钛基PbO_2电极处理硝基苯废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过热分解法和电沉积发制备钛基二氧化铅电极,并采用电沉积法制备了掺铋和掺镧的电极,从电极的表面形貌分析、苯酚的降解、生成羟基自由基的量以及电极的稳定性和导电性这几个方面比较了4种电机的催化性能,讨论了掺杂对电极结构及催化性能的影响;并讨论了在用改进的掺镧钛基二氧化铅电极电解硝基苯废水过程中电流强度、pH、极板间距和入水浓度对降解硝基苯的影响;通过改变电流强度、pH、极板间距和入水浓度等条件讨论了影响用改进的掺镧钛基二氧化铅电极电解硝基苯废水过程中放热和极板表面脱落现象的因素,提出了今后的研究重点。
Electro-catalytic oxidation technology is one kind of the advanced oxidation technology (AOP), it depredates the organic matter through the anodic reaction directly, or produces hydroxyl radicals, oxidants such as ozone to depredates the organic matter through the anodic reaction. The technology enables to decompose the organic matter more thoroughly and it is hard to produce the toxic intermediate. Therefore, it fixes the requirements of environmental protection. Especially, it can transform non-biodegradability of organic matter into biochemical degradation of organic matter, or it can transform harmful and toxic organic compounds into harmless and low toxicity ones. The technology has a good prospect of application in the pretreatment of depredating organic compounds in biological methods. It also has incomparable superiority such as simple operation, mild reaction conditions, ease of automation and without secondary pollution, thus, it has drawn great attention in the water sector in recent years. The key of the electro-catalytic oxidation technology is in finding and developing the anode material which has characteristics of high catalytic activity, good conductivity, corrosion resistance and long service life. Besides, reducing the cost of processing is also important, both of them are the research focus at home and abroad.
     The material of electrodes is one of the most important parts in electrochemical oxidation technology. The feasibility, velocity and the reaction degree of subsidiary reaction of organic substances that are oxidized or deoxidize on different electrode materials and catalyzed materials are different. Therefore, it is an important question for discussion to advance and improve performance of electrode material. Lead dioxide electrodes on Ti substrates were prepared by thermal-deposition and electro-deposition in this paper. Electro-catalytic characteristics of the electrodes prepared by two methods above were investigated through the degradation experiments of phenolic wastewater and the amount of hydroxyl radicals, and so the electrodes mingled with Bi or La prepared by electro-deposition were, and the effects of additives to electrode structure and catalytic characteristics were discussed through SEM and XRD. The experimental results showed that the surface of electrodes prepared by electro-deposition wasβ-PbO2.The additives can improve the micro-structure of electrode surface, reduce inner stress of plating layer, enhance catalytic activity, and make the crystals of the plating layer fine and symmetrical. The four electrodes all have good electro-catalytic characteristics, can reduce the voltage, and the electrochemical degradation of phenol follows one-step reaction dynamics. Electro-catalytic of electrodes prepared by electro-deposition were better than the electrodes prepared by thermal-deposition, and the electrode mingled with La was better than the electrode mingled nothing or with Bi. Electrochemical oxidation can be divided to direct electrochemical oxidation and indirect electrochemical oxidation according to the mechanism of degradation of phenol are different when the electrodes are prepared by different methods or with different additives. The improvement of electro-catalytic activity of electrodes makes the ability of direct electrochemical oxidation and indirect electrochemical oxidation strengthened and the degradation of phenol optimized. The theory on this need to be consummated more. For better use of PbO2-doped lanthanum electrodes in industrial wastewater treatment, the study further improved PbO2-doped lanthanum electrodes, increasing the surface area of the plate, and uses the improved electrode nitrobenzene wastewater treatment. By changing concentrations like the current intensity, nitrobenzene wastewater pH, electrode spacing and Concentration in water, the practicality of doped lanthanum electrodes wastewater treatment nitrobenzene can be tested by measuring the concentration of nitrobenzene in the electrolytic process of and the change of COD, then it can draw conclusions. From the wastewater treatment costs and the life of electrodes, the current experiment used the intensity of 7 A; it can not formats OH efficiently in acidic conditions, the reduction products such as nitrobenzene have been restrained under alkaline conditions ,therefore, the electrolysis efficiency of nitrobenzene has highest efficiency under neutral conditions. Appropriate plate spacing is favorable for nitrobenzene electrolysis, the efficiency of the degradation of nitrobenzene will be affected by too small or too much plate spacing. Under certain circumstance of current intensity, the produce of OH ? is certain in the unit time. When the entering water concentration is lower, the processing is inefficient because there is OH surplus. When the entering water concentration is higher, the processing is also inefficient because there is not enough OH for Organic oxidation treatment. Therefore, only when the concentration of water is moderate, electrode can play the greatest effectiveness.
     There is strong connection between the water warming and the current intensity. The stronger the intensity of current , the sooner the warm of the water electrolysis, and the higher the water temperature. And pH, electrode spacing and concentration of entering water do not impact deeply on the water temperature increasing. Electrode coating is connected with the strength of electric current and pH, and the strength of electric current has larger influence. When the current intensity is stronger, the loss of electrode coating is performed earlier, and the shedding area of coating is larger. Under alkaline and neutral conditions, the loss of electrode coating are performed later than that in acidic condition, but the shedding area of coating are basically the same under the conditions. The plate spacing and the entering water concentration has little impact on the performing time of loss phenomenon of electrode coating and shedding area of coating.
引文
[1] 王绍文,罗志腾,钱雷.高浓度有机废水处理技术与工程应用[M].冶金工业出版社.2003.
    [2] 国家环境保护总局.2004 年中国环境状况公报[M].2005.
    [3] 佟玉衡.实用废水处理技术[M].化学工业出版社.1998.
    [4] Ma, Wanhong; Li, Jing; Tao, Xia; He, Ju; Xu, Yiming; Yu, Jimmy C.; Zhao, Jincai. Efficient degradation of organic pollutants by using dioxygen activated by resin-exchanged iron(II) bipyridine under visible irradiation. Angew[J]. Chem. Int. Ed. 2003, 42, 1029-1032
    [5] 吴忠标.环境催化原理及应用[M].北京:化学工业出版社,2006:461-462.
    [6] 吴慧芳,黄文宜,吴平,孔火良,王世和.难降解有机废水的高级氧化技术[J].南京工业大学学报,2003,25(3):83-88.
    [7] 杨健,章非娟,余志荣.有机工业废水处理理论与技术[M].化学工业出版社.2005.
    [8] 中国化工防治污染技术协会.化工废水处理技术[M].化学工业出版社.2000.
    [9] 冯晓西,乌锡康.精细化工废水治理技术[M].化学工业出版社.2000.
    [10] N. J. Karrer, G. Ryhiner, E.Heinzle. Applicability test for combined biological chemical treatment of wastewaters containing biorefractory compounds[J]. Water Res. 1997, 31(5), 250-254.
    [11] 李东旭,杨芸.废水处理技术及工程应用[M].机械工业出版社.2003.
    [12] M. Bunge, L. Adrian, A. Kraus, M. Opel, W.G. Lorenz, J.R. Andreesen, H.G?risch, U. Lechner. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium[J]. Nature 2003, 421, 357-360.
    [13] N. Graham, W. Chu, C. Lau. Observations of 2,4,6-trichlorophenol degradation by ozone[J]. Chemosphere 2003, 51, 237-343.
    [14] R. Andreozzi, V. Caprio, A. Insola, R, Marotta. Advanced oxidation processes for the treatment of mineral oil-contaminated wastewaters[J]. Water Res. 2000,34, 620-628.
    [15] P. R. Gogate, A. B. Pandit. A review of imperative technologies forwastewater treatment I: oxidation technologies ate ambient conditions[J]. Advan. in Environ. Res. 2004, 8, 501-551.
    [16]王代平,胡海修,胡立. 高级氧化技术处理有机废水探讨[J].云南环境科学.2006,25(增刊):151-155.
    [17]郑红艾,潘理黎. 高级氧化技术在水处理中的研究进展[J].上海电力学院学报.2006,22(2):158-162.
    [18]高永光,胡振琪. 新型高级氧化技术在污水处理中的应用[J].辽宁工程技术大学学报.2006,25(1):146-149.
    [19]唐杰,张辉,王耀. 高级氧化技术在工业废水处理中的应用[J].清洗世界.2006,22(4):18-21.
    [20] 沈钰琳 . 浅谈我国水处理中的高级氧化技术 [J]. 科教文汇.2007(9):210-214.
    [21]冯涛,刘洪波,陈姗姗. 高级氧化技术在有机废水处理中的研究与应用[J].环境保护科学.2007,33(3):29-31.
    [22]鲍晓丽,隋铭皓,关春雨,于德淼. 水处理中的高级氧化技术[J].环境科学与管理.2006,31(1):105-107.
    [23]李亚峰,孙明,赵娜,朱爱霞. UV/Fenton 氧化法处理硝基苯废水的试验研究[J].沈阳建筑大学学报(自然科学版).2006,22(3):441-444.
    [24] 朱秀华,张诚,丁珂,沙宇. 处理硝基苯类废水的 Fenton 催化氧化技术研究现状[J].工业水处理.2007,27(3):1-3.
    [25] 张云山,李日扬,吴淮,李红. 电生羟基自由基在有机废水处理中的应用[J].化工时刊.2005,19(6):40-42.
    [26] 李静,刘国荣. 臭氧高级氧化技术在废水处理中的应用[J].污染防治技术.2007,20(6):55-57.
    [27] 童少平,褚有群,马淳安,刘维屏. 紫外光在臭氧降解不同有机物过程中的协同作用[J].环境科学学报.2005,25(8):1041-1045.
    [28]陈英,李艳莉,钟理. 苯酚液相臭氧氧化和复合氧化反应动力学[J].上海环境科学.2002,21(1):5-7.
    [29] 蒋晓凤,盛梅. TiO2 光催化降解水中苯酚的试验研究[J].污染防治技术.2007,20(6):17-21.
    [30] 武正簧,闫曦. 活性炭镀 TiO2 薄膜光催化降解苯酚废水[J].化学工程师.2004,101(2):39-41.
    [31] 张向前. 超声波、多相光催化协同作用在废水处理中的研究现状[J].平地山工学院学报.2006,15(5):26-28.
    [32]俞慧芳,王幸斌,蔡震雷,俞美芳. 光催化氧化技术处理含酚废水的研究[J]. 环境污染治理技术与设备.2006,21(2):8-9.
    [33]张翼,胡冰,张玉善,张艳丽. 高级氧化技术降解水中有机磷农药的研究进展[J].环境污染于防治.2006,28(5):361-364.
    [34]毛月红,李江云,刘英杰. 超声波水处理技术及应用[J].工业水处理.2006,26(6):10-13.
    [35]方婷,李沪萍,罗康碧,陈举恩,李兵,张光利. 声化学技术处理有机废水的研究进展[J].化工科技.2006,14(5):40-45.
    [36]刘丽丽,温青,李旭辉,季跃飞. 掺杂钛基二氧化铅电极的制备及催化性能的研究[J].应用科技.2006,33(3):53-55.
    [37]魏杰,于秀娟,王东田. 钛基氧化物电极的制备及其在水处理中的应用[J].环境保护科学.2002,28(112):10-12.
    [38] 冯玉杰,沈宏,崔玉虹,刘峻峰. 钛基二氧化铅电催化电极的制备及电催化性能研究[J].分子催化.2002,16(3):181-186.
    [39]李明波,申欢,崔喜勤,金奇庭.水处理中的羟基自由基·OH.陕西环境,2003,10(4):20-22.
    [40]于志勇,姚林.高级氧化技术在含酚废水处理中的应用[J].环境污染治理技术与设备,2003,4(7):52-55.
    [41]申哲民,雷阳明,贾金平,陈玉胜,王文华.PbO2 电极氧化有机废水的研究[J].高校化学工程学宝,2004,18(1):105-108.
    [42]乔世俊,赵爱平,徐小莲.高级催化氧化法降解有机工业废水的研究[J].环境科学研究.2005,18(5):104~106.
    [43]刘冬莲,黄艳斌.·OH 的形成机理及在水处理中的应用[J].环境科学与技术.2003,26(1):44~46.
    [44] 张剑波,左澎,王维敬. 辐射分解处理废水中的苯酚[J]. 环境污染治理技术与设备.2000,1(3):34-38.
    [45] 文岳中,姜玄珍,刘维屏. 高压脉冲放电与臭氧氧化联用降解水中对氯苯酚[J].环境科学.2002,23(2):73-76.
    [46] 顾晓利,姚春才,罗振扬,何明. 铁酸盐/微波催化氧化处理水中苯酚的工艺研究[J].化工时刊.2007,21(7):33-37.
    [47]王翠,史佩红.电化学氧化法在废水中的应用[J].河北工业科技.2004,21(1):49-52.
    [48]周明华.新型二氧化铅阳极电催化降解有机污染物特性研究[J].物理化学学报,2004,20(8):871-876.
    [49]龚竹青.理论电化学导论[M].长沙:中南工业大学出版社.1988:390
    [50] 冯王杰, 李晓岩, 尤宏, 等.电化学在环境工程中的应用[M]. 北京: 化学工业出版社, 2003: 94- 95.
    [51] 陈延禧. 电解工程[M]. 天津: 天津科学技术出版社, 1993: 165-166.
    [52]Comninellis Ch. Anodic oxidation of phenol for waste water treatment[J]. Journal of Applied Electrochemistry, 1991, 21(8): 703 -708.
    [53]Gattrell M. A study of the oxidation of phenol at platinum and pre-oxidized platinum surfaces[J]. Journal of Electrochemistry Society,1993, 140(6): 1 534- 1 540.
    [54]Szpyrkowicz L. Performance of electrochemical reactor for treatment of tannery wastewaters[J]. Chemical Engineering Science,2001, 56(4) : 1 579- 1 586.
    [55]Panizza M. Electrochemical treatment of wastewaters containing poly-aromatic pollutants[J]. Water Research, 2000,34(9):2 601- 2 605.
    [56] 陶映初, 陶举洲. 环境电化学[M]. 北京: 化学工业出版社, 2003:198-199.
    [57]Polcaro A M. Electrochemical Oxidation of Chlorophenols[J]. Ind.Eng. Chem. Res., 1997, 36(5): 1 791- 1 798.
    [58]Zhou M. A novel fluidized electrochemical reactor for organic pollutant abatement[J]. Sepra. Puri. Tech., 2004, 34(1- 3): 81- 88.
    [59]Gattrell M. The electrochemical oxidation of aqueous phenol at a glassy carbon electrode[J]. Can. J. Chem. Eng., 1990, 68: 997 -1003.
    [60]Feng J, Johnson D C. Electrocatalysis of anodic oxygen-transfer reactions: titanium substrates for pure and doped lead dioxide films[J]. Journal of Electro chemistry Society, 1991,138(11):3328-3337.
    [61] 冯玉杰, 沈宏, 崔玉虹, 等. 钛基二氧化铅电催化电极的制备及电催化性能研究[J]. 分子催化, 2002, 16(3) : 181- 186.
    [62]Tahar N B, Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide[J]. Journal of Applied Electrochemistry, 1999, 29(3): 277- 283.
    [63]Kotz R. Electrochemical waste water treatment using high over voltage anodes[J]. Journal of Applied Electrochemistry, 1991,21(1):14- 20.
    [64]Stucki S. Electrochemical waste water treatment using high over voltage anodes[J]. JournalofAppliedElectrochemistry,1991,21(2):99-104.
    [65]Vicent F. Characterization and stability of doped SnO2 anodes[J].Journal of Applied Electrochemistry, 1998, 28(6): 607- 612.
    [66]Correa-Lozano B. Service life of Ti/SnO2- Sb2O5 anodes[J]. Journal of Applied Electrochemistry, 1997, 27(8): 970- 974.
    [67]Hwang B J. Electrocatalytic oxidation of 2-chlorophenol on a composite PbO2/polypyrrole electrode in aqueous[ J] . Journal of Applied Electrochemistry, 1996, 26(2): 153- 159.
    [68] Panizza M. Electrochemical treatment of wastewaters containing orgainic pollutants on boron-doped diamond electrodes[J]. Electrochem. Commu., 2001, 3(7): 336- 339.
    [69]Panizza M. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes [J]. J. Electroanal. Chem., 2001, 507(1- 2): 206- 214.
    [70]Fernandes A. Electrochemical degradation of C. I. Acid Orange 7 [J]. Dyes and Pigments, 2004, 61(3) : 287- 296.
    [71]Palcaro A M. Electrochemical treatment of wastewater containing phenolic compounds: oxidation at boron-doped diamond electrodes [J]. Journal of Applied Electrochemistry, 2003, 33(10):885- 892.
    [72]Gandini D. Oxidation of carboxylic acids at boron- doped diamond electrodes for wastewater treatment [J]. Journal of Applied Electrochemistry, 2000, 30(12): 1345- 1350.
    [73]Iniesta J. Electrochemical oxidation of 3 – methyllpyridine at a boron-doped diamond electrode: application to electroorganicsyntheses and wastewater treatment [J]. Electrochemistry Communications, 2001, 3(7): 346- 351.
    [74] 李学敏, 汪家道, 张振, 等. 渗硼金刚石薄膜电极用于有机废水 降 解 的 实 验 [J]. 清 华 大 学 学 报 ( 自 然 科 学 版 ), 2004, 44(8):1032-1035.
    [75] 钱易,汤鸿霄,文湘华. 水体颗粒物和难降解有机物的特性与控制技术原理(下卷)[M]. 北京: 中国环境科学出版社,2000.
    [76] Majumder P S, Gupta S K. Hybrid reactor for priority pollutant nitrobenzene removal[J]. Water Research, 2003,37:4331- 4336.
    [77]乔庆东,李琪,于大勇,梁红玉,钛基二氧化铅电极的制备及其应用,应用化学,2000,17(5):555-557.
    [78] 王雅琼,陈昌平,童宏扬,等. Ti/SnO2+Sb2O3/PbO2 电极在硫酸溶液中 Cr3+氧化的电化学性能[J]. 过程工程学报,2003,3(2):125-129.
    [79] 刘淼,刁伟力,吴迪,焦昕倩,李延莉,全福民. 羟自由基在电极电解过程中的形成规律[J]. 高等学校化学学报,2005,26(12):2223-2226.
    [80] Comninellis C, Pulgarin C. Anodic oxidation of phenol for wastewater treatment[J]. Applied Electrochemistry, 1991, 21(8): 703—705.
    [81] 邵春雷,顾丁红,陆晶,张仁熙,侯惠奇. 新型二氧化铅电极处理硝基苯废水[J].环境科学研究,2006,19(4):65-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700