用户名: 密码: 验证码:
高级氧化技术处理丙烯腈污水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯腈(AN)污水是一种危害十分严重而又普遍存在的化工污水,因其本身及分解产物具有毒性,在处理过程中需采取非常特殊的方法。
     本文综述了AN污水的来源、危害、处理现状以及常见的几种处理方法,提出以高级氧化技术(AOPs)作为高浓度AN污水前期预处理的新方法。实验中首次采用光化学氧化、K_2FeO_4氧化、Fenton试剂、UV—TiO_2光催化处理模拟AN污水,研究了不同处理技术对体系AN和COD去除反应效果及特点,考察了模拟体系中氧化剂及催化剂投加量、AN初始浓度、pH值、温度及紫外光照等因素对反应的影响。
     研究结果表明:①采用紫外光技术处理模拟AN污水可以达到较好的处理效果。对于高浓度模拟AN污水(300mg/L),紫外光照射80min,体系AN与COD残存率分别为31%、61%,延长光照时间至180min,COD残存率降至30%以下,同时升高反应温度可以提高AN污水处理效果。②高铁酸钾是一种独特的高效水处理剂,可以氧化絮凝去除体系中AN,处理过程中不会产生二次污染。实际处理300mg/L的AN污水时,加入20mg/L高铁酸钾,反应80min,体系AN与COD残存率降至20%、50%以下,延长反应时间至180min,COD残存率在25%以下。③对于高浓度模拟AN污水,Fenton试剂作为前期预处理是一种有效方法。当AN浓度为300mg/L时,投加400mg/L Fe~(2-),400mg/L H_2O_2,反应15min,AN残存率在20%以下。分别加大Fe~(2-)、H_2O_2投加量可提高AN去除率,但过高均会导致去除效果下降。④投加20mg/L TiO_2处理300mg/L AN污水,紫外光照射180min,体系COD残存率在15%以下,同时不会对环境产生二次污染。⑤比较UV、K_2FeO_4、Fenton、UV-TiO_2试剂处理模拟AN污水效果、实际操作及对环境影响,发现有如下顺序:UV>UV-TiO_2>K_2FeO_4>Fenton。
Wastewater containing acrylonitrile (AN) is a kind of industrial wastewater which generally exist with harmful substance. Because of toxicity.it is necessary to adopt a very special method in the course of treatment.
    In this paper, the source, toxicity, present situation and usual treatments of wastewater containing AN were reviewed. A novel technique of advanced oxidation processes (AOPs) is used to the treatment of the high concentration wastewater. Adopting photochemistry, k2FeO4, Fenton reagent and TiO2 oxidation for treatment of containing AN wastewaters, we studied features and effects of different techniques on the removing of AN and COD. The influence of the amount of oxidant and catalyst, initial concentration of AN, pH value, temperature and UV on the reaction in the simulating system were investigated.
    The results show (1)that a treatment of the simulating wastewater by using UV can get a good result, to the wasterwater containing 300 mg/L AN, by using UV illumination of 80 mins, rates of AN and COD residue are 31%, 61% respectively, lending the illuminating time of 180 mins, the residue rate of COD is below 30%, and rising the temperature can increase the result of desposal at the same time (2)that K2FeO4 compound is a kind of highly efficient water treatment agent, and it can oxidize AN without repollution, by disposing the wastewater (300 mg/L), putting 20 mg/L K2FeO4, reacting 80 mins, rates of AN and COD residue are below 20%, 50% respectively, and by longing the reacting time of 180 rains, the rate of COD residue is below 25% (3)that a treatment of the simulating wastewater containing 300 mg/L AN,Fenton reagent is a kind of effective method, putting 400mg/L Fe2+ and 400mg/L H2O2 respectively and reacting 15mins can make the residue rate decrease to below 20%. Raising the amount of Fe2+, H2O2 respecti
    vely can increase the removing rate, too high to result in removing rate dropping ﹖hat by using TiO2(20mg/L) to disposal the wastewater of 300 mg/L, the rate of COD residue is below 15% without second pollution (5)Comparing with the efficiency, practical operations and influences on environment of UV, K2FeO4, Fenton reagent, UV-TiO2, we can conclude that there is the order: UV>UV-TiO2>K2FeO4 Fenton reagent.
引文
[1] 翼滨弘,章非娟.难降解有机污染物的处理技术.重庆环境科学,1998,20(5):36-40
    [2] 何德文,王罗春,陆雍森.难降解有机污染物的治理方法及进展.环境与开发,1998,13(4):4-5
    [3] 韦朝海,焦向东,陈焕钦.有毒难降解有机污染物治理方法的研究进展.重庆环境科学,1998,20(4):22-27
    [4] 陈建林等.树脂吸附法回收染料废水中的酚.南京大学学报,1995,37(4):592-597
    [5] Nan Mcjyh Jeremi et al. Treatment of wastewater from ace flotation containing aliphatic aminea and hydrofluoric acid. Toxical Environ, chem., 1992, 34(2): 113-121
    [6] 张正东,金锡鹏.丙烯腈毒性研究新进展.职业卫生与应急救援,1997,15(2):96-97
    [7] Redprakashs Mishra, etal. Ind Eng Chem Res, 1995, 34(1): 2-48
    [8] 韦朝海,王刚,谢波.含氰(腈)类废水湿式催化氧化处理理论分析.水处理技术,2001,27(3):129-132
    [9] 闫光绪等.精馏法处理高浓度有机氰废水技术研究.当代化工,2001,30(4):199-201
    [10] 杜龙弟等.含氰废水处理的现状与对策.石油化工环境保护,1994,2:12-22
    [11] 王德民等.生物法处理丙烯腈废气的初步研究.环境科学,2000,2:74-76
    [12] 杨琦等.膜生物反应器处理丙烯腈废水试验.环境科学,2000,3:85-87
    [13] 张建斌等.化学氧化法预处理丙烯腈工业废水的研究.石油化工环境保护,2001,2:24-27
    [14] 朱绍芬,张俊民,潘晓磊.丙烯腈装置污水治理方法探讨.石油化工环境保护,1997,1:14-16
    [15] 孙晓君等.废水中难降解有机物的高级氧化技术.化工环保,2001,21(5):264-269
    [16] H. S. Joglekar, S. D. Samant, J. B. Joshi. Kinetics of WetAir Oxidation of Phenol and Substitued Phenols. Water Research, 1991, 25(2): 135-145
    [17] 吴星五,赵国华,高廷耀.电化学法水处理性技术-降解有机废水,环境科学学报,2000,20增刊:80-84
    [18] 周明华等.电化学高级氧化工艺降解有毒难生化有机废水.化学反应工程与工艺,2001,17(3):263-271
    [19] 杨馗,徐明仙,林春绵.超临界水的物理化学性质.浙江工业大学学报,2001,29(4):386-390
    [20] 王碧等.超临界水处理有机废物研究新进展.重庆环境科学,2002,24(4):76-79
    [21] 黄艳娥,琚行松.纳米二氧化钛光催化降解水中有机污染物的研究进展.化工环保,2002,22(1):23-27
    [22] 彭峰,任艳群.提高二氧化钛光催化性能的研究进展.现代化工,2002,22(10):6-9
    [23] 黄艳娥,刘冬莲.纳米TiO_2在水处理中的应用.河北化工,2000,2:8-10
    [24] 张乃东等.UV-vis/H_2O_2草酸铁络合物法光解焦化含酚废水的研究.黑龙江大学自然科学学报,2002,19(1):103-105
    [25] 谢银德等.Photo-Fenton反应研究进展.感光科学与光化学,2000,18(4):357-366
    [26] Virender K. Sharma. Ferrate(Ⅴ) oxidation of pollutants: a premix pulse radiolysis study. Radiation Physics and Chemistry., 2002, 65: 349-355
    [27] Virender K. Sharma. Potassium ferrate(Ⅵ): an environmentally friendly oxidant. Adwances in Environmental Research., 2002, 6: 143-156
    [28] A. I. Tsapin, M. G. Goldfeld. Iron(Ⅵ): Hypothetical Candidate for the Martian Oxidant. TSAPIN ET AL., 2000, 147: 68-78
    [29] Hoppe M Let al. Structure of Dipotassium Ferrat(Ⅵ). Acta Crystallogr, 1982, B38: 2237-2239
    [30] Goff H, Murmann R K. Studies on the Mechanism of Isotopic Oxygen Exchange and Reduction
    
    of Ferrate Ion(FeO_4). J. Am. Chem. Soc., 1971, 93: 6058-6065
    [31] 曲久辉,林谡,王立立.高铁酸盐的溶液稳定性及其在水质净化中的应用.环境科学学报,2001,21增刊:106-109
    [32] Lionel D, pierrel. A Novel Oxidizing Reagent Based on Potassium Ferrate (Ⅵ). J. Org. Chem., 1996, 61: 6360-6370
    [33] Bouzek K. Rousar I, Bergmann H, et al. The Cyclic Voltammetric Study of Ferrate(Ⅵ) Production. J. Electroanal Chem., 1997, 425: 125-137
    [34] 廖蔚峰,杨艳萍.高铁酸钾在污水处理中的应用.湖北化工,1999,5:23-24
    [35] Xu Yiming, Lu Huaqing. Degradation of dye X-3B by UV/Fe~3 Generated Hydroxyl Rsdicals in acqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 136: 73-77
    [36] 陈健.现代紫外C水消毒系统.净水技术,2001,20(3):11-14
    [37] 杜新丽.气相色谱法测定水中乙腈、丙烯腈.陕西环境,1997,4(3):18-20
    [38] 陈作涛.测定工业废水中COD的新方法.甘肃科技,2000,3:15-15
    [39] 曲久辉等.高铁酸盐氧化絮凝去除水中腐殖质的研究.环境科学学报,1999,19(5):510-514
    [40] 潘亚明,朱鹤孙.化学与化工中的数学方法.北京理工大学出版社,1993
    [41] 程丽华,黄君礼,王丽.草酸铁芬顿、UV/芬顿、暗芬顿降解对硝基酚的效果研究.哈尔滨建筑大学学报,2001,34(2):74-78
    [42] Arturo A. Burbano; Dionysios D. Dionysiou; Teri L. Richardson; and Makram T. Suidan. Degrada- tion T. Suidan. Degradation of MTBE Intermediates using Fenton's Reagent. JOURAL OF EN- VIRONMENTAL ENGINEERING, 2002, 9: 799-805
    [43] 顾平等.Fenton试剂处理活性黑KBR染料废水研究.中国给水排水,1997,13(6):16-18
    [44] 陈传好等.Fenton试剂处理废水中各影响因子的作用机制.环境科学,2000,21(3):93-96
    [45] Y. Xiao. Treatment of H-Acid Wastewater by Photo-Fenton Reagent Combined with a Biotreatment Process: A Study on Optimum Conditions of Pretreatment by a Photo-Fenton Process. Bull. Environ. Contam. Toxicol, 2002, 69: 430-435
    [46] 朱其永,褚道葆,周幸福.纳米TiO_2悬浮体系光催化降解甲基橙的研究.淮南师范学院学报,2002,15(4):13-14
    [47] 胡春等.TiO_2光催化氧化苯酚动力学研究.环境科学,1997,18(4):1-4
    [48] 钟瞡.陶瓷微滤膜过滤微米、亚微米级颗粒体系的基础研究和应用开发,南京:南京化工大学,1998
    [49] 黄艳娥,琚行松.纳米二氧化钛光催化降解水中有机污染物的研究.现代化工,2001,4:45-48
    [50] 徐悦华,古国榜,李新军.光催化降解甲胺磷影响因素的研究.华南理工大学学报,2001,29(5):68-71
    [51] 苑宝玲,曲久辉,王敏.高铁酸盐对藻类肝毒素的降解.环境科学,2002,23(2):96-99
    [52] 翼亚飞.高铁酸钾的研制与应用实践.现代化工,1998,12:21-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700