车辆油气悬挂系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气弹簧是一种以惰性气体(一般为氮气)作为弹性介质,以油液作为阻尼介质的气体弹簧。采用油气弹簧作为弹性元件的车辆油气悬挂系统,由于具有良好的非线性刚度和阻尼特性,能够最大限度地满足工程车辆平顺性要求,近年来成为车辆悬挂装置研究的重点内容。
     本文分析了油气弹簧的工作原理,并对工程中的油气悬挂系统进行了力学建模,建立了油气弹簧系统非线性数学模型,给出了油气弹簧活塞杆输出力具体表达式,对油气弹簧系统活塞杆输出力与活塞位移及速度之间关系进行了数值仿真。
     依据本文油气弹簧非线性数学模型,研究了油气弹簧系统阻尼特性及刚度特性,并详细研究了各种因素对油气弹簧阻尼特性和刚度特性的影响,给出了油气弹簧系统刚度和阻尼线性化处理公式,为车辆油气悬架系统动力学建模提供了合理的刚度及阻尼参数。本文建立了车辆油气悬挂系统两自由度动力学模型,并通过Simulink仿真模拟了不同等级路面位移激励,对车辆油气悬挂系统在此激励作用下悬架系统响应进行了数值仿真,分析了油气悬架系统的频率特性。
     针对本文所建立的油气悬架系统动力学模型研究了主动油气悬架系统的PID控制结构,并对主动油气悬架系统及被动油气悬架系统在不同路面激励下悬架加速度、动挠度及负重轮胎载荷进行了数值仿真。本文应用ADAMS动力学仿真软件建立了车辆油气悬架系统的机械模型,同时建立了车辆油气悬架系统ADAMS与MATLAB联合仿真模型,为油气悬架系统的动力学仿真提供了一种新的途经。
     研究结果表明车辆采用主动油气悬架其车体振动加速度均方根值较被动油气悬架系统减小三分之一,悬架动行程均方根值减小百分之六、车辆动载荷均方根值减小三分之一,这可显著提高车辆乘坐舒适性及车辆行驶平顺性。
     本文系统建立了油气弹簧及车辆油气悬架系统的动力学模型,推导了油气弹簧及车辆油气悬架系统的动力学方程,该模型及方程可用于解决工程中油气悬架系统的动力学问题,本文的研究方法具有一定的理论意义及工程应用价值,本文的研究结果对于工程中油气弹簧的理论分析及设计具有一定的参考价值。
Hydro-pneumatic spring is a kind of gas spring which uses inert gas (usually nitrogen) as spring medium and hydraulic oil as damping medium. Due to the nonlinear stiffness characteristics and nonlinear damping characteristics, vehicle hydro-pneumatic suspension system which takes hydro-pneumatic spring as the elastic element can meet the engineering requirements of vehicle ride comfort to the best. It becomes the focus of vehicle suspension study in recent years.
     Based on the analysis of hydro-pneumatic spring principles, a nonlinear mathematical model of hydro-pneumatic spring system is established with the system mechanical modeling in engineering. Specific equations of output force of hydro-pneumatic spring piston rod are given. At the same time, the relationship between output force and displacement, velocity of hydro-pneumatic spring system piston arc analyzed and studied by numerical simulation.
     According to the nonlinear mathematical model, damping and stiffness characteristics of hydro-pneumatic spring system and various factors which impact them are studied. The stiffness and damping linearization formula of vehicle hydro-pneumatic spring is given which provides a reasonable stiffness and damping parameters for system dynamics modeling. Two degrees of freedom dynamic model of vehicle hydro-pneumatic spring system is established. The hydro-pneumatic spring suspension system response is numerically simulated by Simulink software with different level road displacement excitation. The frequency characteristics of the system is also been analyzed.
     The PID controller structure on the active hydro-pneumatic suspension system is designed on the basis of established hydro-pneumatic spring suspension system dynamic model. The parameters of suspension acceleration, suspension deflections and tire load weight are simulated to both active and passive suspension systems under different road conditions. Eventually, a mechanical model of the system is established by ADAMS dynamic simulation software. The union simulation model of ADAMS and MATLAB of hydro-pneumatic spring suspension system is also been established which provides a new method for dynamic simulation of ydro-pneumatic spring suspension system.
     The study results show that by using active suspension system, the acceleration RMS value of the vehicle body can be reduced by one-third, the suspension dynamic travel RMS value is reduced six percentage points and the vehicle dynamic load RMS value is reduced one-third which means active suspension system can significantly improve vehicle riding comfort.
     Hydro-pneumatic spring and vehicle hydro-pneumatic spring suspension system dynamics model are established in this paper. Dynamics equations of hydro-pneumatic spring and vehicle hydro-pneumatic spring suspension system are also been derived. Those models and equations can be used to sovle dynamics questions in engineering of hydro-pneumatic spring suspension system. The research method of this paper has theoretical significance and engineering applications. The results of this study also has reference value in theory analysis and design of hydro-pneumatic spring.
引文
[1]高德成.汽车悬架装置检测台.中国计量出版社,2008.12:1-3页
    [2]余志生.汽车理论.第二版.机械工业出版社,1989.4:170-177页
    [3]章兰珠,王军.汽车悬架对行驶平顺性的影响.华东理工大学学报.2008,34(6):908-912页
    [4]张文春.汽车理论.第2版.机械工业出版社,2010.2:168-188页
    [5]Thomas D. Gillespie著,赵六奇,金达锋译.车辆动力学基础.清华大学出版社.2006.12
    [6]宋传学,蔡章林,安晓鹃.车辆平顺性的虚拟仿真及试验.吉林大学学报(工学版),2007,37(2):259-262页
    [7]赵力航等.油气悬挂系统的结构特点及分类.农业装备与车辆工程.2009,3:12-14页
    [8]姜立标等.Buildup and simulation of a truck model with rear air suspension using leaf spring as guiding rod.哈尔滨工业大学学报(英文版).2006,13(6):654-657P
    [9]伍长安.空气悬挂的原理及其应用.汽车实用技术.2004,4:52-53页
    [10]石秉良,张孝祖.车辆悬挂系统的可控性与可观测性.江苏理工大学学报.1999,20(3):4-7页
    [11]M.米奇克.汽车动力学(C卷).人民交通出版社.1997.9
    [12]刘惟信.汽车设计.清华大学出版社.2001,7:431-518页
    [13]陆爽,骆红云.汽车独立悬挂系统中机械构件随机响应分析.吉林工学院学报(自然科学版).1999,20(3):21-23页
    [14]Ryan Lee Price. Earl S. Macpherson and his invention. Vw Trends Magazine.2009.5
    [15]Sujatha,C.,tejesu,P.,Heavy vehicle dynamics-comparison between leaf sprig and hydropneumatic suspensions,Proceedings of SPIE-The International Society for Optical Engineering,2002,2(4753):311-317P
    [16]刘波.汽车悬架弹簧及其发展趋势.现代零部件.2007.12
    [17]Max A.Sardou,Patricia Djomseu.Composite Compression C Springs&Light Independent Suspension for Trucks,Buses,Cars&Trains.SAE2000:683-686P
    [18]Mortel,W.J.and Weston,D.,The development of rubbers suspension components on rail vehicles,Mechanical Engineering Publication,London,1994:24-26P
    [19]崔胜民.现代汽车系统控制技术.北京大学出版社,2008:59-62页
    [20]Sujatha C.,Tejesu P.,Heavy vehicle dynamics-comparison between leaf sprig and hydropneumatic suspensions,Proceedings of SPIE-The International Society for Optical Engineering,2002,2(4753):311-317P
    [21]闫清东.坦克构造与设计(下册).北京理工大学出版社,2007:444-447页
    [22]王书镇.高速履带车辆行驶系统,北京工业学院出版社,1988.6
    [23]杨景义等译.机动车悬架手册.国防工业出版社,1987
    [24]齐云芝.车辆悬挂系统研究的现状和未来.兵工学报.1998,3(71):53-58页
    [25]Rosam N.,Darling J.,Modeling and Testing of the Interconnected Hydragas Suspension. Proc.6th Intl.Congress on Hydraulic Engineering in the Vehicle,SAE,France.1994
    [26]Chaudhary,Sanjeev Ride and roll performance analysis of a vehicle with spring-loaded interconnected hydro-pneumatic suspension,Concordia University Master dissertation, 1999:194
    [27]Belingardi GAnd P.Campanile,Improvement of the shock absorber dynamic simulation by restoring force mapping method,Proceeding of the 15th International Seminar on Modal Analysis,Heverlee,Belgium,1990:441-454P
    [28]Duym S.,J.Schoukens,P.Guilliaume,A local restoring force surface method,Proceedings of the 13th International Modal Analysis Conference, Nashville, Tennessee,1995:1392-1399P
    [29]Lang H.,A study of the characteristics of automotive hydraulic dampers at high stroking frequencies,Ph.D.Dissertation,The University of Michigan,1977
    [30]Surface C.,K.Worden and G.Tomlinson,On the non-linear characteristic of automotive shock absorbers,Proceedings of ImechE,part D:,Journal of Automobile Engineering 206,1992:3-16P
    [31]The Citroen Technical Guide
    [32]Sujatha C.,Tejesu P.,Heavy vehicle dynamics-comparison between leaf sprig and hydropneumatic suspensions,Proceedings of SPIE-The International Society for Optical Engineering,2002,2(4753):311-317P
    [33]秦家升,安静,单海燕,安时祥.油气悬架的特征及其结构原理分析.工程机械,2003.11
    [34]李春艳,谢东升,陈轶杰,李彪,王亚军.论油气悬挂的性能特点及研究现状.机械制造,2008,46(530):59-62页
    [35]Pevsner J.M.,Equaizing types of suspension,Automobile Engineer,Jan.1957:10-16P
    [36]Geoff Rideout,Dynamic testing and modeling of the interconnected moulton hydragas suspension system,Master of Science dissertation,Queen's University at Kingston,1999
    [37]Geoff Rideout and Ronald J.Anderson,Experimental testing and mathematical modeling of interconnected hydragas suspension system, SAE2003-01-0312
    [38]Liu,Peijun,An analytical study of ride and handling performance of an interconnected vehicle suspension,Concordia University Master dissertaction,Apr.1995
    [39]Worden K.,Tomlinson G.R.,Parametric and nonparametric identification of automotive shock absorber,Proc.Of the 10th Int.Modal Analysis Conf.,San Diego,California,1992
    [40]Koenraad Reybrouck.A non linear parametric model of an automotive shock absorber. SAE940869,1170-1177P
    [41]Kwangjin Lee.Numerical modeling for the hydraulic performance prediction of automotive monotube dampers.Vehicle system Dynamics,1997,28:25-39P
    [42]Joo,Frank R.Dynamic analysis of a hydro-pneumatic suspension system,Master of Engineering dissertation,Concordia University,Canada,1991
    [43]J.Felez and C.Vera.Bond graph assisted models for hydropneumatic suspension in crane vehicles.Vehicle System Dynamtics,1987.16,pp.313-332P
    [44]A.E.Moulton and A.Best.Hysragas suspension,SAE790374,1307-1329P
    [45]Duym,S.,Stiens,R.,and Reybrouck,k.,Evaluation of shock absorber models,Vehicle System Dynamics 27,1997:109-127P
    [46]Segel L.,Lang H.,The mechanics of automotive hydraulic dampers at high stroking frequencies,Vehicle System Dynamics,No.10,1981:82-85P
    [47]Surface C.,D.Storer and G.Tomlinson,Characterizing an automotive shock absorber and the dependency on the temperature,Proceedings of the 10th International Modal Analysis Conference,San Diego,1992:1317-1326
    [48]Tsuruga Y.Study on hydraulic active suspension for wheeled hydraulic excavator,Fluid Power,Thrid JHPS International Symposium,1996:367-372
    [49]Mats BERG.A Non linear Rubber Spring Model for vehicle Dynamics Analysis.Vehicle System Dynamics Supplement 1998(28):723-728P
    [50]Giacomin J.,Neural network simulation of an automotive shock absorber,Engineering Application Artificial Intelligence,Vol.4,No.1 Paragon Press,1991:59-64P
    [51]Giacomin J.,Neural network shock absorber model for ADAMS,8th Tedas News Conference,Munich, Germany,1992
    [52]Mark Burnett.Damper modelling using neural networks.New Technology 2003
    [53]Lang R.and R.Sonnenburg,A detailed shock absorber model for full vehicle simulation, Presented at the 10th European ADAMS Users'Conference,Frankfurt, Nov.,1995:14-15P
    [54]V.Y.B.Yung and D.J.Cole,Analysis of high frequency forces symposium, Copenhagen, Aug.,2001:20-25P
    [55]Lang,H.H.,A study of the characteristics of automotive hydraulic dampers at high stroking frequencies,Ph.D.Dissertation,Michigan University,1977
    [56]K.Yabuta,K.Hidaka and N.Fukushima,Effects of suspension on vehicle riding comfort, Vehicle System Dynamics,No.10,1981:85-88P
    [57]P.S.Els and B.Grobbelaar, Investigation of the time and temperature dependency of hydro-pneumatic suspension systems,SAE930265:318-328P
    [58]P.Dennis McNeely Uniform suspension response for commercial vehicles. SAE 2000-01-3448:678-682P
    [59]P.S.Els and B.Grobbelaar Heat transfer effects on hydropneumatic suspension systems, Journal of Terramechanics,Volume 36,Issue 4,October 1999:197-205P
    [60]陶又同.液压悬挂系统的示功图及模型辨识.武汉水运工程学院学报,1985,4:95-101页
    [61]高凌风.连通式油气悬架动刚度分析及发射车行车振动响应计算.硕士学位论文,北京理工大学,1994
    [62]孙求理.油气悬挂系统的理论研究与优化.硕士学位论文,同济大学,1994
    [63]赵春明.油气悬架系统动力学理论及其相关控制技术研究.博士学位论文,大连理工大学,1998
    [64]檀润华.汽车减振器及乘座动力学非线性建模研究.博士学位论文,浙江大学,1998
    [65]吴仁智.油气悬架系统动力学建模仿真和试验研究.博士学位论文,浙江大学,2000
    [66]封士彩.CXP1032起重机油气悬挂系统减振性能的研究.硕士学位论文,中国矿业大学,2000
    [67]杨平,刘勇,钟毅芳,周济.油阻尼减振器计算机仿真研究.系统仿真学报,2001,12(3):350-352页
    [68]王文林.可调式线性油压减振器阻尼孔的精度设计研究.中国机械工程,2002,13(1):12-14页
    [69]刘延庆.车用液压减振器的异常噪声及动力学特性研究.博士学位论文,上海交通大学,2002
    [70]赵登峰.自卸汽车油气悬挂系统动态特性仿真与试验研究.博士学位论文,吉林大学,2003
    [71]赵登峰,王国强,周德成,王吉林.自卸车油气悬挂数学模型仿真研究.农业机械学报.2003,34(6):40-43页
    [72]赵登峰,徐纯新,王国强.自卸车油气悬挂试验和虚拟样机仿真.中国工程机械学报,2004.1:279-281页
    [73]周德成.矿用自卸汽车油气悬挂系统动力学仿真及试验研究.博士学位论文,吉林大学,2005
    [74]王智明.车装钻机油气悬挂系统仿真分析与试验研究.博士学位论文,吉林大学,2005
    [75]王智明,殷琨,万文滨.油气悬挂系统及其在钻掘车辆中的应用.建筑机械化,2004.4
    [76]王汉平,张聘义,邵自然.混合连通式油气悬挂重型车辆的振动性能研究.导弹与航天运载技术,2003.4:7-11页
    [77]马国清,檀润华,武一民.基于油气悬挂系统的1/4车数学模型与仿真研究.河北工业大 学学报,2002.31(6):30-34页
    [78]马国清,檀润华,吴仁智.油气悬挂系统非线性数学模型的建立及其计算机仿真.机械工程学报,2002,38(5):95-99页
    [79]Guo Konghui.A Unified non-steady non-linear tyre model under complex wheel motion inputs including extreme operating conditions,JSAE REVIEW,2001,122(4):396-402P
    [80]陈禹行.油气耦连悬架系统的建模与仿真分析.博士学位论文,吉林大学,2009
    [81]王飞.油气悬挂建模分析及非线性特性研究.硕士学位论文,湖南大学,2009
    [82]封士彩.工程车辆油气悬挂技术的开发和研制.机床与液压.2002(3):214-216页
    [83]檀润华,陈鹰,赵凡,路甬祥.汽车减振器新型数学模型的研究.汽车工程.1998,20(2):113-117页
    [84]封士彩.油气悬挂非线性数学模型及性能特性的研究.中国公路学报.2002,15(3):122-126页
    [85]封士彩.起重机油气悬挂建模试验和仿真.机床与液压.2001:165-167页
    [86]檀润华,陈鹰.油液容积弹性模量对减振器性能影响研究.河北工业大学学报.2001,30(1):1-4页
    [87]竹中利夫,莆田英三.液压流体力学.科学出版社.1980
    [88]齐晓杰.汽车液压液力与气压传动.化学工业出版社.2007.9
    [89]张木全,云智勉.化工原理(第2版).华南理工工大学出版社.2008.1
    [90]张志涌.精通MATLAB 6.5版教程.北京航天航空大学出版社.2003
    [91]黄永安,李文成,高小科Matlab7.0/Simulink6.0应用实例仿真与高效算法开发.2008
    [92]刘凤国,封士彩.工程车辆油气悬挂液压系统的设计.农业机械.2009.12
    [93]Giliomee C. L.,Semi-active hydropneumatic spring and damper system. Journal of terramechanics.1998
    [94]封士彩,徐勇.工程车辆油气悬挂刚度和阻尼特性分析.工程机械.2001.7
    [95]李俊玲.全地面起重机油气悬挂系统仿真研究.硕士论文.吉林大学,2006
    [96]汽车工程手册编辑委员会.汽车工程手册.人民交通出版社.2002:541-543页
    [97]德国BOSCH公司编,魏春源等译.汽车安全性与舒适性系统.北京理工大学出版社.2007.1
    [98]董慧.车辆与路基路面耦合的动力学分析及其仿真.硕士论文.南京林业大学,2007
    [99]王霄峰.汽车底盘设计.清华大学出版社.2010.4
    [100]余群.车辆与柔性路面力学相互作用系统的研究.博士论文.中国农业大学,2003
    [101]黄晓明,陶向华.人-车-路相互作用三质量车辆模型分析.交通运输工程学报,2004,4(3):11-15页
    [102]张玉春,王良曦等.汽车主动悬挂控制的研究现状和未来挑战.控制理论与应用, 2004,20(1):139-145页
    [103]潘新民,王燕芳.微型计算机控制技术实用教程.电子工业出版社.2006:230-245页
    [104]张子萍,张明波.微型计算机控制技术.中国水利水电出版社.2001:125-132页
    [105]马建伟,李银伢.满意PID控制设计理论与方法.科学出版社.2007:87-88页
    [106]甄任贺.轧水烘干机控制系统研究与实现.硕士论文.中南大学.2006
    [107]黄友锐,曲立国.PID控制器参数整定与实现.科学出版社.2010.1
    [108]舒怀林.PID神经元网络及其控制系统.国防工业出版社.2006.2
    [109]金达锋,马国新.主动油气悬架试验模型的研制.汽车工程.2000,22(2):100-103页
    [110]喻凡.车辆动力学及其控制.人民交通出版社.2004:81-83页
    [111]姜鹏.汽车悬架系统的仿真分析与参数优化设计.硕士论文.浙江大学.2006
    [112]张俊.下一代虚拟样机技术的思考.CAD/CAM与制造业信息化.2009(10):12-13页
    [113]郑建荣.ADAMS虚拟样机技术入门与提高.机械工业出版社.2011:1-4页
    [114]王留呆,董佳伟,洪在地,彭聪.产品设计软件讲座第四讲ADAMS的概念及在设计中的应用.家电科技.2007:52-54页
    [115]郭卫东.虚拟样机技术与ADAMS应用实例教程.北京航空航天大学出版社.2008:3-6页
    [116]蒲俊,吉家锋,伊良忠Matlab6.0数学手册.浦东电子出版社出版.2002:1-5页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700