分布式能源系统中能源与环境耦合特性及优化集成模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着电力需求的增加和世界能源危机的加剧,调整能源结构,提高能源利用率,改善能源安全,解决环境污染已经成为我国能源战略的重点。分布式能源系统作为一种新型能源供应模式,以其节能、经济、环保和供能可靠等优势,在我国有着广泛的发展前景。分布式能源系统是一种建立在能量梯级利用理念基础上的多联供总能系统,通过在需求侧根据用户对能源的不同需求,实现“温度对口、梯级利用”的供能模式,将输送环节的损耗降至最低,从而实现能源利用效率和环境效益的最大化。
     如何借助能源系统的集成和耦合,实现不同能量利用系统之间物质和能量的优化配置,以有效提高能源资源的综合利用效率,同时减少化石燃料利用对环境的负面影响,是分布式能源系统研究的前沿课题和发展趋势。此外,对于分布式能源系统的用户,特别是对建筑能源用户,其终端负荷需求随季节、昼夜和使用时间呈现多周期的变化规律,因而对系统的设计提出了严格的要求。一个优化的分布式系统应该充分考虑这些因素,对能源系统进行优化选择,使得该系统能够在满足任意典型工况的能量需求前提下均能够实现经济、高效的运行,以实现全生命周期内的经济、能源和环境目标函数。常规分布式能源系统,在发达国家已经取得较成熟的研究成果并得到推广应用,但是在我国的研究还处于初级阶段。
     本论文的研究以基于能源与环境耦合的分布式能源耦合系统为主要研究对象,探索中国特色的分布式能源发展道路,克服常规分布式能源系统的缺陷,在能源技术和利用方式上综合考虑能源、经济和环境因素,实现能源系统的耦合平衡及能源与环境的最佳匹配融合,更好地实现能源、经济和环境效益。
     首先进行了分布式能源耦合系统的概念性研究。在对分布式能源系统概念、组成及基本原理阐述的基础上,对分布式能源系统的技术方案进行总结,分析了常规分布式能源系统发展研究存在的问题,创新性地提出分布式能源发展趋势—分布式能源耦合系统的概念,指出基于能源与环境的耦合特性是分布式能源的本质特征,明确提出耦合特性研究是中国特色分布式能源的发展途径。
     系统地进行分布式能源系统中能源与环境耦合特性研究。这是本论文的重点,分别就常规分布式能源系统与环境、可再生能源、常规能源系统、信息系统、以及煤化工多联产集成耦合系统的耦合特性进行系统深入的研究,从各层面阐述耦合系统的内容、机理和特性。其中,与环境的耦合包括环境影响评价、与环境技术的耦合、与区域能源规划的耦合;与可再生能源的耦合,包括太阳能、风能、地热能、生物质能以及其他低热值燃料的耦合;与常规能源系统的耦合包括与蓄能系统、烟气余热回收系统的耦合,以及与电力、热力和燃气系统的耦合;与信息系统的耦合包括耦合型DCS系统和耦合型智能能源管理平台的研究。
     深入地开展分布式能源系统中能源与环境优化集成模型研究。提出反映耦合特性的优化集成方法、与优化运行相结合的优化集成模型,以及优化集成的数学模拟方法。分布式能源耦合系统的优化集成模型,主要采用数学模拟的方法,实现分布式能源系统的系统集成、负荷分析、经济型计算及数值模拟,达到分布式能源的最佳经济性、环境性、安全性。这是本论文的又一重点。
     最后进行分布式能源耦合系统实例研究。结合作者本人主导规划、设计、建设和运营的长沙黄花国际机场分布式能源耦合系统项目实际,进行分布式能源耦合系统实例分析,将本论文所研究的分布式能源系统耦合特性及优化集成模型理论与项目实践相结合,建立新分布式能源耦合系统示范项目,推动探索中国特色的分布式能源发展道路和分布式能源在中国的发展。
     分布式能源是世界能源工业发展的重要趋势,是人类可持续发展的重要组成部分,它作为一种新型科学用能的最佳方式正得到世界各国广泛重视和应用而蓬勃兴起。我国“十二五”规划纲要明确提出“大力发展新能源,促进分布式能源的推广应用”,相信随着我国国民经济发展和可持续战略的深入,我国分布式能源尤其是新型分布式能源耦合系统将得到长足的发展。
With the increasing of electric power demand and world energy consumption, regulating energy construction, raising energy efficiency, improving energy security and solving environmental pollution have become the emphasis of the energy strategy of our country. A new energy supply mode, distributed energy system (DES), shows a promising future in China because of its unique characteristics, which include energy efficiency, economy, environmental protection and reliable energy supply. Distributed energy system is a kind of multi-generation system based on the establishment of energy step utilization. According to the different demands of customers, energy supply is carried out with the match of temperature, energy loss during the transportation decreasing to the lowest and energy efficiency increasing to the highest.
     One of the advanced subjects in DES field is to realize the optimizing configuration of material and energy among different energy utilization systems in virtue of system integration and combination, to improve the comprehensive utilization efficiency of energy and resource, and to abate the negative effect of fossil fuel utilization on the environment. In additional, for the users of distributed energy systems especially for the building users, with the variation of season, day and night alternation and the time of day, its terminal load requirements vary greatly and periodically, which makes the design of distributed energy systems a difficult task. An optimized distributed energy system design should fully consider these factors and favor the economical and efficient system operation under any working conditions, and the objective function's accomplishment of economy, energy and environment.
     The research and development of integrating distributed energy system with environment, renewable resources, compound energy-saving technology and coal chemical industry were firstly overviewed in this paper. The evaluation of environmental benefits was used to identify the differences between distributed energy system and traditional energy system. Integrated effects between distributed energy system and denitration technology were mainly investigated. By the example of Guangzhou Asian-Games City and Guangzhou Higher Education Mega Center, the applications of integrating distributed energy system with renewable resources and compound energy-saving technology were demonstrated in detail.
     A set of mathematical models established from the point of view of system engineering were used to analyse distributed energy-environment integrated system qualitatively and quantitatively. Based on the engineering technology model, the programming model was set up to characterize and imitate the distributed energy-environment integrated system and to evaluate environmental impact, combining with technologies through energy consumption and energy production. Multi-objective programming models for distributed energy system were established to support optimal operation and configuration. Furthermore, the related analysis conclusions and suggestions were put forward. Based on an overall consideration of various factors, the programming model focused on the interaction and the integrated characteristics between distributed energy and environment.
     Considering actual districted energy systems with their input energy prices and external climate conditions etc., the optimal design of the integrated gasification multi-generation system under energy, economic and environmental multi-objects functions was investigated, and optimized schemes under different combination, and the influences of time of use prices and cool storage equipments on energy, economic and environmental performances in the life cycle were analyzed.
引文
[1]B P Statistical Review of World Energy.IEA,2009:1-45.
    [2]电力监管年度报告,国家电力监管委员会,2009:1~89.
    [3]黄盛初,孙欣,张文波,等.中国煤炭开发与利用的环境影响研究,煤炭信息研究院,2003.
    [4]于建国.从电荒、天然气合理利用论分布式能源[J].化工技术经济,2005,23(11):31~33.
    [5]华贲.我国发展分布式能源的迫切性、意义及前景[J].沈阳工程学院学报(自然科学版),2005,1(2-3):1-6.
    [6]韩晓平.未来20年中国能源技术发展方向之——分布式能源及相关技术[J].沈阳工程学院学报(自然科学版),2005,1(2-3):13~15.
    [7]侯健敏,周德群.分布式能源研究综述[J].沈阳工程学院学报(自然科学版),2008,(04):289~293.
    [8]李旭新.发展分布式能源,倡导节能建筑[J].城市住宅,2009,(1):51.
    [9]徐正康,李建勋,王昌遒.做好规划,迎接天然气.城市煤气学会常务理事会,2001.
    [10]王景良.分布式能源典型形式—燃气热电冷三联产技术[J].资源节约与环保,2004,(4):44.
    [11]韩晓平.分布式能源系统的称谓与定义[J].中国电力教育,2010,(2):58~61.
    [12]吴大为,王如竹.分布式能源定义及其与冷热电联产关系的探讨[J].制冷与空调,2005,5(5):4-7.
    [13]U.S. Department of Energy, Energy Information Administration. The Market and Technical Potential for Combined Heat and Power in the Commercial/Institutional Sector. Washington, January 2000.
    [14]吴振铭.我国天然气能源站的发展与建议[J].热电技术,2011,(1):4-7.
    [15]赖元楷.浅析天然气高效利用[J].城市燃气,2005,(01):18~23.
    [16]康慧.燃气分布式能源系统综述(之一)[J].沈阳工程学院学报(自然科学版),2009,5(2):103-105.
    [17]康慧,王正.分布式能源系统与天然气的合理利用[J].暖通空调,我国天然气分布式能源发展相关问题研究[M],2009:59-65.
    [18]赵保安.分布式能源系统的发展[J].物流与采购研究,2009,(10):41~43.
    [19]L. Fu, X. L. Zhao. Laboratory Research on Combined Cooling, Heating and Power[J]. Energy Conversion and Management,2009,50:977-982.
    [20]姜述杰,薛子畅.分布式能源站发展分析[J].黑龙江电力,2009,31(5):377~381.
    [21]华贲,赖元楷.优化利用天然气资源,大力建设分布式能源站[J].能源政策研究,2003,6(5):40~46.
    [22]尹余生,王小伍.从全方位评价看发展分布式能源站的必要性[J].工业工程,2008,11(1):15-18.
    [23]华贲,左政,杨艳利.分布式能源系统对中国天然气下游市场开拓的重要性[J].沈阳工程学院学报(自然科学版),2006,2(2):97~103.
    [24]刘翠玲,张小东.分布式能源—中国能源可持续发展的有效途径[J].科技情报开发与经济,2009,19(21):125~127.
    [25]李晓明.分布式能源—解决缺电问题的良方[J].中国投资,2005:51~54.
    [26]王丽,魏敦崧.天然气分布式能源系统的应用[J].煤气与热力,2006,26(1):46~48.
    [27]叶卫忠.节能与分布式能源的发展[J].沈阳工程学院学报(自然科学版).2008,4(2):102~106.
    [28]康慧.燃气分布式能源系统综述(之二)[J].沈阳工程学院学报(自然科学版),2009,5(3):199~204.
    [29]华贲.我国发展分布式能源的迫切性、意义及前景[J].沈阳工程学院学报(自然科学版),2005,1(2-3):1-6.
    [30]赵黛青,王伟.清洁发展机制与我国天然气分布式能源站的发展[J].天然气工业,2005,25(11):119~122.
    [31]Tuula Savola, Ilkka Keppo. Off-design simulation and mathematical modeling of small-scale CHP plants at part loads. Applied Thermal Engineering[J].2005(25):1219-1232.
    [32]Alfred Ongiro, V Ismet Ugursal, A. M. Al Taweel. Thermodynamic simulation and evaluation of a steam CHP plant using Aspen plus, Applied Thermal Engineering[J].1996,(16):263-271.
    [33]Ligang Zheng, Edward Furimsky. ASPEN simulation of cogeneration plants. Energy Conversion and Management[J].2003,(44):1845-1851.
    [34]Erbes, M. R., Gay, R. R. GATE/CYCLE predictions of the off-design performance of combined cycle power plants. Simulation of Thermal Energy Systems, ASME Winter Annual Meeting,1989,124:43-51.
    [35]汪庆桓,冯江华.制定综合能源规划的物理数学模型[J].能源动力,2009,1~10.
    [36]别朝红,李更丰,王锡凡.含微网的新型配电系统可靠性评估综述[J].电力自动化设备,2011,(1):5~10.
    [37]余贻鑫.新形势下的智能配电网[J].电网与清洁能源,2009,(07):9-11.
    [38]黄伟,孙昶辉,吴子平,等.含分布式发电系统的微网技术研究综述[J].电网技术,2009,(09):18~22.
    [39]R. H. Lasseter, A. Akhil, C. Mamay, J. Stephens. Integration of Distributed Energy Resources: The CERTS MicroGrid Concept, Berkeley Lab, Berkeley, CA, USA Rep. LBNL-50829,2002.
    [40]W. El-Khattam, K. Bhattacharya, Y. Hegazy, M. M. A. Salama. Optimal Investment Planning for Distributed Generation in a Competitive Electricity Market[J]. IEEE Trans. on Power Sys.2004,19(3):1674-1684.
    [41]李维安.世界能源展望[J].中外科技情报,2007,(8):20~26.
    [42]华贲.低碳发展时代的世界和中国能源格局[J].中外能源,2010,(2):7-15.
    [43]K. Ito, R. Yokoyama, S. Akagi. Influence of fuel cost on the operation of a gas turbine waste heat boiler cogeneration plant[J].Journal of Engineering for Gas Turbine and Power.1990, 112(1):122-128.
    [44]K. Ito, R. Yokoyama, T. Shiba. Optimal operation of a diesel engine cogeneration plant including a heat storage tank[J]. Journal of Engineering for Gas Turbine and Power.1992, 114(10):687-694.
    [45]M. R. Von Spakovsky, V. Curti, M. Batato. The performance optimization gas turbine cogeneration heat pump facility with thermal storage[J]. Journal of Engineering for Gas Turbine and Power,1995,117(l):2-9.
    [46]R. Yokoyama, K. Ito.Optimal operational planning of cogeneration systems with thermal storage by decomposition method[J]. Journal of Energy Resources Technology,1995,117(12): 337-342.
    [47]R. Yokoyama, K. Ito. Operational strategy of a cogeneration system under a complex utility rate structure[J]. Journal of Energy Resources Technology,1996,118(12):256-262.
    [48]金红光,林汝谋.能的综合梯级利用与燃气轮机总能系统[M].北京:科学出版社,2008.10~700.
    [49]华贲,龚婕.分布式冷热电联供能源系统经济性分析[J].天然气工业,2007,27(7):118~120.
    [50]徐二树,宋知平.分散能源的研究与应用[J].动力工程,2004,24(2):291~297.
    [51]徐建中.科学用能与分布式能源系统[J].中国能源,2005,27(8):10-12.
    [52]付融冰,张慧明.中国能源的现状[J].能源环境保护,2005,19(1):8-12.
    [53]张慧明,祝波.燃煤工业锅炉排放二氧化硫对大气的污染及工业固硫型煤的应用[J].环境污染治理技术与设备,1999,7(1):54~61.
    [54]陈和平.提高能效、进能源可持续利用[A].见:中国电机工程学会热电专业委员会.发展热电联产向科学、管理、环保要效益论文集[C].2001年年会.重庆:1-4.
    [55]李志东,张坤民,周凤起,等.双源供暖(空调)系统研究及软件开发[A].中国能源环境研究文集[C].北京:中国环境科学出版社,2000:6~61.
    [56]Jos Schulte.Feasibility Study into Micro Combined Heat and Power [A]. Energy Conversion Engineering Conference,1996.IECEC 96. Proceedings of the 31st Intersociety.IEEE, 1314-1319.
    [57]Robert hill. Environmental Implication[J]. Applied Energy,1996, (53):89-117.
    [58]华贲,岳永魁.考虑环境影响的分布式能源系统优化设计与运行策略研究[J].沈阳工程学院学报(自然科学版),2005,1(1):6-11.
    [59]邹斯诣.选择性催化还原(SCR)脱硝技术应用问题及对策[J].节能技术,2009,27(6):510~511.
    [60]张军.地表水源热泵的发展现状以及面临问题[J].制冷空调与电力机械,2007,28(6):73-77.
    [61]狄彦强,王清勤.水源热泵的应用与发展[J].制冷与空调,2006,6(5):1-4.
    [62]郭烈锦,赵亮.基于可再生能源的分布式多目标供能系统(一)[J].西安交通大学学报,2002,36(5):441~446.
    [63]国家电网公司电力需求侧管理指导中心.电力需求侧管理实用技术[M].北京:中国电力出版社,2005.35~500.
    [64]叶永泉,韩云海.冰蓄冷空调技术在区域供冷系统中的应用[J].制冷空调与电力机械,2004,25(6):1-5.
    [65]刘武标,林世平.新型燃气锅炉尾部烟气余热回收节能器的应用研究[J].能源工程,2007,(3):70~72.
    [66]张洪伟,康炜.洁净煤气化与分布式能源系统[J].煤气与热力,2006,26(7):54~56.
    [67]金红光,林汝谋,2008.能的综合梯级利用与燃气轮机总能系统[M].北京:科学出版社:128
    [68]Na Zhang, Ruixian Cai. Analytical solutions and partload performances of single shaft gas turbine and its cogeneration [A]. Proceedings of ECOS_99 [C], Tokyo:1999,186-191.
    [69]江亿,付林.城市天然气采暖的新途径[J].中国能源,2001,(6):8-12.
    [70]冯志兵,金红光.燃气轮机冷热电联产系统与蓄能变工况特性[J].中国电机工程学报,2006,26(4):25~30.
    [7]Sepehr Sanaye, Shahabeddin Shokrollahi. Selection and Sizing of Prime Movers in Combined Heat and Power Systems[A]. Proceedings of ASME Turbo Expo 2004 [C].Vienna:Austria,2004.
    [72]刘蜀卿.内燃机和燃气轮机在发电领域的比较[J].内燃机,2002,(10):24-25.
    [73]刘月琴,代炎,基于燃气内燃机的热电冷CCHP系统[J].制冷空调与电力机械,2008,29(121):1-5.
    [74]Z. G Sun. Energetic Efficiency of a Gas-Engine-Driven Cooling and Heating System [J]. Applied Thermal Engineering,2004,24(5):941-947.
    [75]Aikaterini Fragaki, Anders N. Andersen, Exploration of Economical Sizing of Gas Engine and Thermal Store for Combined Heat and Power Plants in the UK[J]. Energy 2008,33(11): 1659-1670.
    [76]汝兴杰,陆耀洲.适用于“三联供”的热水两阶一体型吸收式冷水机组的设计[J].能源研究与信息,1999,15(4):24~29.
    [77]刘凤国,项友谦.直燃溴化锂吸收式制冷机热经济学分析[J].煤气与热力,2008,28(5):6-10.
    [78]C.A. Frangopoulos, M.R. Von Spakovsky. The environomic analysis and optimization of energy systems[j]. Proceedings of the International Conference on Energy Systems and Ecology:ENSEC 93, July, vol.1, ASME,1993.
    [79]杨兴成,王占义.锅炉负荷变化对运行效率的影响及控制[J].应用能源技术,2001,(2):21~22.
    [80]J. L. Miguez, S. Murillo, Feasibility of a new domestic CHP trigeneration with heat pump[J]. Applied Thermal Engineering,2004,24(10):1409-1419.
    [81]罗迎宾,梁路军.别墅型的地源热泵三联供系统研究[J].可再生能源建筑应用,2008,(18):20~25
    [82]Lei T K. Development of a Computational Model for a Ground Coupled Heat Exchanger[J].ASHRAE Transactions,1993,99(1):149-159.
    [83]Chiasson A. C., Rees S. J., Apreliminary Assessment of the Effects of Ground Water How on Closed Loop Ground Source Heat Pump Systems[J]. ASHRAE Transactions,2000, 106(1):380-393.
    [84]Wang H J, Zhao J, Chen Z H, Numerical Study on the Ground Temperature Field around Large Area Compact Unshaped Pile Buried Heat Exchangers[A]. Proceedings of 3rd Asian Conference on Refrigeration and Airconditioning [C]. Gyeongju, Korea,2006, (1):109-112.
    [85]赵军,王华军.U型管埋地换热器长期性能的实验研究与灰色预测[J].太阳能学报,2006,28(6):822~827.
    [86]杨卫波,施明桓.土壤源热泵夏季运行特性的实验研究[J].太阳能学报,2007,28(9):1012~1016.
    [87]IEA, Energy Technology Perspectives-Scenarios and Strategies to 2050[M].
    [88]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2005:233~244.
    [89]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251.
    [90]桂晓宏,袁修干,宋香娥,等.太阳能热动力系统单元热管吸热器建模与仿真[J].中国电机工程学报,2006,26(13):103~107.
    [9]Xu Peng, Gao Wei jun, Tsutsumi Hiroki, etc, Model Analysis on Using Solar Water Heating System in Hospital [J]. Journal of South China University of Technology,2007,35: 191-194.
    [92]Gilber M. Masters, Renewable and Efficient Electric Power Systems [M]. New Jersey: John Wiley & Sons,2004:460-478.
    [93]张士杰.清华大学热电冷联供系统设备及运行优化研究[D].北京:清华大学,2002.
    [94]邝俊侠,龙涛,黄清凤,等.燃料燃烧排放系数的确定和估算方法[J].环境监测管理与技术,2001,13(2):24~26.
    [95]清洁能源行动办公室.北京市环境数据[EB/OL]. Http://www.cct.org.cn/.
    [96]任有中.能源工程管理[M].北京:中国电力出版社,2007:143~170.
    [97]尤森验.分散式电源之成本效益评估[D].台湾:国立中山大学硕士学位论文,2002.
    [98]GU Ju fen,CAO Ying ming. Economic Analysis and Comparison of Three Representative Modes of CCHP System[J]. Energy Technology,2009,30(6):361-363.
    [99]左智慧.燃气内燃机发电机组在冷热电“三联供”系统中的应用[J].燃气技术,26(2):89~92.
    [100]郑州纺织学院纺织工程系制冷机课题小组.国产溴化锂吸收式制冷机组的现状分析及其改进探讨[J].中国工学院学报,1993,(01):34-38
    [101]LIU Feng guo, XIANG You qian, Xu Yong sheng et al. Thermoeconomic Analysis of Direct-fired Lithium-bromide Absorption-type Refrigerating Machine[J]. Gsa & Heat, 28(5):A06-A10.
    [102]王耀南,余群明.智能控制技术[J].大众用电,2002,(01):58-62.
    [103]张鹏飞,陈志良,吕连周,等.供暖系统智能控制技术[J].工业锅炉,2008,(03):78~82.
    [104]罗必熊.分布式能源站的系统集成与优化运行[J].电力建设,2010,31(5):1-6.
    [105]陆秀令.提高PLC控制系统可靠性的措施[J].机电工程技术,2004,(01):65-69.
    [106]王永华.基于PLC集中三联供控制系统的研究与实现[J].工业控制计算机,2006,19(9):50~53.
    [107]Paul R.A. Description of the LDC energy alternatives planning system[M]. Sweden:The Royal Sweden Academy of Sciences Stockholm,1986. [108] European Commission. External Costs Reserch on Socio-environmental Damages Due to Electricity and Transport[EB/OL]///温鸿钧.由核电与煤电外部成本比较看核电价格之优势.中国核工业,2005,4.
    [109]Saturn 20 PG-Generator Set[EB/OL], http://mysolar.cat.com/.
    [110]DATABASE[EB/OL], http://www.cummins.com/.
    [111]远大直燃机用户手册[EB/OL], http://www.broad.com/.
    [112]金红光,林汝谋.能的综合梯级利用与燃气轮机总能系统[M].北京:北京科学出版社,2000:191-192.
    [113]Richard Ernest Bellman. Dynamic Programming[M]. Courier Dover Publications,2003.
    [114]王冰妍,陈长虹.低碳发展下的大气污染物和C02排放情景分析——上海案例研究[J].能源研究与信息,2004,20(3):137~145.
    [115]Drouet Laurent, Alain Haurie, et al. A|Coupled Bottom-Up & Top-Down Model for GHG abatement Scenarios in the Swiss Housing Sector.2004.
    [116]黄花国际机场多联供能源供应系统可行性研究报告[R].2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700