所有含雄黄的中成药均对人体健康具有巨大风险;以小肠阶段可给砷含量评价,其数值与ADI比值范围为11.2%~774.49%,约70%的成药中可给砷含量仍然足以威胁人体健康;对于同时含有雄黄和朱砂的中成药,其中可给砷与ADI比例为1.48%~879.68%。对于汞虽然其全量高出限量标准数万至十数万倍,但对人体风险很小。
The concentrations of Arsenic(As), Cadmium(Cd), Mercury(Hg) and Lead (Pb) in soil, Chinese herbal medicines and Chinese patent medicines were investigated respectively. Furthermore, an In Vitro gastrointestinal digestion test was used to assess the bioaccessibility of arsenic and mercury in some Chinese herbal medicines which accumumate higher concentrations of arsenic and Hg and each patent medicine. After gastrointestinal digestion, preliminary Health Risk Assessment (HRA) of arsenic and mercury was conducted comparing to ADI(Acceptable Daily Intake) from WHO(World Hygienic Organization). The resules showed as follows:
     (1) Concentrations of heavy metals in soils from herbal medicine cultivated regions
     HNO_3-H_2O_2 digested acidic systerm was selected for the higher recovery of Pb, Cd, arsenic and Hg using the reference materials of soil. Soil samples were digested in high pressure vessels to measure the concentrations of arsenic, Hg, Pb and Cd. Arsenic and Hg were determined with HG-AFS, Pb and Cd were measured with GF-AAS. Compared with Environmental Quality Standard for soils-GB15618-1995, the concentrations of heavy metals in soils from herbal medicine cultivated regions were lower than the Quality Standard II class and did not exceed the safety limitation.
     (2) The concentrations of heavy metals in Chinese herbal medicines
     The results showed that different herbal medicine have different Bioconcentration Factor. The area of Bioconcentration Factor result were:Pb 0.009-0.07, Cd 0.20- 1.17, arsenic 0.008-0.04, Hg 0.72-2.97.
     The concentrations of heavy metals in herbal medicines from each working procedure were determined. The concentrations of four heavy metals in the great majority(about 95%) of herbal medicines could match with green standards of medicinal plants and preparations for foreign trade and economy (WM2/T-2003), there was little difference among the concentrations of heavy metals in herbal medicines during the whole process. However, the concentrations of Pb, Cd, arsenic and Hg increaesd in some samples (about 20%) sample step by step. Therefore, the processing may become the main source of heavy metals in some herbal medicines.
     (3) Concentrations of arsenic and Hg in the Chinese patent medicines with realgar or cinnabar
     The concentrations of arsenic and Hg in Chinese patent medicine with realgar or cinnabar were 9.9×10~2-1.2×10~5mg/ kg and 5.0×10~3-3.5×10~4 mg/kg respectively, much higher than the standards (WM2/T-2003).
     (4) Bioaccessibility of arsenic and Hg in Traditional Chinese medicines (TCMs)
     Bioaccessibilities of arsenic and Hg in powder of herbal medicines were 5.75%-85.31% and 10.96%-68.04% at the gastric phase, were 7.84%-66.03% and 5.78%-43.11% at intestine phase respectively. Moreover, bioaccessibilities of arsenic and Hg in the hot exreactable solition of herbal medicines were 11.29%-51.31% and 5.24%-46.37% at the stomach phase, and were 17.57%-44.19% and 2.48%-23.07% at intestine phase respectively. In general, bioaccessibilities of arsenic and Hg in the stomach phase were higher than thoes of intestine phase, and arsenic and Hg showed higher bioaccessibilities in herbal medicine powder than in decoctions.
     In Chinese patent medicines with realgar, arsenic bioaccessibilities were 0.20%-2.17% in stomach phase, and 0.26% - 2.43% in intestine phase. In Chinese patent medicines with both realgar and cinnabar, arsenic bioaccessibilities was 0.37%-5.23% in stomach phase, and 0.36% - 5.94% in intestine phase. Hg bioaccessibilities were 0.002%-0.057% in stomach phase, and 0.002%-0.048% in intestine phase.
     (5) Preliminary Health Risk Assessment of heavy metalds in TCMs
     The health risk of arsenic and Hg decreased according to the ranking: total concentrations in herbal medicine > available concentrations of powder > available concentrations of extractable solution of herbal medicines. Hg in herbal medicines had little risk to human health, but arsenic in some herbal samples showed much higher risk to human health.
     And in most of (about 70%) Chinese patent medicines, arsenic showed high health risk, but Hg had little health rish to human.
     In conclusion, TCMs could be contaminated with exterior source of heavy metals from every working procedures, and the preparation and processing procedure were the main sources of heavy metals accumulated in some herbal medicines. Realgar added in Chinese patent medicines may make a serious health risk to human body. However, there was no significant health risk of Chinese patent medicine with cinnabar.
引文
[1]Chan K.Some aspects of toxic contaminants in herbal medicines[J].Chemosphere.2003,52:1361-1371
    [2]张良.江苏地产药材中有害物质的分析测定研究.[D].南京:南京中医药大学,2001.
    [3]吕殿录等.环境污染化学[M].北京:当代中国出版社,2002.
    [4]郭笃发.环境中铅和镉的来源及其对人和动物的危害[J].环境科学进展,1994,(3).71-76.
    [5]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1996.
    [6]周济桂,魏春生,喇万英.临床微量元素学[M].石家庄:河北科学技术出版社,1994,296-307.
    [7]周宗灿.环境医学[M].北京:中国环境科学出版社,2001,36-37.
    [8]International Agency for Cancer Research(IARC),1987.IARC Monographs on the evaluation of carcinogenic risks to humans.Overall Evaluations of Carcinogenicity:An Updating of IARC Monographs,vols.1-42,Supplement 7.International Agency for Cancer Research,Lyon.
    [9]徐蕴,程欣.环境汞污染对人体健康的影响[J]江苏预防医学,2006,17(3):85-86.
    [10]张书海,林树生,蔡慧.用冷原子荧光法测定蔬菜中微量与痕量的汞[J].仪器仪表与分析监测,2001,(3):28-29.
    [11]Chan K.Progress in traditional Chinese medicine[J].Trends Pharmacol Sci,1995,16:182-187.
    [12]张晖芬,赵春杰.中药材中重金属的控制及其分析方法[J].中药研究与信息,2004,6(5):10-12.
    [13]中华人民共和国国家药典委员会.中华人民共和国药典[S].北京:化学工业出版社,2000.
    [14]WM/T 2-2004,药用植物及制剂外经贸绿色行业标准[S].
    [15]金红宇,戴博,田金改,等.中药中外源性有害残留物的控制[J].中国药事,2001,21(12):1013-1022.
    [16]Yee S K,Chu S S,Xu Y M.et al.Regulatory control of Chinese proprietary medicines in singapore [J].Health Policy,2005,71(2):133-149.
    [17]胡世林.中国道地药材论丛[M].北京:中国古籍出版社,1997,176-177.
    [18]Council of Europe strasbourg.European Pharmacopoeia[S].Third Edition.1997-2001.
    [19]日本药局方[S].第十三改正版,1996.
    [20]The stationery office.British Pharmacopoeia[S].London,2000.
    [21]Draft WHO Guidelines for assessing safety and guality of herbal medicines with reference to contaminants and residues.WHO/EDM/TRM[M],2003,11.
    [22]The United States Pharmacopoeia 24[S]The National Formulary,National publishing,philadelphia PA.2000,19.
    [23]陈建存.输美中成药受重金属/化学品污染及违反FDA规定情况[J].中国中医药信息杂志,2000.7(8):90-91.
    [24]Lee H S,Cho Y H,Park S O.et al.Dietary exposure of the Korean population to arsenic,cadmium,lead and mercury[J],Journal offoodcomposition and analysis,2006.
    [25]谢永臻,庄峙厦,张志刚,等.流动注射氢化物发生原子荧光法测定中药中的微量As、Hg[J].分 析科学学报,1997,13(4):296-299.
    [26]石杰,朱永琴,龚雪云.氢化物发生-原子荧光法测定中药中痕量汞[J].光谱学与光谱分析,2004,24(7):893-895
    [27]蒋永贵,司晚令,朱伯仲,等.原子荧光光谱法测定灵芝中汞[J]光谱实验室,2006,23(2):250-252
    [28]丁健华,陈世忠,廖振环,等.氢化物发生(HG)-ICP-AES测定中药漏芦中微量砷、锑、铋的研究[J].分析科学学报,2000,16(4):282-285.
    [29]黄汝锦,庄峙厦,魏金锋,等.固体热解塞曼原子吸收光谱法用于中药和生物样品中痕量汞的快速测定[J].光谱学与光谱分析,2005,25(10):1708-1710.
    [30]郑永军,孔波,赵斌.微波消解/等离子体发射光谱法测定宁夏枸杞中的多元素[J].广东微量元素科学,2005,12(2):42-44.
    [31]马潇,徐培元,赵建邦,等.甘肃产柴胡类药材中有机氯农药残留及重金属残留量分析[J].兰州大学学报(医学版),2005,31(2):59-60
    [32]李雪玲,戴云,崔秀明,等.半夏中重金属和农药残留的测定[J].中成药,2006 28(3):400-403.
    [33]秦俊法.当归头、身、尾中的金属元素测定[J].上海中医药杂志,1982,(1):46-47.
    [34]刘军,李先恩,王涛,等.药用植物中铅的形态和分布研究[J].农业环境保护,2002,21(2):143-145.
    [35]刘守廷,关雄俊,李献萍.杜仲及其炮制品某些微量元素含量比较[J].中国中药杂志,1989,14(10):20-21.
    [36]余南才,谭照华,管竞环,等.42味植物类中药炮制与无机元素相关性的研究[J].微量元素与健康研究,1996,13(3):28-30.
    [37]茅向军,许乾丽,周兰熊,等.黔产天麻、杜仲、黄柏、厚朴重金属含量的研究[J].贵州科学,1998,16(2):136-139.
    [38]吴莉,潘义,胡明芬.中药中砷镉汞铅-测定值的聚类分析[J].化学研究与应用,2006,18(8):972-974.
    [39]刘冬莲.药用植物中重金属形态分析及其生境土壤重金属地球化学特征研究[D].北京:中国地质大学,2006.
    [40]苑春刚.砷及典型区域底泥中重金属形态分析研究[D].北京:中国科学院研究生院,2005.
    [41]陈家春,贾敏如.中、美、英、日和欧洲药典中植物药重金属和农药残留量的限量规定及分析[J].华西药学杂志,2005.20(6):525-527.
    [42]张丽娟,谷新学,周勇义.中药产品中的重金属.首都师范大学学报(自然科学版),2004,25(1):35-45.
    [43]Liu WJ,Kim KW,Zhu YG et al.A Survey of arsenic and other heavy metals in ferns.[J]Environ Sci.2006,18:287-291
    [44]宗良纲,李嫦玲,郭巧生.中药材中重金属污染及其研究综述[J].安徽农业科学,2006,34(3):495-497,499.
    [45]王昶,马少娜,魏大鹏,等.中药材中重金属污染分析以及防治措施[J].天津科技大学学报,2005,20(3):12-16.
    [46]李海华,刘建武,李树人,等.土壤—植物系统中重金属污染及物富集研究进展[J].河南农业 大学学报,2002,31(1):30-34.
    [47]姜理英,杨肖娥,石伟勇,等.植物修复技术中有关土壤重金属化机制的研究进展[J].土壤通报,2002,34(2):154-159.
    [48]邱廷省,王俊峰.重金属污染土壤治理技术应用现状与展望[J].四川有色金属,2003,2:48-52.
    [49]冯江,黄鹏,周建民.100种中药材中有害元素铅镉砷的测定和意义[J].微量元素与健康研究,2001,18(2):43-44.
    [50]殷捷,陈玉成.土壤重金属污染的全过程控制[J].四川环境,2000,19(1):27-30.
    [51]陈海凤,李昆城.中药材前处理中的几个问题[J].传统医药,2003,12(9):60.
    [52]傅卫军,侯健,王东星,等.氧化砷诱导骨髓瘤细胞株KM2凋亡研究[J].中华血液学杂志,1998,19(1):591-592.
    [53]张亭栋.含砷中药治疗白血病的研究[J].中国中西医结合杂志,1998,18(10):581-584.
    [54]魏亚明,欧英贤.砷制剂抗肿瘤研究进展[J].肿瘤,2000,20(3):223-225.
    [55]全灿,戴新华,徐花,等.中药安全及其标准物质研究[J].中草药,2007,38(10):1441-1445.
    [56]周跃华.中药新药质量标准研究中常见问题浅析[J].中成药,2004,26:972-975.
    [57]Koch I,Sylvester S,Lai WMV et al.Bioaeeessibility and excretion of arsenic in Niu Huang Jie Du Pian pills[J].Toxicol Appl Pharm,2007.222.357-364.
    [58]王悦,苏丹颖,石冬梅.中药偏方致汞、铅、砷中毒12例临床误诊分析[J].中国工业医学杂志,2001,14(3):151-152.
    [59]王跃生,张晶.对中药成方制剂中重金属问题的思考[J].中药杂志,2000.25(6):377-380.
    [60]刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学,1996,2:89-92.
    [61]Ruby MV,schoof R,Brattin W,et al.Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J].Environ Sci Teehnol,1999,33:3697-3705.
    [62]唐翔宇,朱永官,陈世宝.In Vitro法评价铅污染土壤对人体的生物有效性[J].环境化学,2003,22(5):503-505.
    [63]曾光明,卓利,钟政林,等.水环境健康风险评价模型[J].水科学进展,1998,9(3):212-217.
    [64]毛小苓,刘阳生.国内外环境风险评价研究进展[J].应用基础与工程科学学报,2003,11(3):266-273.
    [65]Hens L.,Melnik L,Boon E.ed.Tikhomirov N.Management of nature conversation on basis of risk theory.In:Enviroment and health.Naukova Dumka.Kiev.Ukrain.1998.93-98.
    [66]王远征,朱永官,黄益宗.灵芝中重金属的检测及其健康风险初步评价[J].生态毒理学报,2006,1(4):316-322.
    [67]王远征,滕曼,杜心,等.北京市场大米和小麦面粉中砷的含量及其形态分析[J].环境化学,2007,26(6):850-853.
    [68]GB/T17135-1997.土壤总砷的测定 硼氢化钾-硝酸银分光光度法[S].
    [69]GB/T17136-1997.土壤总汞的测定 冷原子吸收分光光度法[S].
    [70]GB/T17141-1997.土壤总铅、镉的测定 石墨炉原子吸收分光光度法[S].
    [71]谢锋,何锦林,谭红,等.硝酸一次消解同时测定土壤中Cd、As、Hg的方法研究[J].土壤通报, 2006,37(2):340-342.
    [72]杨学群编.微波密闭消解技术[M].湖南:湘潭大学化学系 2002,1-9.
    [73]丁振华,王文华.土壤消解方法研究及对上海浦东环境汞背景值初步调查[J].土壤,2004,36(1):65-67.
    [74]马名扬,张朝阳,毕鸿亮.土壤中汞与砷分析的热分解浸提前处理方法探讨[J].光谱实验室2005,22(4):871-875.
    [75]丁振华,王文华.不同消解方法对土壤样品中汞含量测定的影响[J].生态环境2003,12(1):1-3.
    [76]陆梅,苏跃英.石墨炉原子吸收法测定土壤中的铅、镉[J].仪器仪表与分析监测,2004,(3):38-39.
    [77]马往校,段敏,李岚等.压力消解、HG-AFS法测定固体样品中的砷和铅[J].现代仪器,1999,(6):26-27.
    [78]HJ/T 166-2004.土壤环境监测技术规范[S].
    [79]金兴良,栾崇林,周凯,等.三种消解方法在测定近海沉积物中Pb、Cu、Cd、Hg及As的应用[J].分析试验室,2007,26(1):17-21.
    [80]李海峰,王庆仁,朱永官.土壤重金属测定两种前处理方法的比较[J].环境化学,2006,25(1):108-109.
    [81]邓勃主编.应用原子吸收与原子荧光光谱分析[M].北京:化学工业出版社,2003.
    [82]顾兴平,顾永祚,胡明芬,等.中药川附子微量重金属元素的分析研究[J].四川环境,2002,3(7):6-8.
    [83]周建利,陈同斌.我国城郊菜地土壤和蔬菜重金属污染研究现状与展望[J].湖北农学院学报,2002,22(5):476-479.
    [84]陈仕江,金仕勇,张明.浅谈中药材的农药、重金属污染与防治[J].世界科学技术-中药现代化,2002,4(4):72-74.
    [85]陆善旦.中药材质量现状及提高措施[J].中药研究与信息,2002,4(5):35-40.
    [86]刘凤枝主编.农业环境监测实用手册[M].北京:中国标准出版社,1991.
    [87]郑媛,魏成熙.贵州中草药基地土壤重金属含量及评价[J].农业环境科学学报,2006,25(增刊):570-574.
    [88]张丹.贵州主要药材基地及中药材重金属污染状况调查[D].贵州:贵州师范大学,2006.
    [89]GB/T 5009.12-1996.食品中铅的测定方法[S].
    [90]GB/T 5009.15-1996.食品中镉的测定方法[S].
    [91]GB/T 5009.17-1996.食品中总汞的测定方法[S]
    [92]GB/T 5009.11-1996.食品中总砷的测定方法[S]
    [93]孙约兵,周启星,任丽萍.镉超富集植物球果蔊菜对镉-砷复合污染的反应及其吸收积累特征[J].环境科学,2007,28(6):1354-1360.
    [94]李正,杭悦宇,周义峰.何首乌块根中砷、镉、汞和铅含量的检测及其富集特性[J].植物资源与环境学报,2005,14(2):54-55.
    [95]聂发辉.关于超富集植物的新理解[J].生态环境,2005,14(1):136-138.
    [96]周超凡.应加强对朱砂、雄黄药用价值的再评价[J].中国药物经济,2007,3:18-21.
    [97]New zealand medicines and medical devices safety authority.Media releases 2003: Director-generals'privileged statement under section 98 of the medicines act1981-traditional Chinese medicine[EB/OL]http://www.medsafe govt.nz/hot/media/media2003.htm,2003-01-21.
    [98]Medicines and healthcare products regulation agency.Herbal safety news:Niu Huang Jie Du Pian[EB/OL].http://www.mhra.gov.uk/home/idcplg?IdcService=SS GET PAGE&nodeld=664,2003,01,17.
    [99]王宁生,汤毅珊,潘华新,等.生物样品及中药中汞、砷的测定[J].分析测试学报,1999,18(4):13-16.
    [100]Calabrese EJ,Stanek EJ.Resolving intertracer in consistencies in soil ingestion estimation[J].Environ Health Perspect,1995,103:454-456.
    [101]Hurley SE.Quantitative cancer risk assessment-pitfalls and progress[R].In:Hester RE,Harrison RM.Issues in environmental sciences and technology,No.9.Royal Society of Chemistry Risk Assessment and risk management.Cambridge,UK:1998.
    [102]NFESC(Naval Facilities Engineering Command).Guide for incorporating bioavailability adjustments into human health and ecological risk assessments at U.S.Navy and marine corps facilities.Part 2:technical background doccnment for assessingmetals bioavailability[R].Washington DC:2000.
    [103]RubyMV,Davis A,Schoof R,et al.Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J].Environ Sci Technol,1996,30:422-430.
    [104]Rodriguez RR,Basra NT,Casted SW,et al.An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soil and solid media[J].Environ Sci Teehnol,1999,33:642-649.
    [105]Oomen AG,Tolls J,Kruidenier M,et al.Availability of polychlorinated biphenyls(PCBs)and lindane for uptake by intestinal Caco-2 cells[J].Environ Health Perspect,2001,109:731-737.
    [106]唐翔宇,朱永官.土壤中重金属对人体生物有效性的体外试验评估[J].环境与健康杂志.2004,21(3):183-185.
    [107]宋雪英.议朱砂的合理应用[J].中成药,2002,24(10):816-817.
    [108]梁国刚,张启伟.朱砂、雄黄中各成分的溶解度对其药效、毒副作用的影响[J].中国中药杂志,2002,27(5):391-392.
    [109]赵雍.朱砂、雄黄与安宫牛黄丸脑缺血损伤保护作用的相关性考察[D].北京:北京中医药大学,2003.
    [110]王金华,叶祖光,梁爱华,等.安宫牛黄丸中汞、砷在正常和脑缺血模型大鼠体内的吸收与分布研究[J].中国中药杂志,2003,28(7):639-642.
    [111]张丽君,赵安民.朱砂名称作用及毒性考略[J].中医药学刊,2001,19(5):529.
    [112]彭平建.应警惕雄黄制剂中砷的毒性[J].中医药信息,1996,13(2):21-22.
    [113]Oomen A G,Tolls J,Sips A J A Met aL,In VitroIntestinal Lead Uptake and Transport in Relation to Speciation[J].Archives of Environmental Contamination andToxicology,2003,44:116-124。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700