Fenton试剂降解偶氮染料活性艳红X-3B的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织印染行业是我国用水量大,排放废水量也大的工业部门之一。据资料统计,纺织印染行业每年排放废水量达9亿多吨,居我国工业废水排放量的第六位,其中印染废水排放量又占纺织工业废水排放量的80%。而目前我国印染行业废水平均治理率仅为70%,达标率只有30%。大量未经处理或处理未达标的印染废水直接排放,不仅直接危害人们的身体健康,而且严重破坏水体、土壤及生态,将造成不可想象的后果。印染废水具有水量大、色度深、水质变化大、有机毒物含量高、成分复杂以及难生物降解等特点,是国内外公认的难处理的工业废水之一。Fenton试剂因其超强的氧化能力,特别适合于难生物降解废水的处理,成为水污染治理和控制的有效手段之一。
     本研究采用Fenton试剂处理活性艳红X-3B染料废水,用单因素优化分析法,对影响Fenton试剂处理效果的主要因素进行了逐一研究,考察其对Fenton试剂催化降解活性艳红X-3B染料废水的影响程度,以确定最优的反应条件。试验结果表明:在25℃室温条件下,当染料浓度为200mg/L,FeSO_4浓度为0.08mmol/L,H_2O_2浓度为1.6mmol/L,溶液pH=3.0时,反应30min,活性艳红X-3B的降解率和COD去除率分别达92.90%和67.8%。此外,还研究了反应温度、光源及其强度等因素对处理效果的影响,结果表明:日常温度情况下,温度变化对反应结果基本没有影响,而紫外光与Fenton试剂具有协同作用,二者联用能明显提高降解率,且随着紫外光强度的增加,降解率也相应提高。
     在处理实际废水时,水样中通常会含有一些阴离子和可溶的金属离子,如C1~-,S~(2-),SO_4~(2-),NO_3~-,Ca~(2+),Mn~(2+),Mg~(2+),Zn~(2+)等,这些无机离子的存在或许会在一定程度上对Fenton试剂的催化氧化性能产生影响。本文以Fenton试剂降解活性艳红X-3B为研究对象,选择了一些常见的有代表性的无机离子,深入研究了这些无机离子对Fenton试剂反应的影响,并对作用机理进行了探讨。试验研究结果表明,S~(2-)离子对Fenton试剂催化氧化效果的影响非常明显:H_2PO_4~-和Cl~-对Fenton试剂的催化氧化性能有不同程度的抑制作用,其抑制能力的大小为:H_2PO_4~->Cl~-:Cu~(2+)和Mn~(2+)在一定程度上影响Fenton试剂的氧化效果:SO_4~(2-),NO_3~-,Mg~(2+)和Zn~(2+)对活性艳红X-3B的降解率几乎没有任何影响。
     动力学研究是Fenton试剂催化氧化降解有机物研究的重要内容之一,通过对动力学的研究可以计算出Fenton试剂法降解有机物的反应速率,为Fenton试剂法更好地应用于实际工业废水提供有价值的实验数据。本文在Fenton试剂催化氧化降解活性艳红X-3B的作用规律基础之上,用一元回归方程对不同氧化降解时间后活性艳红X-3B残余浓度对反应时间的相关性进行了分析,推导出表观动力学模型。
     最后,通过测定活性艳红X-3B反应前后溶液中Cl~-、NO_3~-等离子浓度变化,考察氧化过程中物质结构变化情况;通过对Fenton试剂催化氧化降解活性艳红X-3B后的水样进行紫外可见光光谱分析,初步推测活性艳红X-3B的氧化途径和降解产物。以便更深入地了解羟基自由基HO·氧化活性艳红X-3B的机理,为Fenton试剂更好地应用于染色废水的处理提供一定的理论依据。
The textile dyeing industry is one of largest industry sectors with the water and wastewater emissions in China. According to the material statistics, the wastewater emissions amount to more than 900 million tons at the textile dyeing industry every year, occupies industrial wastewater emissions sixth in China. Dyeing wastewater is 80% of the textile industry wastewater. At present, the average wastewater treatment rate of the textile dyeing industry was only 70%; the pass rate only was 30%. The large quantities dyeing wastewater of untreated or non-standard treated directly discharged, not only has a direct threat to people's health, but also seriously undermining water, soil and ecology, will cause unimaginable consequences. Dyeing wastewater with volume big, color depth, water quality changes big, high content of toxic organic compounds, complex and bio-refractory, is recognized one of the intractable industrial wastewater in the world. Fenton reagent has a super oxidation and appeared to be applicable for the treatment of bio-refractory wastewater, so Fenton reaction has become one of effective means in the treatment and control of wastewater.
     Fenton reagent was used to treat reactive red X-3B dyed wastewater. In order to confirm the optimum response condition, the main factors influencing efficiency were investigated one by one. When T=25℃, pH=3.0, the concentrations of H_2O_2 and Fe~(2+) were 1.6mmol/L and 0.08mmol/L, respectively, the experimental results indicated that the removal rate of COD_(Cr) could reach 67.8% and the degradation rate of Reactive red X-3B was 92.9% under the concentration of the raw wastewater reactive red X-3B is 200mg/L. In addition, studies on the effects of treatment by reaction temperature, photosource and its intensity, results showed that: at normal temperature, the reaction temperature change did not affect results; UV-Fenton reagent is synergy, combination can significantly improve the rate of degradation, with the UV intensity and the increase in the degradation rate correspondingly increased.
     In the actual wastewater treatment, water samples will usually contain some anions and soluble metal ions, such as Cl~-, S~(2-) SO_4~(2-), NO_3~- Cu~(2+), Mn~(2+), Mg~(2+), Zn~(2+), and so on, these inorganic ions perhaps to a certain extent, Fenton reagent on the catalytic oxidation performance impact. In this paper, the effect of some inorganic ions on Fenton reaction was studied by choosing some representative inorganic ions, and the mechanism was discussed. Experimental results showed that S~(2-) had great influence on catalysis ability of Fenton reagent; H_2PO_4~- and Cl~-suppressed the decomposition of reactive red X-3B in the following sequence H_2PO_4~-> Cl~-; Cu~(2+) and Mn~(2+) also lowered the treatment efficiency to some extent; SO_4~(2-), NO_3~-, Mg~(2+), Zn~(2+) almost had not effect on the degradation rate of reactive red X-3B.
     Kinetics is one of the important research contents on the Fenton reagent catalytic oxidation degradation of organic compounds. Through the kinetics study, the reaction rate can be calculated on organic compounds degradation by Fenton reagent, Fenton method better applied to the actual industrial wastewater provide valuable experimental data, In this paper, on the basis of the rules of catalytic decomposition of reactive red X-3B, the relationship between the remained concentration of reactive red X-3B and reaction time was analyzed by the monoacid regression equation, derived the apparent kinetic model.
     Finally, through determination Cl~- and NO_3~- concentrations change in the reaction process and UV-Vis spectrum analysis, degradation products of reactive red X-3B were conjectured and degradation pathway of reactive red X-3B was discussed. It provided the theoretical basis for the application of Fenton reagent in the treatment of dyeing wastewater and better understand the oxidation mechanism of reactive red X-3B by hydroxyl radical.
引文
[1] 闫金霞,成庆利.印染废水治理技术综述[J].染料与染色,2007,44(2):48-51;
    
    [2] 赵雅琴,魏玉娟.染料化学基础[M].北京:中国纺织出版社,2006,12-38;
    
    [3] 程云,周启星,马奇英,等.染料废水处理技术的研究与进展[J].环境污染治理技术与设 备,2003,4(6):56-60;
    
    [4] Hu T L. Degradation of azo dye RP2B by pseudomonas lutoela [J]. Water Science and Technology, 1998,38(4-5):299-306;
    
    [5] 朱兆连,李爱民,陈金龙,等.芳香胺废水治理技术研究进展[J].工业安全与环保,2008, 34(1):4-5;
    
    [6] 郑金来,李君文.生物降解常见染料的研究进展[J].环境污染治理技术与设备,2000, 1(3):39-43;
    
    [7] S.Esplugas, J.Gimenez, S.Contreras, E.Pascual, M.Rodriguez.Comparison of different advanced oxidation processes for phenol degradation[J].Wat.Res,2002,36(4):1034-1042;
    
    [8] 苑宝玲,王洪杰.水处理新技术原理与应用[M].北京:化学工业出版社,2006.8-10;
    
    [9] 邓小晖,张海涛,曹国民,等.芬顿试剂处理废水的研究与应用进展[J].上海化工,2007, 32(8):1-5;
    
    [10] 郭丽,王纯莉.活化煤处理印染废水初探[J].环境工程,1993,11(4):7-8;
    
    [11] Ozacar M, et al. Absorption of acid dyes from aqueous solutions by calcined alunite and granular actived carbon [J]. Adsorption, 2002,8(4):301-308;
    
    [12] 黄新文,黄海风,何志桥.聚硅酸系混凝剂处理印染废水的研究[J].工业水处理,2003, 23(2):40-42;
    
    [13] 邹红林.新型氧化—混凝剂处理染料废水研究[J].环境污染治理技术与设备,2003, 4(1):8-10;
    
    [14] W Jaeger. Improved fenton method to remove recalcitrant organics in landfill leachate [J].Acta Polymercial,1989,40:161-167;
    
    [15] Lei Lecheng. Homogenens catalytic wet-air oxidation for the treatment of textilewastewater [J]. Water Environment Reasearch, 2000,72(2):147-151;
    
    [16] 赵朝成,赵东风.超临界水氧化技术处理含油污水研究.干旱环境监测[J].2001,15 (1):25-28;
    
    [17] 费庆志,许芝.臭氧氧化降解含染料废水的研究[J].环境污染治理技术与设备,2003, 4(6):24-26;;
    
    [18] 李英勃,李俊山.固定化纳米TiO_2光催化降解粒子元青染料废水[J].陕西工学院学报, 2002,18(4):15-17;
    
    [19] Hu Chun, Wang Yizhong, Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater [J]. Chemosphere,1999,39(12):2107-2115;
    
    [20] 汪凯民.厌氧好氧生物炭处理印染废水[J].环境科学,1993,114(2):48-51;
    
    [21] 吴东雷,葛为多.厌氧—好氧处理羊绒印染废水[J].环境科学与技术,2001,24(5):26-27;
    
    [22] Marie christiane B H.The decolorization and biodegradation of dye by Mgrotheciumverrucaria [J]. Industrial Microbiology, 1992,41(10):31-41;
    
    [23] Shah V, Garg N, Madamwar D.An integrated process of textile dye removal andhydrogen evolution using cyanobacterium Phormidium valderanum [J]. World Journal ofMicrobiology and Biotechnology, 2001,17(5): 499-504;
    
    [24] 胡祺昊,王黎明,关志冬等.脉冲电流处理印染废水的研究[J].高压电器,2001,37(6): 11-13;
    
    [25] 陶媛,胡祺昊,王黎明等.超声技术降解染料废水的实验研究[J].高电压技术.2002, 28(12):47-48;
    
    [26] 华彬,陆永生.超声技术降解酸性红B废水[J].环境科学,2000,21(2):88-90;
    
    [27] 陈传好,谢波.Fenton试剂处理废水中各影响因子的作用机制[J].环境科学,2000,21(3): 93-96;
    
    [28] 刘冬莲,黄艳斌.HO-的形成机理及在水处理中的应用[J].环境科学与技术,2003,26(2): 44-46;
    
    [29] 王春平,马子川.Fenton试剂处理青霉素废水实验研究[J].重庆环境科学,2003,25(12): 25-26;
    
    [30] Zoh Kyung-Duk, Stenstrom Michael K. Fenton oxidation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine(HMX)[J].Water Research,2002,36(5):1331-1341;
    
    [31] Lin Sheng H, Lin Chi M, Leu Hong G.Operating characteristics and kinetic studies ofsurfactant wastewater treatment by Fenton xidation [J].Water Research, 1999,33(7):1735-1741;
    
    [32] 朱艳虹,高迎新,杨敏,等.混凝—Fenton法处理采油废水的研究[J].环境污染治理技术 与设备,2003,4(4):18-21;
    
    [33] Lee Byung Dae, Masaaki Hosomi, Akihiko Murakami. Fenton oxidation with ethanol to degrade anthracene into biodegradable 9,10-anthraquinon: A pretreatment method for anthracene-contaminated soil [J]. Water Science and Technology,1998,38(7):91-97;
    
    [34] 黄晓东,徐寿昌,用芬顿试剂预氧化提高硝基苯废水的可生化性.江汉石油学院学报, 1994,16(3):74-78;
    
    [35] Lin Sheng H, Jiang Chang D. Fenton oxidation and sequencing batch reactor (SBR) treatments of high-strength semiconductor wastewater [J].Desalination,2003,154(2): 107-108;
    
    [36] 钟萍,杨曦,赵贵来,等.光助Fenton试剂法氧化处理煤油废水溶液[J].中国环境科学,??2002,22(5):460-463;
    
    [37] 雷东成.光助Fenton氧化处理PVA退浆废水的研究[J].环境科学学报,2000,20(2): 139-144;
    
    [38] Will BIS, Moraes JEF, Teixeira, etal.Photo-Fenton degradation of wastewater containing organic compounds in solar reactors [J]. Separation and Purification Technology,2004, 24(13):51-57;
    
    [39] 胡成生,王刚,吴超飞,等.含甲醛毒性废水电-Fenton试剂氧化技术研究[J].环境科学, 2003,24(4):106-111;
    
    [40] Chow Shanshan, Huang YaoHui, Lee ShenNan etal. Treatment of high strength hexamine-containing wastewater by electro-Fenton method [J]. Water Research 1999, 33(3):751759;
    
    [41] 胥维昌.染料行业废水处理现状和展望[J].染料工业,2002,39(6):35-39;
    
    [42] 胡长诚.过氧化氢处理工业废水的进展[J].化学推进剂和高分子材料,2006,4(5):1-5;
    
    [43] 张乃东,黄君礼,郑威.强化UV/Fenton法降解水中苯酚的研究[J].环境污染治理技术与 设备,2002,3(2):20-22;
    
    [44] Walter Z T, Stephanie T. Oxidation and Mechanisms of trihalomethanes by Fentonreagent [J]. Water Research, 1997, 31(5):1118-1125;
    
    [45] TANG WZ, HUANG CP. 2, 4-dichlorophenol oxidation kenetics by Fenton reagent [J].Environment Science Technology, 1996,17:1371-1378;
    
    [46] 许保久,当代给水与废水处理原理[M].北京:高等教育出版社,1990:153-159;
    
    [47] Sun Yunfu, Joseph J Pignatello. Photochemical reactions involved in the totalmineralization of 2,4-D by Fe~(2+)/H_2O_2/UV [J]. Environ Sci Technol,1993,27:304-310;
    
    [48] Arana J, Tello Rendon E, Dona Rodriguez J M. Highly concentrated phenolic wastewatertreatment by the Photo-Fenton reaction [J]. Chemosphere, 2001,44:1017-1023;
    
    [49] Hideyuki Katsumata, Shinsuke Kawabe, Satoshi Kaneco.Degradation of bisphenol A inwater by the photo-Fenton reaction [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,162:297-305;
    
    [50] Hideyuki Katsumata, Satoshi Kaneco, Tohru Suzuki. Degradation of linuron in aqueoussolution by the photo-Fenton reaction [J].Chemical Engineering Journal, 2005,108:269-276;
    
    [51] 曹瑾.光化学概论[M].北京:高等教育出版社,1985,27-28;
    
    [52] 雷乐成,江大翠.水处理高级氧化技术[M].北京:化学工业出版社,2001,240;
    
    [53] Evans M G, George P, Uri N. The Fe(OH)~(2+) and Fe(O_2H)~(2+) complexes, Trans[J]. Faraday Soc,1989,45:230-239;
    
    [54] 钱易,汤鸿霄,文湘华,等.水体颗粒物和难降解有机物的特性与控制技术原理(下卷): 难降解有机物[M].北京:中国环境科学出版社,2000,30;
    
    [55] 李亚峰,朱爱霞,庞晶晶,等.无机离子对Fenton试剂处理苯酚废水效果影响的研究[J].??沈阳建筑大学学报 (自然科学版),2006,22(4):604-607;
    
    [56] 马世昌.基础化学反应[M].西安:陕西科学技术出版社,2003,245;
    
    [57] Sheu Shin Hsiung, Weng Hung Shan. Treatment of olefin plant spent caustic by combination of neutralization and fenton reaction [J]. Wat. Res., 2001, 35(8):2017-2021;
    
    [58] Lu M C, Chen J N, Chang C P. Effect of Inorganic Ions on the Oxidation of Dichlorvos Insecticide with Fenton's Reagent [J]. Chemosphere, 1997, 35(10):2285-2293;
    
    [59] Neamtu M, Yediler A, Siminiceanu I, etal. Oxidation of commercial reactive azo aqueoussolutions by the photo-Fenton and Fenton-like processes [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,161(1):87-93;
    
    [60] 赵录庆,姜聚慧,郭强.等.UV/Fenton 试剂法处理含氮蓝染料模拟废水的研究[J].河南 师范大学学报 2002,20(1):24-27;
    
    [61] 陈广春,田园,吴文娟.UV/Fenton法处理酸性红B研究[J].环境污染治理技术与设备, 2006,7(7):124-127;
    
    [62] Bautista P, Mohedano M A, Gilarranz. Application of Fenton oxidation to cosumetic wastewaters treatment [J]. Journal of Hazardous Materials,2007,143(1-2):128-134;
    
    [63] K Dutta, S Mukhopadhyayl. Chemical oxidation of methylene blue using a Fenton-like reaction [J]. Journal of Hazardous Materials, 2001, 84(1):57-71;
    
    [64] Lou J C, Lee S S. Chemical oxidation of BTX using Fenton reagent [J]. Hazard Waste Hazard Mater, 1995,12(2):185-193;
    
    [65] К ЯцИМИРСКИЙ,В L ВАСнЛИЕВ.王夔,吴炳辅译.络合物不稳定常数[M].北京: 科学出版社,1960,109;
    
    [66] P K.Malik, S K Saha. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst [J]. Separation and Purification Technology, 2003,31:241-250;
    
    [67] 陈寿椿.重要无机化学反应[M].上海:上海科学技术出版社,1994,126;
    
    [68] 邵学俊,董平安,魏益海.无机化学[M].武汉:武汉大学出版社,2000,114;
    
    [69] Wu F, Deng N S, Hua H. Degradation mechanism of azo dye C.I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions [J].Chemosphere, 2000,41(8): 1233-1238;
    
    [70] Wang Y Z. Photocatalytic decolorization characteristics of various dyes with different structures [J]. Toxicol. Environ. Chem,1999, 70(2): 67-69;
    
    [71] 邢核,田春荣,王怡中.废水中染料的TiO_2光催化氧化降解机理研究现状[J].上海环境 科学,2001,20(2):63-66;
    
    [72] Zhao W, Shi H, Wang D. Kinetics of the reaction between ozone and Cationic Red X-GRL [J]. Chinese Journal of Chemical Engineering,2003,11(4):388-394;
    
    [73] 詹豪强,田禾.茶酚偶氮染料光化学氧化及其降解机理研究进展[J].染料工业,1997, 34(2):7-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700