高效菌降解造纸黑液木质素的特性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造纸工业是对环境污染非常严重的行业之一,治理造纸废水的关键是对木质素的有效处理。本文通过大量的实验研究工作,在初步探索造纸黑液酸析木素新助剂及其效果的基础上,首次系统地对木素降解高效菌的分离与生长繁殖特性、高效菌酶活性与木素降解性能、生物强化因子综合实验及实际模拟试验等进行了深入研究,为提高造纸黑液木素的处理效果提供理论依据。
     本研究通过大量的实验,获得了改进酸析木素法的新助剂,与常规酸析法相比,该助剂使用后具有较好的COD_(Cr)和色度去除率,析出的木素颗粒上浮且含水率低等优点。当pH值为3.0时,黑液COD_(Cr)去除率最高可达68%,色度去除率为92%以上,浮渣含水率最低仅为81%,并且pH在4~4.5时仍有类似的去除木素效果,这些有助于克服常规法中耗酸量大、泥水分离困难、需要加热设备、污泥后续处理困难等缺点。实验证明,Ⅰ号助剂的作用效果最好。
     从119个菌株中分离筛选出了6株细菌和5株霉菌,它们可以在含有木质素的培养基上良好生长:细菌分类学鉴定结果为X1、X2和X3:假单胞菌属,X4和X5:黄单胞杆菌属,X6:枝动杆菌属;对6株细菌降解木质素性能进行了初步的研究,选定X2和X4为实验用菌种,两株菌适宜的生长温度为30℃,最适初始pH值为7;经紫外线照射诱变法处理,可使它们产生的三种木素分解酶活性均有明显的提高,细菌增长速率比诱变前明显提高。
     对分离出的高效菌种的特性进行了较为详细的研究,主要研究结果是:110转/min振荡培养有利于菌种的生长繁殖;通过对多种共代谢初级碳源和氮源的效能比较,确定蔗糖为合适的共代谢初级碳源,硝酸铵为合适的氮源;向原降解培养基中加入10mg/L的Mn~(2+)离子,0.1mg/L的Cu~(2+)离子,0.25mg/L的Fe~(2+)离子和10mg/L的Ca~(2+)离子,会大大提高木质素的去除率;综合培养结果表明,加入共基质蔗糖的浓度为1g/L,硝酸铵浓度为1.5g/L和相应的无机离子,且菌种比例为X2:X4=1:1时,效果最好。
    
     西安建筑科技大学博士学位论文
     根据酶活性测定结果和降解中间产物色谱一质谱联机分析,认为高效茵降解木质素的机理
    是,在综合强化因于作用下,促进木质素降解酶活性提高,强化了木质素的胞外和胞内降解反
    应。
     采用投加生物强化因子的生物强化处理系统,对造纸废水进行连续的模拟运行实验,也获
    得了很好的效果,这些强化因子包括木质素降解高效菌种、共代谢初级碳源、氮源以及多种无
    机离于等;综合强化因子作用下的COD最高去除率达75.3%,平均COD去除率在74%以上,
    COD值从进水的1000呗左右降到了约260m叭,SS的去除率也在90%以上。
Paper industry is one of the industries that cause serious environmental pollution. The key of paper industry sewage treatment is the efficient treatment of lignin. By a host of experiments, On the basis of exploration of new assistant reagent and its effect for paper industry black liquor, a detailed study had been done on separation of efficient lignin-degrading bacteria, their growth, reproduction, enzyme activity and lignin-degrading capacity, and synthetic experiments of bioaugmentation factors and practical simulated experiments, which offer theoretical basis to improve removal effect of lignin in paper industry black liquor.
    By a host of experiments, the study lias got new assistant reagents for modified acid precipitation process. Compared with the conventional, process using of the reagents has such advantages as higher removal ratio of CODcr and chroma, and lower water content of the deposited lignin particles. When the pH value is 3.0, the highest CODcr removal ratio can reach 68%, the chroma removal ratio over 92%, and lowest water content of scum is 81 %. The similar removal effect of lignin occurs when the pH is controlled between 4 and 4.5, which is helpful to conquer the disadvantages of large amount of acid consumption, hard to dehydrating, necessity of heating equipments, and difficult treatment of sludge. The result showed that the NO. 1 assistant reagent has the best effect.
    Six bacteria and five mildews have been separated from 119 strains, wliich grew well on the culture media contained lignin. The result of taxonomic identification is that XI, X2 and X3 belong to Pseudomonas, X4 and X5 belong to Xanihomonas, X6 belongs to Mycoplana. A preliminary study has been carried out on the capacity of lignin degradation of the 6strains of bacteria, and strains X2 and X4 were chose to carry out the experiments. The most favorable temperature for the 2 strains is 30癈, and the pH is 7; After being treated by ultraviolet rays, activity of all the three kinds of lignin-degrading enzyme produced by the strains can be increased greatly, the bacteria increasing rate is remarkably improved.
    
    
    
    Detailed study has been carried out on specific property of the separated efficient bacteria, the chief results are that shaking culture at 110r/min is favorable for the growth and reproduction of the bacteria; After comparing the effects among kinds of primary carbon and nitrogen sources, sucrose is determined as the suitable primary source for co metabolizing, and ammonium nitrate as the nitrogen source; the removal ratio of lignin can be greatly unproved after adding 10mg/l manganese ion, 0.lmg/1 copper ion, 0.25mg/l ferrous ion and 10mg/1 calcium ion into the culture media; Synthetically cultivating results show that the best effect occurs when the concentration of sucrose is 1 mg/1, ammonium nitrate is 1.5mg/l with corresponding inorganic ion, and the proportion of bacteria isX2:X4 equals 1:1.
    According to the determination of enzyme activity and chromatogram- mass spectrum analysis of intermediate, the mechanism of lignin-degrading by efficient bacteria is that the synthetically bioaugmentation factors improve the activity of lignin-degrading enzymes, which augment die lignin-degrading reaction in outer cell and inner cell.
    A ideal effect has been got as well when continuous simulated experiments were done to treat paper industry sewage in a bioaugmentation system added with bioaugmentation factors, which included effect lignin-degrading bacteria, primary carbon for co metabolizing, nitrogen sources and kinds of inorganic ions; under the function of synthetic bioaugmentation factors, the highest COD removal ratio is 75.3%, the average is over 74%, the COD value descend from l000mg/L in influent to about 260mg/L in effluent, and the removal ratio of scum is over 90%.
引文
[1] 武书彬.造纸工业水污染控制与治理技术,化学工业出版社,北京,2001
    [2] 施家佩.我国几种工业废水治理技术研究(第一分册造纸工业废水),化学工业出版社,北京,1998
    [3] 贺延龄.废水的厌氧处理,中国轻工业出版社,北京,1998
    [4] 曹志宏,鞠华,罗海锁等.淮河流域非木浆造纸业的发展研究.环境导报,1998,2:1~4
    [5] 张珂.造纸工业蒸煮废液的综合利用与防治技术,中国轻工业出版社,北京,1992
    [6] 中国造纸学会等.常用非木材纤维碱法制浆实用手册,中国轻工业出版社,北京,1993
    [7] 易封萍.臭氧-混凝法处理造纸废水.工业水处理,2001,21(1):34~36
    [8] Sealey, J,Ragauskas A J. Residual lignin studies of laccase-delignified kraft pulps. Enzyme and Microbial Technology. 1998, 23(7-8):422~426
    [9] 甘师俊,王如松.中小城镇可持续发展先进适用技术指南,中国科学技术出版社,北京,1996:94~106
    [10] 朱琳瑛.环境污染治理技术与实践,中国环境科学出版社,北京,1992
    [11] 杨学富.制浆造纸工业废水处理,化学工业出版社,北京,2001
    [12] 张珂、俞正千.麦草浆碱回收技术指南,中国轻工业出版社,北京,1999
    [13] 胡健,吴海珍,李友明.造纸行业的清洁生产技术与措施分析.环境保护,2001,279(1):39~40
    [14] 曾祥钦,孙礼运,刘定福等.草浆黑液除硅的数学模型.环境科学,1993,14(3):13~16
    [15] 罗才典,陈仁悦.麦草硫酸盐浆黑液中木素的酸化沉淀与黑液性质的关系.中国造纸,1989,3:53~56
    [16] 张珂.造纸蒸煮废液的综合利用与污染防治技术,中国轻工业出版社,北京,1992
    [17] 洪源.造纸黑液资源化-麦草碱法制浆黑液处理新途径.水资源保护,2000
    [18] 刘景清.造纸黑液综合利用的探索性研究.水处理技术,1986,12(6):343~350
    [19] 周书天,杨润昌.草浆造纸黑液综合利用工艺研究.环境科学学报,1993,13(2):254~253
    [20] 梁荣森,莫广亮,林伟.利用造纸黑液木质素制备沥青乳化剂的研究.环境工程,1995,13(6):35~37
    [21] 贾增发,李耀阳,隋俊诚.絮凝沉淀处理造纸黑液.环境保护,1997,235(5):13~14
    [22] 张燮,黄国林,康瑾瑜.小型纸厂黑液处理研究.环境污染与防治,1995,17(6):20~21
    [23] 王吉忠,崔棣章,郭加忠等.制浆造纸废水治理目前最佳方法的探讨.中国造纸,1998,6:1~3
    [24] 张志业,黄福玉,张洪成.麦草浆黑液处理方法的分析与评价.四川造纸,1998,3:25~27
    [25] 李静,付时雨.碱木素分子量及其分布的GPC表征.纤维素科学与技术,1998,6(1):63~66
    [26] 汪德山.电渗析法综合治理草浆造纸黑液.水处理技术,1986,12(2):108~112
    [27] 李琦,雷金选,罗松年等.关于碱法草浆黑液特性研究的选评.中国造纸,1990,6:52~57
    [28] 蒋佩霞,黄江丽,张晓杰.AAB式生物处理高浓度造纸废水.环境工程,1994,12(1):11~13
    [29] Hiroshi Kajikawa et al. Degradation of benzylether bonds of lignin by ruminal microbes. FEMS Microbiology letters of European.2000,87(7): 15~20
    [30] 陈敏,宋晓岗,朱又春等.生物-物化法处理制浆黑液的试验研究.环境工程,1996,14(5):3~7
    [31] 郑俊.苏找法造纸黑液的处理.环境工程,1990,8(6):12~13
    [32] 管运涛,蒋展鹏,祝万鹏等.两相厌氧膜—生物系统处理造纸废水,环境科学,2000,21(4):52~56
    [33] 管运涛等.两相厌氧膜生物系统处理有机废水的研究.环境科学,1998,19(6):56~59
    
    
    [34] Ghose S, Ombregt J P and Pipyn P. Methane production from industrial waste by two-phase anaerobic digestion, Wat. Res,1985,19:1082~1088
    [35] 刘峰,杨平,方治华等.预酸析—厌氧流化床处理碱法草浆黑液的研究.环境科学学报,1999,19(2):214~217
    [36] Watanabe K, et al., Effects of Exogenous Phenol-degrading Becteria on Performance and Ecosystem of Activated Sludge, J. Fermentation and Bioengineering, 1996,3
    [37] K T Steffen, M Hofrichter, A Hatakka. Mineralisation of 14C-labekked synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl. Microbiol. Biotech.2001,54(6): 819~825
    [38] Reid, I D. Fate of residual lignin during delignifecation of kraft pulp by trametes bersicolor. Appl. Environ.Microbiol. 1998, 64(6):2117~2125
    [39] 王树功,麦志勤,李明光等.我国造纸行业清洁生产的思路及案例分析.重庆环境科学,2001,23(4):67~71
    [40] 孙连超,穆环珍,杨醒华等.造纸黑液资源化清洁生产工程技术.环境科学,1995,16(4):1~2
    [41] 黄国林,张成芳,方耀.酸析木素-催化氧化法处理小型造纸厂黑液.环境保护,2001,279(1):23~24
    [42] 彭天杰.工业污染治理技术手册,四川科学技术出版社,成都,1985:131~146
    [43] 刘冰玉,胡爱红,李素梅等.黑液综合利用途径的探讨.湖北工学院学报,1997,12(2):50~54
    [44] 耿安朝,张洪林.废水生物处理发展与实践,东北大学出版社,沈阳,1997:215~241
    [45] 赵庆祥,张彤.生物降解有机物的治理对策.化工环保,1995,15:276~279
    [46] 韦朝海,焦向东,陈焕钦.有毒难降解有机污染物治理方法的研究进展.重庆环境科学,1998,20(8):22~27
    [47] 翁稣颖,戚蓓静,史家梁.环境微生物学,科学出版社,北京,1985:172~174
    [48] 佟玉横.实用废水处理技术,化学工业出版社,北京,1998:191~193
    [49] 陈勇生,庄源益,戴树桂.氯代芳香化合物的微生物降解研究.环境科学进展,1994,2(4):17~25
    [50] R. Gaelli, et al.. Treatment of a high strength dinitroluene wastewater in a two stage biolegical system, Conserv, 1985, 8(1~2): 91~94
    [51] G. A. Lewandonaki. Reactor design for hazardous waste treatment using a white rot fungus, Wat. Res., 1990,24(1): 75~79
    [52] M. Seeger, et al., Conversion of chlorobiphnyls into phenglhenadienoates and benzoates by the enzymes of the upper pathway for polychorobiphenyl degradation encoded by the bph locus of Pseudomnas sp. Strain LB400, Appl.Environ. Microbiol,1995,65(7):2654~2761
    [53] M. W. Reij, et al. Cantinuous degradation of trichlloethylene by xantobacter sp. Strain Py2 during growth on propene, Appl. Environ.Microbiol, 1995,61(8): 2936~2942
    [54] 林喆,赵庆祥,高俊枝等.紫外光诱变技术在废水生化处理中的应用研究.中国环境科学,1993,13(3):229~233
    [55] 冀滨弘,章非娟.难降解有机污染物的处理技术.重庆环境科学,1998,(10):36~40
    [56] 赵建夫,钱易,顾夏声.焦化废水中难降解有机物在厌氧酸化-好氧生物处理过程中的降解机理研究.中国环境科学,1991,(4):261~266
    [57] 胡龙兴,张仲燕.酶催化氧化含酚废水的研究.环境科学,1992,(4):40~44
    [58] R. Z. Harris, et al.,The Catalytic Site of Manganese Peroxides, J. Biol. Chem.,1991, 14~19
    [59] H. W. H. Schmrtd, et al., Onidati Degradation of 3,4-Dimethonybenzyl Alcohol and It's Methyl Ether by the Lignin Peroxides of Phanerochaete Chrysosporium, Biochem, 1989,28~32
    [60] 温东辉,祝万鹏.高浓度难降解有机废水的催化氧化技术发展.环境科学,1994,15(5):88~91
    
    
    [61] 张志军,包志成,王克欧等.二氧化钛催化下的氯代二苯并对二恶英的光解反应.环境化学,1996,17(1):47~52
    [62] S. R. Khan: Onidation of Z-Chlorophenol Using Ozone and Ultraviolet Radiation. Environ.Progress,1984
    [63] Ghosh P, A Singh. Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellusic biomas. Advance in Applied Microbiology. Academic Press. Inc.1993,39:295~333
    [64] Orth A B, D J Royse, M Tien. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl. Environ. Microbiol.1993,59(12):4017~4023
    [65] 屈维均,陈佩蓉,何福望编.制浆造纸实验,中国轻工业出版社,北京,1992,47
    [66] Winkelmann C. Microbial degradation of natural products. Weinhein. New York. Basel. Csbridge. VCH. 1992:162~191
    [67] Helmut S, Astrid S. Metal ions in biological system. Vol. 28. Degradation of environmental pollutants by microorganisms and their mental enzymes. Marcle Dekker. Ink. New York.1992:Chapter 2
    [68] Gomez A G, et al. Degradation of ping kraft lignin by coriolopsis gallica growing on a fiberglass support Wood Sci. Technol. 1991,25(2):91~97
    [69] Maltseva O V, et al. Ligninolytic enzyme of the white rot fungus Panus tigrigus. Biotechnol. Appl. Biochem. 1991, 13(3): 291~302
    [70] Beottcher U, et al. New from of liguolytically active mycelium generated by immobilization of protoplasts isolated from the white rot fungi Heterbasidion annosum.App. Microbial. Biotechnol. 1988, 29(4): 380~386
    [71] Arora D S, et al.The laccase from white rot fungi Daedalea flavide and its sbility of degradation wood.Enzyme Microb.Technol. 1985,7(8):405~408
    [72] Mubeim A, et al. An extracelluar aryi-alcihol oxides from the white rot fungus Bjerkandera adusta.Enzyme Micro.Technol. 1990,12(3):204~209
    [73] Medvedeva S A, et al. Oxidative destruction of lignin and phenol compounds by basidial fungi Phanerochaete sanguinca and Coriolus villosus.In: Seventh intermational symposium on wood and pulping chemistry proceedings.1993, 2:650~658
    [74] Seredkina S G, et al. The effect of veratry l alcohol on lignin biodedradation with fungus Coriilus villosus.In: Seventh international symposium on wood and pulping chemistry proceedings. 1993,3:427~431
    [75] Fredrick Archbald, et al. The role of peroxidases in the biological bleaching of kraft pulp by Trametes versicolor.In: Seventh internatioal symposium on wood and pulping chemistry proceedings. 1993, 2:621~625
    [76] Yu Huisheng, et al. Biodegradation of lignin in rice straw by Panus conchatus.In: Seventh intemational symposium on wood and pulping chemistry proceedings. 1993, 2:659~667
    [77] Kantelinen A. et al. Comparison of two lignin-degrading fungi:Phlrbia radiate and Phanerochaete chrysosporium. Appl. Microbio.Biotechnol. 1988, 28(2): 193~198
    [78] Aitken M D, et al. Ozidation of phenolic pollutans by a lignin degrading enzymes from the white rot fungus Phanerchaete chrysosporium.Water Res. 1989,23(4):443~450
    [79] Wariishi H, et al. In Vitro depolymeriation of lignin by manganese peroxides of Phanerochaete chrysosporiu.Biochem.Biophs Res Comum.1991, 176(1):269~275
    [80] Kern H W, et al. Comparison of the action of Phanerochaete chrysosprium and its extracellular enzymes on lignin preparations. Holzforschung. 1989,43(6): 375~384
    [81] Datta A, et al. Identification of a specific manganese peroxidase among lignolytic enzymes sereted by Phanerochaete chrysosporium.Duing wood decay.Appl.Environ.Microbial. 1991,57(5): 1453~1460
    
    
    [82] Daniel G B, et al. Use of immunology cytochemistry to detect mangane(Ⅱ)dependent and lignin peroxidases in wood degrade by the white rot fungi Phanerochaete chrysosporium. Can. J Bio. 1990, 68(4): 920~933
    [83] Schomaker H E. Chemistry of lignin biogegradation. Rec. Trav. Chim. 1990,109(4):255~272
    [84] Kirk T K, et al. Lignin-degrading activity of Phanerochaete chrysosporium. Burds:Comparisons of cellulase negative and other strains.Enzyme microbial Technol. 1986,8:75~80
    [85] Tai D S, et al. Lignin biodegradation from birch wood by Phanerochaete chrysosporium. Holzfoschung. 1990, 44(3): 185~190
    [86] Dosoretz C, et al. Effect of environmental conditions on extracellular protease activity in lignolytic cultures. Appl Environ Microbial. 1990,56(2): 295~300
    [87] Dosoretz C, et al. Effect of oxygenation conditions on submerged cultures of Phanerochaete chrysosporium. Appl. Microbiol. 1990,34(1):131~137
    [88] Kewalrmani, et al. Bioconversion of sugarcane bagasse with white rot fungi. Biotechnol lett. 1988, 10(5):369~372
    [89] Besare D K, Prasad D Y. Decolorization of effluent from the bagasse-based pulp mills by white rot fungus Schizophy commume. Appl Microbial Biotechnol.1988, 28(3): 301~304
    [90] Pellnen J. Et al. Degradability of different lignins by bacteria. Holzforschung.1987, 41(5): 271~276
    [91] Jokela.,et al. Intia steps in the pathway of bacterial degradation of tow turmeric lignin mode compounds.Appl. Evion. Micrbiol. 1987,53(11): 2642~2649
    [92] Cizen H J. Et al. Continuous cultivation of rumen microorganism. A system with pessibile application to the anaeroic degradaion of lignocellulosic waste materises. Appl. Microbiol. Biotechnol. 1986,25(2): 155~162
    [93] Kern H W. Bacterial degradation of dehydropolymers of coniferylalcohol. Arch Microbial. 1984,138:18~25
    [94] Kerr T J, et al. Isolation of a bacterium capabale of degrading peana\ut hull lignin. Appl. Environ. Microbiol. 1983, 46:1202~1206
    [95] Autai A P, Ceawford D L. Degradation of softwood hardwood and grass lignocelluloses by two Streptomyces strins.Appl. Environ.Microbiol. 1981,42:378~380
    [96] Crawford D L, et al. Chemistry of softwood lignin degradation by Streptomyces viridosporus.Arch Micrbial. 1982, 131:140~145
    [97] McCarthy A J, Broda P. Screening for lignin degrading actinomycetes and characterization of their activity against[~(14)C]-Lignin-labelled wheat lignocellulose. J Gen Microbial. 1984, 130:2905~2913
    [98] McCarthy A J, Broda P. Screening for lignin degrading actinomycetes and characterization of their activity against [~(14)C]-Lignin-labelled wheat lignocellulose by white rot fungi. J Gen Microbial. 1984, 130:1023~1030
    [99] McCarthy A J, et al. Lignin solubilisation by Thermomonspora mesophila. Appl. Microbial. Biotechnol. 1986, 24:347~352
    [100] Kirk T K. Preparation ad microbial deocmposition of synthetic[~(14)C] lignin. Proc. Nat. Acad. Sci. 1975, 72:2515~2519
    [101] Higuchi T. Biosynthesis and Biodegradation of wood components.Academic Press. Orlando. FL. 1985:557~578
    [102] Eniksson K E L, et al. Microbiobial and Enzymatic Degradation of wood components Springer. New York. 1990:249~318
    [103] Lundell T, A Leonowicz,J Rogalski,A Hatakka. Formation and action of lignin modifying enzymes in cultures of Phlebia radiata supplemented with veratric acid. Appl. Environ. Microbiol. 1990,56(9):2623~2629
    [104] Leontievsky A A, N M Myasoedova, L A Golovleva. Production of ligninolytic enzymes of the white rot fungus Ponus tigrinus. J.Biotechnol. 1994, 32: 299~307
    [105] Mester T, Edde Jing. A Field. Manganese Regulation of veratryl alcohol in white rot fungi and its ingirect effect on lignin peroxidase.Appl.Environ,Microbiol. 1995,61(5):1881~1887
    [106] Golovleva LA, A A Leontievsky, O V Maltseva,N M Myasodova. Lignin-nolytic enzymes of the fungus Panus tigrinus 8/18:Biosynthesis,pufication and properties. J. Biotechnology. 1993, 30:71~77
    
    
    [107] Tien M. Lignin-degading enzyme from the hymenomycete Phanerochaete chrysosporium Burds.Science. 1983, 221:661~663
    [108] Glenn J K. An extracellular H_2O_2-repuiring enzyme preparation involoed in lignin biodegradation by the white rot badidiomycete Phanerochaete chrysosporium.Biochem. Biophys.Res. Commun. 1983,11:1077~1083
    [109] Kersten P J. Glyoxal oxidase of Phanerochaete chrysosporium:its characterization and activation by lignin peroxidase.Proc,Nat.Acad. Sci.1990, 87:2936~2940
    [110] Kersten P J. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzeres. J Biol. Chem. 1985,260:2609~2612
    [111] Hammel K E. Mexhanism of oxidative C_α-C_β cleacage of a lignin model dimmer by Phanerochaete chrysosporium ligninase:stoichiometry and involvement of free radicals.J. Biol. Chem. 1985, 260:8348~8353
    [112] Huynh V B. Novel extracellular enzymes of Phanerochaete chrysosprium FEMS Microbiol.Lett. 1985,28:119~123
    [113] Leisola M S. Homology among multiple exteacellular peroxidases from Phanerochaete chrysosporium. J. Biol. Chem. 1987, 162:419~427
    [114] Brown A. Multiple ligninase-related genes from Phanerochaete chrysosporium. Gene. 1988, 73:77~85
    [115] Walther I. Molecular analysis of a Phanerochaete chrysosporium lignin peroxidase gene. Gene. 1988, 70:127~137
    [116] Zhang Y Z. Indentification of cDNA clones for ligninase from Phanerochaete chrysosporium using synthetic oligonucleotidepobes.Biochem.Biophys. Res Commum. 1986,137:649~656
    [117] Godfrey B J. Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium.Gene. 1990,93:109~124
    [118] 李越中等.黄孢原毛平革菌合成木素过氧化物酶的营养调控,微生物学报,1994,24(1):29~36
    [119] Galliano H, G Gas, J L Seris, A M Boudet. Lignin degradation by Rigidoporus lignosus involves synergistic of two oxidizing enzymes:Mn peroxidase and laccase.Enzyme Microbe. Technol. 1991,3(6): 478~482
    [120] Bourbonnais R, M G Paice, I D Reid, P Lanthier, M Yaguchi. Lignin oxidation by laccase isozymes from Trametes versicolir and role of the mediator 2,2'-Aznobis (3-Ethylbenthiazoline-6-Sulfonate) in kraft lignin depolymerization.Appl. Environ. Microbiol. 1995, 61(5): 1876~1880
    [121] Coll P M, C Tabemreo,R Santamaria, P Perez.Characterization and structural analysis of the laccase I gene from the newly isolated ligninolytic basidiomycete PMI(CECT2971). Appl. Environ. Microbiol. 1993, 59(12): 4129~4135
    [122] Gaskell J, D Cullen. Recent advances in the organization and regulation of lignin peroxidase gene of Phanerochaete chrysosorium. J.Biotechnol. 1993,30: 109~114
    [123] 苏月来,张建中,谢雨生等.有毒难降解有机辐射处理的生物强化技术.环境污染与防治,1998,20(2):36~39
    [124] Horowitr J B, Vilker V. L, Biodegradation Process Development Using a Bacterial Cytochrome in Yivo, Biotechnol. Bioeng.,1994(2)
    [125] Selvaratnam C, et al, Appl. Microbiol. Biotechnol.,1997,2
    [126] Chamber J V: Improving Waste Removal Performance Reliability of a Wastewater Treatment System through Bioaugmention,Waste Conf. Purdue Univ. Proc. 36th Ind West Lafayette: Waste Conf. Purdue University,1981
    [127] 吴红伟.氧化塘深度处理焦化废水的初步研究.环境污染与防治,1998,20(2):8~12
    [128] W. S. Steffensen, et al, Role of Competition for Inorganic Nutrients in the Biodegradation of Mixtures of Substrates,Appl. Environ.Microbiol, 1995,8
    [129] 张永吉.有机化合物的生物降解性能和生物毒性.上海环境科学,1993,11(2):21~25
    [130] 沈东生,徐向阳,冯孝善.微生物共代谢在氯代有机物生物降解中的作用.环境科学,1994,15(4):84~87
    
    
    [131] Hung Y. T., et al, Bioconversion of Accumulated Sludge with Bacterial Augmentation Progress in Aerated Lagoons for Municipal Wastewater Treatment,Intern. J. Environmental Studies, 1986,28
    [132] Edgehill R V,et al, Activated Sludge Treatment of Synthetic Wastewater Containing Pentachlorophenol,Biotechnol.Bioeng,1983,25
    [133] Watanabe K, et al., Effects of Exogenous Phenol-degrading Bacteria on Performance and Ecosystem of Activated Sludge,J. Fermentation and Bioengineering,1996,3
    [134] 许保玖.烧杯搅拌试验的发展.中国给水排水,1985
    [135] 国家环保局《水和废水检测分析方法》编委会.水和废水检测分析方法(第三版),中国环境科学出版社,北京,1997:354~356
    [136] 日本制浆造纸技术协会编.制浆造纸工业的污染与防治,蒋立人等译.中国轻工业出版社,北京.1985
    [137] 方振东.碱法草浆黑液合成酚醛型与环氧型树脂工艺的研究.清华大学硕士论文.1991
    [138] 中国科学院南京土壤研究所微生物室.土壤微生物研究法.科学出版社,北京,1985
    [139] 张甲耀,龚利萍,罗宇煊等.嗜碱细菌复合碳源条件下对麦草木质素的降解.环境科学,2002,23(1):70~72
    [140] 管筱武,张甲耀,罗宇煊等.嗜碱木素降解菌降解能力的初步研究.中国造纸,1999,6:19~22
    [141] 王地,刘期松.长白山地区真菌降解木质素的研究,微生物学报,1990,30(4):296~304
    [142] 蒋大挺,黄文海,张春萍.造纸黑液中木质素的提取和用作橡胶增强剂的研究.环境科学,1997,18(4):81~84
    [143] 布坎南,吉本斯等编.中国科学院微生物研究所《伯杰氏细菌鉴定手册》翻译组,伯杰氏细菌鉴定手册(第八版),科学技术出版社,北京,1984
    [144] 沈萍,范秀容,李广武.微生物学实验(第三版),高等教育出版社,北京,1999:92~95
    [145] 武汉大学,复旦大学生物系微生物教研室.微生物学(第二版),高等教育出版社,北京,1980
    [146] 沈同,王镜岩.生物化学(第二版),高等教育出版社,北京,1994
    [147] 罗建中,刘鸿,刘玉红.紫外诱变优势菌处理含氯废水.上海环境科学,2000,19(11):529~531
    [148] 管筱武,张甲耀,罗宇煊.木质素降解酶及其调控机理研究的进展,上海环境科学,1998,17(11):46~19
    [149] 罗宇炕,张甲耀,许威亚等.正交实验选择嗜碱细菌降解木质素的金属离子最优综合培养条件.环境科学与技术,2001,96(4):5~8
    [150] 罗宇炕,张甲耀,管筱武等.嗜碱细菌降解木质素的复合碳源共代谢研究Ⅰ—复合碳源组合方式及氮源的选译.城市环境与城市生态,2000,13(2):8~10
    [151] R L Crawford,L E Robinson, R D Foster. Polyguaiacol: a useful model polymer for lignin biodegradation research. Appl. Environ.Microbiol. 1981,41(5): 1112~1116
    [152] M A Bernard Vailhe, J M Bwesle,S Dore. Transformation of ~(14)C-lignin-labeled cell walls of wheat by Syntrophococcus sucromutans,Eubacterium axidpreducens,and Neocallimastix frontalis.Appl. Environ. Microbiol. 1995,61(1):379~381
    [153] Shingo Kswai, et al. New polymeric model substrates for the study of microbial ligninolysis. Appl. Environ. Microbiol. 1995,61(9):3407~3414
    [154] Giuliano Degrassi,et al. Purification and charaterization of ferulate and p-coumarate decarboxylase from Bacillus pumilus.Appl. Environ.Microbiol. 1995,61(1): 326~332
    [155] 邹文中,谢来苏,隆言泉.麦草烧碱—AQ法黑液碱木素的特性和酸化沉淀过程.中国造纸,1993,8:40~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700