大型轮式车辆油气悬架及电液伺服转向系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,在大型轮式车辆底盘油气悬架及电液控制转向系统方面仍然存在着一些亟待解决的问题,如油气悬架系统在车身姿态调整时无法实现整车的同步升降、多数油气悬架车辆在设计时未综合考虑平顺性和道路友好性的影响、电液控制转向系统多采用比例阀控制,转向性能不够理想,这些问题严重制约大型轮式车辆底盘的发展与应用,本文围绕上述三个问题,并以中联重科某型七桥全地面起重机为对象展开深入研究,具体内容如下:
     第一章,在查阅大量国内外有关油气悬架和电液控制转向系统研究文献的基础上,对具备车身姿态调整功能的油气悬架系统、油气悬架平顺性与道路友好性及其综合性能优化、电液控制转向系统这三部分的研究现状进行了综述,指出了各自存在的问题,并阐述了课题提出的意义及主要研究内容。
     第二章,对大型轮式车辆常用的连通式油气悬架各功能工作原理进行了分析,并讨论了连通式油气悬架升降不同步的机理,提出了一种基于调速阀和压力跟踪阀的连通式油气悬架同步升降系统并进行了分析,同时设计了该同步系统中的关键元件压力跟踪阀,建立了压力跟踪阀的数学模型与仿真模型,分析了各参数对压力跟踪性能的影响,并进行相应试验以验证模型的正确性,随后对单桥工况进行了同步升降系统的仿真与试验研究,并在实车上进行了整车同步升降试验,同步效果均较好,可满足大型轮式车辆底盘的实际需要。
     第三章,对油气悬架平顺性和道路友好性进行分析与优化,以整车七自由度动力学模型为基础分别建立路面谱模型和油气悬架系统的液压部分模型,并应用ADAMS、AMESim和Simulink对整车机构、油气悬架液压系统和路面谱进行了仿真建模和联合仿真分析,讨论了油气悬架主要刚度和阻尼参数对平顺性和道路友好性的影响规律,随后对平顺性和道路友好性进行归一化处理,应用遗传算法进行优化得出使油气悬架平顺性和道路友好性均较好的参数配置方案。
     第四章,针对大型轮式车辆转向系统的特点,设计了应用伺服比例阀的电液伺服转向系统,分别介绍了转向系统的功能、模式及工作原理,建立了系统转向机构的数学模型,并对其运动学和动力学进行了分析与简化,随后建立了液压控制系统的数学模型,将转向机构数学模型和液压控制系统模型结合后成为阀控双转向助力缸的电液伺服转向系统模型,对此模型进行了简化的线性化分析,讨论了各主要参数对电液伺服转向系统跟踪误差的影响规律,并指出跟踪误差会随着转向系统位置的变化而变化,转到左侧极限位置时跟踪误差最小,转到右侧极限位置时跟踪误差最大。
     第五章,对电液伺服转向系统进行联合仿真分析,基于ADAMS建立了转向系统机械部分模型,包括转向机构、轮胎和路面模型,基于AMESim建立电液伺服转向系统液压部分模型,并以AMESim为主控软件进行联合仿真分析,仿真结果表明跟踪误差与转向系统的位置有关,转到左侧极限位置时跟踪误差最小,转到右侧极限位置时跟踪误差最大,与理论分析结果一致,随后讨论系统主要参数如供油压力、比例环节增益、转向助力缸面积和泄漏、伺服比例阀频响、死区和滞环、管路长度和内径、载荷等对电液伺服转向系统性能的影响,并提出了一种变增益的控制策略,仿真结果表明这种控制策略可以有效抑制跟踪误差随转向位置变化,使跟踪误差趋于恒定。
     第六章,对电液伺服转向系统进行试验研究,介绍了试验台架及试验方案,并设计了基于LabVIEW的数据采集系统,首先基于试验台架进行静载试验分析,考察系统供油压力和比例环节增益对电液伺服转向系统的影响,并分别进行了空载与加载工况试验,试验结果与仿真及理论分析相吻合,然后基于中联重科某型七桥全地面起重机进行实车静载时的空载和加载工况试验,最后对实车进行行驶试验,各工况下电液伺服转向系统均能实现良好的转向性能,验证了所设计的基于伺服比例阀的电液控制转向系统的合理性与有效性。
     第七章,总结本论文的主要工作,阐述研究结论和创新点,并对大型轮式车辆油气悬架及电液伺服转向系统的后续研究作出了展望。
Currently, there are still some problems to be solved in the hydro-pneumatic suspension and electro-hydraulic servo steering system of heavy wheeled vehicles. The urgent problems are described as follows:simultaneous movements of the vehicles in the body posture adjustment with hydro-pneumatic suspension can not be achieved, the majority of vehicles with hydro-pneumatic suspension are designed without taking into account road-friendliness and ride comfort comprehensively and the performance of the electro-hydraulic steering system with proportional valve is not satisfactory. The applications and development of the chassis in the heavy wheeled vehicles are seriously restricted by these problems. This paper focused on these three issues and the further study was carried out for the certain type of Zoomlion7-axles all-terrain crane. The main contents are as follows:
     In chapter1, on the basis of referring to a large number of domestic and international associated literatures about hydro-pneumatic suspension and electro-hydraulic control steering system, the body posture adjustment of the hydro-pneumatic suspension, integrated performance optimization of ride comfort and road-friendliness and electro-hydraulic control steering system were summarized. Their problems were pointed out. The related research background and significance of this subject was expounded and the main research work was proposed.
     In chapter2, every function of the commonly used interconnected hydro-pneumatic suspension in heavy wheeled vehicles was analyzed and the asynchrony mechanism was discussed. Based on flow control valve and pressure tracking valve, an improved interconnected hydro-pneumatic suspension was presented and lifting" synchronization of the system was realized. The key element pressure tracking valve of the synchronization system was designed. The mathematic model and simulation model of the pressure tracking valve were established and the effects of the various parameters on the performance of the pressure tracking valve were analyzed. The experimental research on the pressure tracking valve was performed and the model was verified correctly. The simulation and experiment were achieved on the one-axle condition of synchronized lifting system. The lifting synchronization experiment of the actual vehicle was performed and the synchronous effect was well. The improved synchronization system could meet the demand of high performance completely in the heavy wheeled vehicles.
     In chapter3, the ride comfort and road-friendliness of the hydro-pneumatic suspension were analyzed and optimized. Based on the whole vehicle7-DOFs dynamic model, road spectrum model and hydraulic system model in the hydro-pneumatic suspension were established. With the application of the ADAMS, AMESim and Simulink, the simulation model of the whole vehicle, hydraulic parts of hydro-pneumatic suspension and road spectrum was established and the co-simulation analysis was carried out. The effects of the main stiffness and damping parameters of the hydro-pneumatic suspension on ride comfort and road-friendliness were discussed. With the normalized processing of the ride comfort and road-friendliness, the appropriate configuration parameters of better ride comfort and road-friendliness were achieved by the genetic algorithm.
     In chapter4, according to the characteristics of heavy wheeled vehicle steering system, the electro-hydraulic servo steering system with servo-proportional valve was designed. The function, mode and working principle of the system were produced. The mathematic model of the steering mechanism was established and its kinematic and dynamic model were analyzed and simplified. Then the mathematic model of the hydraulic control system was established. These mathematic models could be combined as a valve-controlled two steering cylinders model. The simplified linear analysis of the combined model was achieved and the effects of main parameters on the tracking error of the electro-hydraulic servo steering system were discussed. The results show that the tracking error varies with the position of the steering system. The minimum tracking error appears at extreme left steering position while the maximum tracking error appears at extreme right steering position.
     In chapter5, the co-simulation of the electro-hydraulic servo steering system was analyzed. The simulation model of the mechanical parts including steering mechanism, tire and road was established based on ADAMS. The simulation model of the hydraulic parts was established based on AMESim. AMESim was set as master software and co-simulation analysis was achieved. The simulation results show that the tracking error varies with the position of the steering system. The minimum tracking error appears at extreme left steering position while the maximum tracking error appears at extreme right steering position. It is consistent with the theoretical analysis. The effects of the parameters of supply pressure, gain of the proportion link, area and leakage of the steering cylinder, frequency response, dead zone and hysteresis of the servo-proportional valve, length and diameter of the pipe and load on the performance of electro-hydraulic servo steering system were discussed. A kind of variable-gain control strategy was proposed. The simulation results show that this control strategy can effectively suppress the variation of the tracking error with steering position and the tracking error tends to be constant.
     In chapter6, experimental studies of the electro-hydraulic servo steering system were carried out, and the test bench and test scheme were introduced. The data acquisition system was designed based on LabVIEW. Firstly, the static experimental analysis based on test bench was carried out and effects of the parameters of supply pressure and gain of proportion link on the performance of the electro-hydraulic servo steering system were investigated. Tests on the unloaded and loaded conditions were carried out and the experimental results were consistent with the theoretical analysis and simulation analysis. Then, the static tests of a certain type of Zoomlion7-axles all-terrain crane on the unloaded and loaded conditions were carried out. Finally, the driving tests of the vehicle were also achieved. The performance of the electro-hydraulic servo steering system is good in all test conditions. It is verified that the designed electro-hydraulic servo steering system with servo-proportional valve is reasonable and effective.
     In chapter7, the major work of the study was summarized. The conclusions and innovations of the study were elaborated and the future study of the hydro-pneumatic suspension and electro-hydraulic servo steering system in heavy wheeled vehicles was also prospected.
引文
[1]王云超.多轴转向车辆转向性能研究[D].长春:吉林大学,2007.
    [2]甄龙信.油气悬架系统仿真,优化与设计计算研究[D].北京:北京科技大学,2005.
    [3]刘永峰,田洪森.国内外工程起重机发展状况研究[J].施工技术.2008,37(sup):476-477.
    [4]张云,石秉良,李红勋,等.近期主要发达国家军用战术轮式车辆发展综述(一)[J].汽车运用.2009(4):27-29.
    [5]张云,石秉良,李红勋,等.近期主要发达国家军用战术轮式车辆发展综述(二)[J].汽车运用.2009(5):24-26.
    [6]张云,石秉良,李红勋,等.近期主要发达国家军用战术轮式车辆发展综述(三)[J].汽车运用.2009(6):26-27.
    [7]古玉锋,方宗德,张国胜,等.重型车辆多轴转向系统设计综述[J].汽车技术.2009(01):1-6.
    [8]赵登峰.自卸汽车油气悬挂系统动态特性仿真与试验研究[D].长春:吉林大学,2003.
    [9]吴仁智.油气悬架系统动力学建模仿真和试验研究[D].杭州:浙江大学,2000.
    [10]http://www.liebherr.com.
    [11]李爽.七轴车辆比例控制转向研究[D].长春:吉林大学,2008.
    [12]王智明.车装钻机油气悬挂系统仿真分析与试验研究[D].长春:吉林大学,2005.
    [13]张兆奎.雪铁龙桑切亚·阿克梯瓦轿车的新型底盘[J].上海汽车.1996(3):7-8.
    [14]谷玉川,张华伟,赵若琳.汽车主动悬挂系统技术现状及发展趋势[J].机电工程技术.2008,37(6):54-55.
    [15]Moulton A E, Best A. Hydragas suspension[J]. SAE.790304.
    [16]孙建民.油气悬架的应用及性能控制研究进展[J].起重运输机械.2007(6):7-10.
    [17]李春艳,谢东升,陈轶杰,等.论油气悬挂的性能特点及研究现状[J].机械制造.2008,46(10):59-62.
    [18]孙建民.油气悬架的应用及关键技术评述[J].煤矿机械.2007,28(4):8-11.
    [19]Crolla D A. Vehicle dynamics:theory into practice[J]. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering.1996,210(2):83-94.
    [20]Joo F R. Dynamic analysis of a hydropneumatic suspension system[D]. Montreal:Concordia University, 1991.
    [21]Chaudhary S. Ride and roll performance analysis of a vehicle with spring loaded interconnected hydro-penumatic suspension[D]. Montreal:Concordia University,1998.
    [22]Wu L W. Analysis of hydro-pneumatic interconnected suspension struts in the roll plane vehicle model [D]. Montreal:Concordia University,2003.
    [23]Cao D P. Theoretical analyses of roll-and pitch-coupled hydro-pneumatic strut suspensions[D]. Montreal: Concordia University,2008.
    [24]王欣,蔡福海,高顺德.车辆油气悬架技术现状与发展趋势[J].建筑机械:上半月.2007(1):58-61.
    [25]吴涛,过学迅.重型越野车辆油气悬架的设计[J].专用汽车.2000(1):8-11.
    [26]Cole D J, Cebon D. Truck suspension design to minimize road damage[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.1996,210(2):95-107.
    [27]Potter T, Cebon D, Cole D J. Assessing'road-friendliness':a review[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.1997,211 (6):455-475.
    [28]张孝祖,黄炯.基于ADAMS虚拟样机及道路友好性的悬架参数优化[J].拖拉机与农用运输车.2008,35(1):70-72.
    [29]杜恒,魏建华,孔晓武.连通式油气悬架升降同步控制[J].农业机械学报.2010,41(3):29-32.
    [30]卢毅非.连接式油气悬架的特性分析[J].工程机械.1995,26(4):11-14.
    [31]王汉平,张聘义,邵自然.混合连通式油气悬挂重型车辆的振动性能研究[J].导弹与航天运载技术.2003(4):7-11.
    [32]周萼秋.对全路面起重机油气悬挂系统可调性分析[J].工程机械.1996,27(8):12-15.
    [33]秦家升,安静,单海燕,等.油气悬架的特征及其结构原理分析[J].工程机械.2003,34(11):7-10.
    [34]刘汉光,吕文泉,吴仁智.全路面起重机油气悬架系统原理分析与试验[J].建筑机械化.2003(05).
    [35]秦家升,游善兰,王增民.油气悬架系统及其数学模型探究[J].建筑机械:上半月.2004(2):78-82.
    [36]郭建华.全路面起重机油气悬架系统建模与动力学仿真研究[D].长春:吉林大学,2005.
    [37]吴仁智,刘钊.全路面起重机油气悬架液压系统技术分析[J].中国工程机械学报.2006(1):8-11.
    [38]彭友谊.油气悬架系统简介[J].建设机械技术与管理.2006,19(5):80-83.
    [39]蔡福海.全地面起重机油气悬架系统仿真与优化[D].长春:大连理工大学,2006.
    [40]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [41]El-Tawwab A. Twin-accumulator suspension system[J]. SAE.970384.
    [42]吕文泉,刘汉光,陆永能.采用油气悬架的汽车起重机平顺性试验分析[J].建筑机械:上半月.2003(9):42-44.
    [43]Rideout D G, Anderson R J. Experimental Testing and Mathematical Modeling of the Interconnected Hydragas Suspension System[J]. SAE.2003-01-0312.
    [44]邹游,喻凡,孙涛.非线性油气悬架的平顺性仿真研究[J].计算机仿真.2004,21(10):157-159.
    [45]周德成,王国强,刘玉臣,等.油气悬挂缸参数对车辆平顺性影响的理论研究[J].农业机械学报.2004,35(5):25-28.
    [46]刘福成,庄德军,喻凡.油气悬架工程车行驶平顺性研究[J].传动技术.2005,19(1):14-19.
    [47]姚雪梅,徐刚,肖铮,等.工程机械油气悬架平顺性随机输入行驶试验研究[J].中国工程机械学报.2005,3(3):353-356.
    [48]郭建华.全路面起重机油气悬架系统建模与动力学仿真研究[D].长春:吉林大学,2005.
    [49]周德成.矿用自卸汽车油气悬挂系统动力学仿真及试验研究[D].长春:吉林大学,2005.
    [50]李俊玲.全地面起重机油气悬挂系统仿真研究[D].长春:吉林大学,2006.
    [51]狄勇,田晋跃.油气悬架非公路车辆的行驶平顺性研究[J].工程机械.2006,37(6):21-24.
    [52]韩钢强.高速挖掘装载机油气悬挂系统性能仿真研究[D].长春:吉林大学,2006.
    [53]Uys P E, Els P S, Thoresson M. Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds[J]. Journal of Terramechanics.2007,44(2):163-175.
    [54]仝军令,李威.非确定性参数对油气悬架系统性能的影响[J].起重运输机械.2007(11):49-52.
    [55]Cao D P, Rakheja S, Su C Y. Roll-and pitch-plane-coupled hydro-pneumatic suspension. Part 1: Feasibility analysis and suspension properties[J]. Vehicle System Dynamics.2010,48(3):361-386.
    [56]Cao D P, Rakheja S, Su C Y. Roll-and pitch-plane-coupled hydro-pneumatic suspension. Part 2: Dynamic response analyses[J]. Vehicle System Dynamics.2010,48(4):507-528.
    [57]Cao D P, Rakheja S, Su C Y. Heavy vehicle pitch dynamics and suspension tuning. Part I:unconnected suspension[J]. Vehicle System Dynamics.2008,46(10):931-953.
    [58]Cao D P, Rakheja S, Su C Y. Pitch plane analysis of a twin-gas-chamber strut suspension[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2008,222(8): 1313-1335.
    [59]仝军令,李威,傅双玲.油气弹簧主要参数对悬架系统性能的影响分析[J].系统仿真学报.2008,20(9):2271-2274.
    [60]张太平.非线性油气悬架振动特性研究[D].大连:大连理工大学,2008.
    [61]江帅.煤矿井下无轨胶轮车油气悬架动态特性仿真与优化[D].太原:太原理工大学,2010.
    [62]杨波,陈思忠,王勋,等.双气室油气悬架特性研究[J].机械工程学报.2009,45(5):276-280.
    [63]Yang B, Chen S Z, Wu Z C, et al. Development of a Twin-Accumulator Hydro-Pneumatic Suspension[J]. Journal of Shanghai Jiaotong University(Science).2010,15(2):183-187.
    [64]陈皓云.道路友好悬架中空气弹簧参数研究[D].贵阳:贵州大学,2008.
    [65]Fryba L. Dynamic interaction of vehicles with tracks and roads[J]. Vehicle System Dynamics.1987,16(3): 129-138.
    [66]Anon. Council Directive 92/7/EEC[S]. The Council of the European Communities,1992.
    [67]曹立文.基于道路友好性的货车平顺性研究[D].哈尔滨:哈尔滨工业大学,2001.
    [68]陈一锴.基于道路友好性的公路重型货车悬架系统多领域协同优化与控制研究[D].南京:东南大学,2010.
    [69]Cebon D. Theoretical road damage due to dynamic tyre forces of heavy vehicles Part 1:dynamic analysis of vehicles and road surfaces[J]. Proceedings of the Institution of Mechanical Engineers. Part C. Mechanical engineering science.1988,202(C2):103-108.
    [70]Cebon D. Theoretical road damage due to dynamic tyre forces of heavy vehicles Part 2:simulated damage caused by a tandem-axle vehicle[J]. Proceedings of the Institution of Mechanical Engineers. Part C. Mechanical engineering science.1988,202(C2):109-117.
    [71]Cole D J, Cebon D. Assessing the road-damaging potential of heavy vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.1991,205(4):223-232.
    [72]Potter T E C, Cebon D, Cole D J. Assessing'road-friendliness':a review[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.1997,211(6):455-475.
    [73]Collop A C, Cebon D. Effects of 'road friendly'suspensions on long-term flexible pavement performance[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.1997,211(6):411-424.
    [74]Kitching K J, Cole D J, Cebon D. Theoretical investigation into the use of controllable suspensions to minimize road damage[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2000,214(1):13-31.
    [75]余卓平,黄锡朋.减轻重型汽车对道路的损伤一汽车悬架优化设计[J].中国公路学报.1994,7(3):83-87.
    [76]李怀璋,余群.车辆参数对路面动载响应影响的研究现状与分析[J].中国农业大学学报.1998,3(4):115-118.
    [77]Valaek M, Kortum W, Ika Z, et al. Development of semi-active road-friendly truck suspensions[J]. Control Engineering Practice.1998,6(6):735-744.
    [78]徐斌,郑钢铁.道路破坏的影响因素及悬架参数优化[J].汽车工程.2000,22(6):418-422.
    [79]刘强,徐斌,等.减小动载荷道路破坏的悬架参数研究[J].哈尔滨工业大学学报.2002,34(6):832-837.
    [80]徐斌,王国栋,曹立文.悬架参数对行驶平顺性和道路友好性的影响[J].哈尔滨工业大学学报.2004,36(2):191-194.
    [81]徐斌,史艳彬,王国栋.悬架系统非线性元件对平顺性和道路友好性的影响[J].车辆与动力技术.2005(1):46-51.
    [82]Sun L. Optimum design of "road-friendly" vehicle suspension systems subjected to rough pavement surfaces[J]. Applied Mathematical Modelling.2002,26(5):635-652.
    [83]严天一,刘大维,陈焕明,等.基于主动悬架系统车辆的道路友好性[J].机械工程学报.2007,43(2):163-167.
    [84]严天一,刘大维,师忠秀,等.基于地棚控制的半主动悬架车辆道路友好性仿真[J].农业机械学报.2007,38(1):12-16.
    [85]严天一,郑睿,崔雪梅.考虑双时滞特性的半主动悬架系统道路友好性仿真研究[J].系统仿真学报.2008,20(17):4560-4562.
    [86]郑明军,林逸,陈潇凯.空气悬架车辆道路友好性分析[J].拖拉机与农用运输车.2007,34(4):40-41.
    [87]曹永军.载重汽车空气悬架道路友好性研究[D].贵阳:贵州大学,2009.
    [88]李敏.重载半挂汽车列车半主动悬架平顺性与道路友好性研究[D].太原:太原科技大学,2010.
    [89]何锋,张军,曹龙田,等.基于ADAMS的重型汽车道路友好性仿真研究[J].拖拉机与农用运输车.2010,37(4):54-56.
    [90]Nemeth B, Gaspar P. Control design for road-friendly suspension systems using an optimal weighting of LQ theorem[J]. Periodica Polytechnica Transportation Engineering.2010,38(2):61-66.
    [91]王伟,陈昆山.基于MATLAB的重型车辆提升桥空气悬架设计方法研究[J].煤矿机械.2011,32(4):27-30.
    [92]杨建伟,李敏,孙守光.基于半主动自适应悬架系统的整车道路友好性研究[J].中国公路学报.2011, 24(2):120-126.
    [93]吕彭民,和丽梅,尤晋闽.基于舒适性和轮胎动载的车辆悬架参数优化[J].中国公路学报.2007,20(1):112-117.
    [94]江浩斌,王波,黄炯.基于平顺性和道路友好性的载货汽车悬架参数优化[J].现代交通技术.2008,5(4):71-74.
    [95]王波,郭秀廷,黄炯.基于行驶平顺性和道路友好性的载货汽车悬架参数优化[J].重型汽车.2008(3):10-13.
    [96]江浩斌,王波,黄炯.考虑道路友好性的载货汽车悬架参数优化仿真[J].计算机仿真.2009,26(5):291-295.
    [97]陈一锴,何杰,李旭宏,等.基于模糊控制的重型货车空气悬架性能多目标优化[J].东南大学学报(自然科学版).2008,38(2):319-323.
    [98]陈一锴,何杰,郭彦,等.基于平顺性和道路友好性的重型货车悬架优化[J].江苏大学学报(自然科学版).2009,30(3):251·255.
    [99]陈一锴,何杰,张卫华,等.多轴重型货车悬架系统改进天棚控制策略[J].农业机械学报.2011,42(6):16-22.
    [100]陈一锴,何杰,石琴,等.多轴重型货车悬架系统改进天棚控制策略的研究[J].汽车工程.2011,33(4):345-351.
    [101]李捷,丁名雄,李敏,等.基于ADAMS的货车悬架参数多目标性能优化[J].机械工程与自动化.2010(3):1-4.
    [102]董军哲,杨建伟,李敏.悬架参数多目标性能优化[J].机械设计与研究.2010,26(2):123-127.
    [103]杨建伟,董军哲,李捷.基于梯度寻优重型车辆悬架参数优化[J].拖拉机与农用运输车.2011,38(3):27-30.
    [104]陈家瑞主编.汽车构造.下册[M].北京:机械工业出版社,2001.
    [105]王常友,董爱杰.汽车转向系统的现状及发展趋势[J].北京汽车.2007(3):7-10.
    [106]李会敏.轮式工程机械电液转向系统的研究[D].秦皇岛:燕山大学,2008.
    [107]黄亚玲,贾红红.汽车转向技术发展综述[J].民营科技.2009(6):1.
    [108]Badawy A, Zuraski J, Bolourchi F, et al. Modeling and analysis of an electric power steering system[J]. SAE.1999-01-0399.
    [109]周伟东,苗政,吴海清.汽车转向系统的发展[J].汽车运用.2009(5):29-30.
    [110]Chen X, Chen X. Control-Oriented Model for Electric Power Steering System[J]. SAE.2006-01-0938.
    [111]Kim J H, Song J B. Control logic for an electric power steering system using assist motor[J]. Mechatronics.2002,12(3):447-459.
    [112]高秀华,张春秋,李炎亮,等.多轮转向系统转向控制模式综述[J].起重运输机械.2006(6):5-8.
    [113]Suzuki K, Inaguma Y, Haga K, et al. Integrated electro-hydraulic power steering system with low electric energy consumption[J]. SAE.950580.
    [114]Inaguma Y, Suzuki K, Haga K. An Energy-Saving Technique in an Electro-Hydraulic Power Steering (EHPS) System[J]. SAE.960934.
    [115]张君君.电控液压助力转向系统的设计研究[D].镇江:江苏大学,2009.
    [116]Warinner D, Sailor E L. Hybrid Electric Vehicle Steering System[J]. SAE.2005-01-3533.
    [117]Badawy A, Fehlings D, Wiertz A, et al. Development of a new concept of electrically powered hydraulic steering[J]. SAE.2004-01-2070.
    [118]Charlson L L. Controller for fluid pressure operated devices:US,2984215[P].1958-11-25[1961-05-16].
    [119]陆倩倩.流量放大全液压转向系统的仿真分析及试验[D].杭州:浙江大学,2010.
    [120]吴继飞,李福荣.国内外大排量全液压转向器技术水平对比[J].工程机械与维修.2001(1):28-30.
    [121]苗立东,何仁,徐建平,等.汽车电动转向技术发展综述[J].长安大学学报:自然科学版.2004,24(1):79-84.
    [122]张芬娜.轮式工程车辆电液转向系统设计研究[D].东营:中国石油大学,2009.
    [123]Kokotovic V, Grabowsky J, Amin V, et al. Electro hydraulic power steering system[J]. SAE. 1999-01-0404.
    [124]Qiu H, Zhang Q, Reid J F. System Identification of An Electrohydraulic Steering System[J]. SAE. 1999-01-2854.
    [125]Zhang Q, Reid J F, Wu D. Hardware-in-the-loop simulator of an off-road vehicle electrohydraulic steering system[J]. Transactions of the American Society of Agricultural Engineers.2000,43(6):1323-1330.
    [126]Fujita K. Development of Control Method for Hydraulic-Electro Power Steering System Using Brushless DC Motor[J]. Koyo Engineering Journal English Edition.2001(159E):74-80.
    [127]Zhang Q, Wu D, Reid J F, et al. Model recognition and validation for an off-road vehicle electrohydraulic steering controller[J]. Mechatronics.2002,12(6):845-858.
    [128]Qiu H C, Zhang Q, Reid J F, et al. Modelling and simulation of an electrohydraulic steering system[J]. International Journal of Vehicle Design.2001,26(2-3):161-174.
    [129]Mills V D, Wagner J R. Behavioural modelling and analysis of hybrid vehicle steering systems[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2003, 217(5):349-361.
    [130]左霞,吴学雷.重型多轴汽车电控转向技术的发展现状与趋势[J].航天发射技术.2003(4):15-19.
    [131]姜立标,刘海芳.轮式工程车辆电液转向系统的建模与仿真研究[J].机床与液压.2004(6):78-80.
    [132]Haggag S, Alstrom D, Cetinkunt S, et al. Modeling, control, and validation of an electro-hydraulic steer-by-wire system for articulated vehicle applications[J]. IEEE/ASME Transactions on Mechatronics.2005, 10(6):688-692.
    [133]许阳坡.电动液压助力转向(EHPS)系统控制算法研究及实现[D].天津:天津大学,2006.
    [134]陈文良,谢斌,宋正河,等.拖拉机电控液压动力转向系统的研究[J].农业工程学报.2006,22(10):122-125.
    [135]Kemmetmuller W, Muller S, Kugi A. Mathematical modeling and nonlinear controller design for a novel electrohydraulic power-steering system[J]. IEEE/ASME Transactions on Mechatronics.2007,12(1):85-97.
    [136]Gessat J. Electrically Powered Hydraulic Steering Systems for Light Commercial Vehicles[J]. SAE. 2007-01-4197.
    [137]解后循,高翔.电控/电动液压助力转向控制技术研究现状与展望[J].农业机械学报.2007,38(11):178-181.
    [138]赵静一,王智勇,覃艳明,等.TLC900型运梁车电液转向控制系统的仿真与试验分析[J].机械工程学报.2007,43(9):65-68.
    [139]周军峰.多轴车辆转向液压系统研究[D].长春:吉林大学,2007.
    [140]罗绍新,王芙蓉,杨清林,等.基于ARM控制的电动液压转向系统研究[J].汽车技术.2007(6):9-12.
    [141]Gao Y J, Huang R, Zhang Q. A coMParison of three steering controllers for off-road vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2008, 222(12):2321-2336.
    [142]王豪,丁润涛,李志杰,等.电动液压助力转向系统仿真[J].天津大学学报.2008,41(5):627-630.
    [143]田晋跃,殷新锋,程振东.升降平台运输车电液比例转向系统的优化仿真[J].系统仿真学报.2008,20(11):2974-2977.
    [144]田阳阳.多轴车辆电液比例转向控制系统研究[D].长春:吉林大学,2008.
    [145]赵金海.汽车电控液压助力转向系统建模与仿真[D].长春:吉林大学,2008.
    [146]周宇,陈勇,刘文光.电动液压助力转向系统的协同仿真虚拟试验[J].机械设计与制造.2009(7):109-111.
    [147]何仁,陈勇,刘文光.电动液压助力转向硬件在环仿真试验平台设计[J].长安大学学报:自然科学版.2009,29(5):103-106.
    [148]金永利.电动液压助力转向系统对整车操纵稳定性影响分析[D].镇江:江苏大学,2009.
    [149]幸继松.多轴车辆电液全轮转向系统性能研究[D].武汉:华中科技大学,2009.
    [150]陈勇,常绿,夏晶晶.基于硬件在环仿真试验平台的电动液压助力系统能耗分析[J].农业工程学报.2010,26(8):117-122.
    [151]Viana L G, Romero Rey G, Maroto Iba N Ez J, et al. Modelling and simulation of a hydraulic power assisted steering system through Bond Graphs[C].Proceedings of the International Workshop on Applied Modeling and Simulation. Rio de Janeiro:[s. n.],2010:224-227.
    [152]惠晓丹.汽车电控液压助力转向系统的动力学分析与仿真[D].重庆:重庆交通大学,2010.
    [153]刘荣田.汽车电动液压助力转向系统控制器的研究[D].重庆:重庆交通大学,2010.
    [154]王博.浅谈电液转向技术在多桥起重机中的应用[J].建设机械技术与管理.2011(2):114-116.
    [155]刘凤国,王晓燕,封士彩.连通式油气悬挂车辆三种行驶状况下数学模型的建立[J].机械制造与自动化.2006,35(3):36-40.
    [156]王云超,高秀华,杨旭,等.油气悬挂系统参数对多桥转向特性的影响[J].吉林大学学报:工学版.2007,37(2):269-274.
    [157]魏建华,杜恒.压力跟踪阀:中国,200910155400.9[P].2010-07-07.
    [158]Du H, Wei J. Motion synchronization control of four multi-stage cylinders electro-hydraulic elevating system[C].2010 International Conference on Mechanic Automation and Control Engineering, MACE2010. Wuhan:IEEE,2010:5249-5253.
    [159]贾文华,殷晨波.一种压力补偿阀的建模及稳定性分析[J].上海交通大学学报.2011,45(4):561-564.
    [160]吕云嵩.阀控非对称缸频域建模[J].机械工程学报.2007,43(9):122-126.
    [161]孔晓武,魏建华.大流量插装式伺服阀数学模型及试验验证[J].浙江大学学报:工学版.2007,41(10):1759-1762.
    [162]卢宁,付永领,孙新学.基于AMEsim的双压力柱塞泵的数字建模与热分析[J].北京航空航天大学学报.2006,32(9):1055-1058.
    [163]LMS Imagine SA. AMESim/ADAMS Interface Manual[M].2008.
    [164]艾延廷,王志,甘世俊,等.多自由度车辆模型半主动悬架模糊控制[J].振动与冲击.2007,26(3):19-22.
    [165]刘从臻,郭维俊,王芬娥,等.八自由度车辆模型传递函数研究[J].甘肃农业大学学报.2006,41(3):113-117.
    [166]刘强,徐斌,等.减小动载荷道路破坏的悬架参数研究[J].哈尔滨工业大学学报.2002,34(6):832-837.
    [167]张立军,张天侠.车辆四轮相关时域随机输入通用模型的研究[J].农业机械学报.2005,36(12):29-31.
    [168]马国清,吴仁智,等.油气悬挂系统非线性数学模型的建立及其计算机仿真[J].机械工程学报.2002,38(5):95-99.
    [169]魏建华,杜恒,方向,等.基于ADAMS/Simulink/AMESim的油气悬架道路友好性分析[J].农业机械学报.2010(10):11-17.
    [170]吕彭民,和丽梅,尤晋闽.基于舒适性和轮胎动载的车辆悬架参数优化[J].中国公路学报.2007,20(1):112-117.
    [171]Dave Crolla喻凡.车辆动力学及其控制(Vehicle Dynamic and control)[M].北京:人民交通出版社,2004.
    [172]付永领,祁晓野编AMESim系统建模和仿真[M].北京:北京航空航天大学出版社,2006.
    [173]王涛.汽车悬架参数的多目标多标准决策优化[J].农业机械学报.2009,40(4):27-32.
    [174]王涛,陶薇.考虑随机因素的汽车悬架参数多目标稳健优化[J].振动与冲击.2009,28(11):146-149.
    [175]杜恒,魏建华.基于遗传算法的连通式油气悬架平顺性与道路友好性参数优化[J].振动与冲击.2011,30(8):133-138.
    [176]靳晓雄.汽车振动分析[M].上海:同济大学出版社,2002.
    [177]卢长耿,李金良.液压控制系统的分析与设计[M].北京:煤炭工业出版社,1991.
    [178]王春行.液压控制系统[M].北京:机械工业出版社,2004.
    [179]Merritt H E. Hydraulic control systems[M]. New York:John Wiley & Sons Inc,1967.
    [180]孟亚东,李长春,张金英,等.阀控非对称缸液压系统建模研究[J].北京交通大学学报.2009,33(1): 66-70.
    [181]孔晓武.带长管道的负载敏感系统研究[D].杭州:浙江大学,2003.
    [182]蔡亦纲.流体传输管道动力学[M].杭州:浙江大学出版社,1990.
    [183]Kong X, Wei J, Qiu M, et al. Improvement of fluid pipe lumped parameter model[J]. Chinese Journal of Mechanical Engineering (English Edition).2004,17(1):114-116.
    [184]杨务滋,王长春,王贺剑.管路效应对液压冲击器性能影响的研究[J].机床与液压.2008,36(5):73-75.
    [185]赵宇.斜盘式轴向柱塞比例泵和液压软管的建模及仿真研究[D].太原:太原理工大学,2005.
    [186]蒋世渊,龚浦泉.具有软管连接电液伺服系统动态分析与辨识[J].四川工业学院学报.1990,9(1):24-31.
    [187]Zielke W. Frequency dependent friction in transient pipe flow[D]. Ann Arbor:University of Michigan, 1966.
    [188]Trikha A K. An efficient method for simulating frequency-dependent friction in transient liquid flow[J]. Journal of Fluids Engineering, Transactions of the ASME.1975,97 Ser 1(1):97-105.
    [189]赵林峰,陈无畏,刘罡.电动助力转向系统全工况建模及试验验证[J].农业机械学报.2009,40(10):1-7.
    [190]Salaani M K, Heydinger G, Grygier P. Modelling and Implementation of Steering System Feedback for the National Advanced Driving Simulator[J]. SAE.2002-01-1573.
    [191]Schmitt P D. Prediction of Static Steering Torque During Brakes-Applied Parking Maneuvers[J]. SAE. 2003-01-3430.
    [192]王云超,高秀华,张小江.重型多轴转向车辆轮胎原地转向阻力矩[J].农业工程学报.2010,26(10):146-150.
    [193]王鹏.汽车实时动力学仿真中转向回正特征建模方法研究[D].长春:吉林大学,2008.
    [194]哈尔滨工业大学理论力学教研室.理论力学I[M].北京:高等教育出版社,2002.
    [195]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [196]王军年.电动轮独立驱动汽车差动助力转向技术研究[D].长春:吉林大学,2009.
    [197]Salaani M K, Heydinger G J, Grygier P A. Closed loop steering system model for the national advanced driving simulator[J]. SAE.2004-01-1072.
    [198]李鹏程.重型数控机床进给系统结构设计研究[D].哈尔滨:哈尔滨理工大学,2007.
    [199]MSC.Software Corporation. ADAMS/View help[M].2005.
    [200]李增刚编著ADAMS入门详解与实例[M].北京:国防工业出版社,2006.
    [201]孙桓,陈作模主编.机械原理[M].北京:高等教育出版社,2001.
    [202]程丽.五自由度并联机床冗余驱动理论与实验研究[D].秦皇岛:燕山大学,2010.
    [203]Pacejka H B, Publishers E S. Tyre and vehicle dynamics[M]. Oxford:Butterworth-Heinemann,2006.
    [204]Kuiper E, Van Oosten J J M. The PAC2002 advanced handling tire model[J]. Vehicle System Dynamics. 2007,45(SUPPL.1):153-167.
    [205]姬鹏.面向主观评价的汽车转向系统建模与仿真研究[D].长春:吉林大学,2010.
    [206]LMS Imagine SA. AMESim/Hydraulic Library Manual[M].2008.
    [207]王磊,陶梅编著.精通LabVIEW8.0[M]北京:电子工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700