siRNA沉默泛素特异性肽酶22基因对胃癌细胞增殖的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:泛素特异性肽酶22在胃癌中的表达及其临床意义
     目的:研究胃癌组织中泛素特异性肽酶22(USP22)的表达及意义。
     方法:使用免疫组化SABC法检测146例标本(100例胃癌、46例癌旁正常组织)中USP22的表达情况,并将表达情况与病例的临床病例资料相联系。
     结果:胃癌组织中USP22的阳性率为80%,阳性表达率明显高于正常组织。胃癌的分期与阳性表达呈正相关,胃癌的分化程度与阳性表达呈负相关。
     结论:USP22可能是胃癌新的分子标志物。
     第二部分:SiRNA沉默USP22基因对胃癌细胞增殖的抑制作用
     目的:研究胃癌细胞中沉默泛素特异性肽酶22(ubiquitin specific peptidase22,USP22)的表达后其增殖的影响。
     方法:设计三条siRNA及阴性siRNA针对USP22基因,采用脂质体Lipofectamine2000转染胃癌AGS细胞,Realtime-PCR检测转染后AGS细胞中USP22mRNA表达水平;Western-blot检测转染后AGS细胞中USP22蛋白质表达水平的变化情况;采用流式细胞术检测细胞周期分布变化;采用CCK8法检测细胞增殖率及抑制率。
     结果:在转染48小时后,三段干扰的片段都能分别在mRNA和蛋白水平上有效的抑制USP22的表达,其中转染USP22siRNA3后效果最明显,USP22的mRNA表达下降了80.47%±2.99%;USP22的蛋白质表达下降了79.40%±3.58%。细胞增殖明显受到抑制,USP22siRNA3组胃癌细胞增殖抑制率为27.33%±3.49%。细胞周期的检测中G0/G1期细胞增多;S期细胞减少。
     结论:采用siRNA干扰技术可以有效的下调USP22基因的表达;显著抑制胃癌AGS细胞的增殖。
Part I:Expression of USP22in gastric cancer and the clinical significance
     Objective:To investigate the expression of USP22in gastric cancer and the clinical significance.
     Methods:The expression of USP22protein was detected in100gastric cancer and46normal tissues by immunohistochemistry.
     Results:The expression of USP22was significantly higher in gastric cancer than normal tissues. And there was positive correlation with the expression level of gastric cancers and the grade of tumor, and there was a negative correlation with the expression level of gastric caners and the differentiation.
     Conclusion:USP22was a putative cancer biomarker of gastric cancer.
     Part II:SiRNA-mediated silencing of the USP22gene inhibits cell proliferation in human gastric cancer cell line AGS
     Objective:To evaluate the effect of silencing USP22by small interfering RNA (siRNA) on the proliferation of gastric cancer AGS cells.
     Methods:Three USP22siRNAs and negative siRNA were designed and transfected into gastric cancer cells for48hours via Lipofectamine2000, respectively. Quantity real-time PCR (qRT-PCR) and western-blot were utilized to detect the expression levels of USP22mRNA and protein. The rates of cell proliferation and inhibition were measured by CCK8. The distribution of cell cycle was determined by flow cytometry.
     Results:Being transfected for48hours, all of three USP22siRNAs could silence the expression of USP22gene. Being transfected the USP22siRNA3for48hours, the expression levels of USP22mRNA and protein were reduced by80.47%±2.99%and79.40%±3.58%, respectively. The inhibition of cell proliferation was significant and the inhibitory rate was27.33%±3.49%. Moreover, the gastric cancer cells which stayed in G0/G1phase were increased significantly, while those stayed in S phase were decreased significantly.
     Conclusion:The USP22siRNA could inhibit the expression of USP22gene effectively and suppress the cell growth of gastric cancer cells significantly.
引文
[1]Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol 2006; 12: 354-362.
    [2]赖少清,鞠凤环,贺舜等.902例胃癌临床流行病学特征分析.中国肿瘤2011;卷:506-508.
    [3]Shah MA, Kelsen DP. Gastric cancer:a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease. J Natl Compr Canc Netw 2010; 8:437-447
    [4]秦新裕,刘凤林.胃癌外科研究进展.中华实验外科杂志2009;卷:823-824
    [5]Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature 2009; 457:413-420
    [6]Blow N. Small RNAs:delivering the future. Nature 2007; 450:1117-1120
    [7]Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature 2009; 457:396-404
    [8]Zamore PD. RNA silencing:genomic defence with a slice of pi. Nature 2007; 446: 864-865
    [9]Check E. RNA interference:hitting the on switch. Nature 2007; 448:855-858
    [10]Chitwood DH, Timmermans MC. Small RNAs are on the move. Nature 2010; 467: 415-419
    [11]Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136:642-655
    [12]Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 2006; 20:515-524
    [13]Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004; 15: 185-197
    [14]Dorsett Y, Tuschl T. siRNAs:applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004; 3:318-329
    [15]Jiang X, Chen ZJ. The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol 2012; 12:35-48
    [16]Schaefer A, Nethe M, Hordijk PL. Ubiquitin links to cytoskeletal dynamics, cell adhesion and migration. Biochem J 2012; 442:13-25
    [17]Petroski MD. The ubiquitin system, disease, and drug discovery. BMC Biochem 2008; 9 Suppl 1:S7
    [18]Geng F, Wenzel S, Tansey WP. Ubiquitin and Proteasomes in Transcription Annu Rev Biochem 2012;
    [19]Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans 2009; 37:937-953
    [20]Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell 2009; 138:389-403
    [21]Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM, Baek KH. The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns 2006; 6:277-284
    [22]Liu YL, Yang YM, Xu H, Dong XS. Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer. J Surg Oncol 2011; 103:283-289
    [23]Zhang Y, Yao L, Zhang X, Ji H, Wang L, Sun S, Pang D. Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer. J Cancer Res Clin Oncol 2011; 137:1245-1253
    [24]Liu Y, Yang Y, Xu H, Dong X. Implication of USP22 in the regulation of BMI-1, c-Myc, p16INK4a, p14ARF, and cyclin D2 expression in primary colorectal carcinomas. Diagn Mol Pathol 2010; 19:194-200
    [25]Lv L, Xiao XY, Gu ZH, Zeng FQ, Huang LQ, Jiang GS. Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells. Mol Cell Biochem 2011; 346:11-21
    [1]陈凛,李涛.进展期胃癌外科治疗的相关问题与思考[J].中华胃肠外科杂志,2007,10(5):413-415.
    [2]骆杨,曾甫清,顾朝辉等.膀胱移行细胞癌中候选肿瘤干细胞标记物USP22mRNA水平定量分析及其与肿瘤分级的关系[J].临床泌尿外科杂志,2009,24(2):140-144.
    [3]Liu YL, Yang YM, Xu H, et al. Increased expression of ubiquitin-specific protease 22 can promote cancer progression and predict therapy failure in human colorectal cancer [J].J Gastroenterol Hepatol,2010,25(11):1800-1805.
    [4]Petroski MD. The ubiquitin system, disease, and drug discovery [J]. BMC Biochem, 2008,9Suppl 1:S7.
    [5]Dubessay P, Blaineau C, Bastien P, et al. Cell cycle-dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major Kin-13 kinesin[J]. Mol Microbiol,2006,59(4):1162-1174.
    [6]Skaar JR, Pagano M. Control of cell growth by the SCF and APC/C ubiquitin ligases [J]. Curr Opin Cell Biol,2009,21(6):816-824.
    [7]De Boeck M, Ten DP. Key role for ubiquitin protein modification in TGFbeta signal transduction [J]. Ups J Med Sci,2012.
    [8]Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation[J]. Cell Signal,2012,24(2):410-421.
    [9]Skaug B, Jiang X, Chen Z J. The role of ubiquitin in NF-kappaB regulatory pathways [J]. Annu Rev Biochem,2009,78:769-796.
    [10]Ding F, Yin Z, Wang HR. Ubiquitination in Rho signaling [J]. Curr Top Med Chem, 2011,11(23):2879-2887.
    [11]Lv L, Xiao XY, Gu ZH, et al. Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells [J]. Mol Cell Biochem,2011,346(1-2):11-21.
    [12]Atanassov BS, Dent SY. USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1 [J]. EMBO Rep,2011,12(9):924-930.
    [13]Ramakrishna S, Suresh B, Baek K H. The role of deubiquitinating enzymes in apoptosis [J]. Cell Mol Life Sci,2011,68(1):15-26.
    [14]Grillari J, Grillari-Voglauer R, Jansen-Durr P. Post-translational modification of cellular proteins by ubiquitin and ubiquitin-like molecules:role in cellular senescence and aging[J]. Adv Exp Med Biol,2010,694:172-196.
    [15]Fujita K, Srinivasula SM. Ubiquitination and TNFR1 signaling [J]. Results Probl Cell Differ,2009,49:87-114.
    [16]Nijman SM, Luna-Vargas MP, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes [J]. Cell,2005,123(5):773-786.
    [17]Hussain S, Zhang Y, Galardy PJ. DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors [J]. Cell Cycle,2009,8(11): 1688-1697.
    [18]Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome [J]. Annu Rev Biochem,2009,78:477-513.
    [19]Lee HJ, Kim MS, Shin JM, et al. The expression patterns of deubiquitinating enzymes, USP22 and Usp22 [J]. Gene Expr Patterns,2006,6(3):277-284.
    [20]Zhang XY, Varthi M, Sykes SM, et al. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression [J]. Mol Cell,2008,29(1):102-111.
    [21]Zhang XY, Pfeiffer HK, Thorne AW, et al. USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A[J]. Cell Cycle,2008,7(11):1522-1524.
    [22]Glinsky GV. Death-from-cancer signatures and stem cell contribution to metastatic cancer [J]. Cell Cycle,2005,4(9):1171-1175.
    [1]Shah M A, Kelsen D P. Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease [J]. J Natl Compr Canc Netw,2010,8(4):437-447.
    [2]吕伟,陈凛.胃癌分子靶向治疗的现状与进展[J].世界华人消化杂志,2007,15(25):2672-2678.
    [3]Wu W K, Lee C W, Cho C H, et al. RNA interference targeting raptor inhibits proliferation of gastric cancer cells[J]. Exp Cell Res,2011,317(10):1353-1358.
    [4]De Vita F, Giuliani F, Silvestris N, et al. Human epidermal growth factor receptor 2 (HER2) in gastric cancer: a new therapeutic target[J]. Cancer Treat Rev,2010,36 Suppl 3: S11-S15.
    [5]吕磊,曾甫清,唐东等,小干扰RNA特异性沉默泛素特异肽酶22基因对膀胱癌细胞增殖的抑制作用.肿瘤,2011.31(1):第17-21页.
    [6]Zhang XY, Pfeiffer HK, Thome AW, et al. USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A[J]. Cell Cycle,2008,7(11):1522-1524.
    [7]邓美洲,陶凯雄等,泛素特异性肽酶22在胃癌中的表达及其临床意义.腹部外科,2011.24(5):第302-303页.
    [8]邓美洲,陶凯雄等,siRNA沉默USP22基因对胃癌细胞增殖的抑制作用.世界华人消化杂志,2011.19(19):第1985-1989页.
    [9]Ramakrishna S, Suresh B, Baek K H. The role of deubiquitinating enzymes in apoptosis [J]. Cell Mol Life Sci,2011,68(1):15-26.
    [10]Grillari J, Grillari-Voglauer R, Jansen-Durr P. Post-translational modification of cellular proteins by ubiquitin and ubiquitin-like molecules: role in cellular senescence and aging[J]. Adv Exp Med Biol,2010,694:172-196.
    [11]Kimura Y, Tanaka K. Regulatory mechanisms involved in the control of ubiquitin homeostasis [J]. J Biochem,2010,147(6):793-798.
    [12]Fang Y, Fu D, Shen X Z. The potential role of ubiquitin c-terminal hydrolases in oncogenesis [J]. Biochim Biophys Acta,2010,1806(1):1-6.
    [13]Bardag-Gorce F. Effects of ethanol on the proteasome interacting proteins[J]. World J Gastroenterol,2010,16(11):1349-1357.
    [14]Tsukamoto S, Yokosawa H. Inhibition of the ubiquitin-proteasome system by natural products for cancer therapy [J]. Planta Med,2010,76(11):1064-1074.
    [15]Shabek N, Ciechanover A. Degradation of ubiquitin:the fate of the cellular reaper [J]. Cell Cycle,2010,9(3):523-530.
    [16]Katz E J, Isasa M, Crosas B. A new map to understand deubiquitination [J]. Biochem Soc Trans,2010,38(Pt 1):21-28.
    [17]Fujita K, Srinivasula S M. Ubiquitination and TNFR1 signaling [J]. Results Probl Cell Differ,2009,49:87-114.
    [18]Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome [J]. Annu Rev Biochem,2009,78:477-513.
    [19]Reyes-Turcu F E, Ventii K H, Wilkinson K D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes[J]. Annu Rev Biochem,2009,78:363-397.
    [20]Hussain S, Zhang Y, Galardy P J. DUBs and cancer:the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors [J]. Cell Cycle,2009,8(11): 1688-1697.
    [21]Nijman S M, Luna-Vargas M P, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes [J]. Cell,2005,123(5):773-786.
    [22]Lee H J, Kim M S, Shin J M, et al. The expression patterns of deubiquitinating enzymes, USP22 and Usp22 [J]. Gene Expr Patterns,2006,6(3):277-284.
    [23]骆杨,曾甫清,顾朝辉等.膀胱移行细胞癌中候选肿瘤干细胞标记物 USP22mRNA水平定量分析及其与肿瘤分级的关系[J].临床泌尿外科杂志,2009,24(2):140-144.
    [24]Liu Y L, Yang Y M, Xu H, et al. Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer [J]. J Surg Oncol,2010.
    [25]Zhang X Y, Varthi M, Sykes S M, et al. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression.[J]. Molecular cell,2008,29(1):102-111.
    [26]吕磊,杨军,王智宇等.非对称性小RNA干扰技术介导的USP22基因沉默的研究[J].中华实验外科杂志,2010,27(10):1511-1513.
    [27]Baker S P, Grant P A. The SAGA continues:expanding the cellular role of a transcriptional co-activator complex [J]. Oncogene,2007,26(37):5329-5340.
    [28]Rodriguez-Navarro S. Insights into SAGA function during gene expression [J]. EMBO Rep,2009,10(8):843-850.
    [29]Bhaumik S R. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID [J]. Biochim Biophys Acta,2011,1809(2):97-108.
    [30]Pijnappel W W, Timmers H T. Dubbing SAGA unveils new epigenetic crosstalk [J]. Mol Cell,2008,29(2):152-154.
    [31]Atanassov B S, Evrard Y A, Multani A S, et al. Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance [J]. Mol Cell,2009,35(3):352-364.
    [32]Zhao Y, Lang G, Ito S, et al. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing [J]. Mol Cell,2008,29(1):92-101.
    [33]Frappier L, Verrijzer C P. Gene expression control by protein deubiquitinases [J]. Curr Opin Genet Dev,2011,21(2):207-213.
    [34]Awakumov N, Nourani A, Cote J. Histone chaperones: modulators of chromatin marks [J]. Mol Cell,2011,41(5):502-514.
    [1]Hershko A. Ubiquitin: roles in protein modification and breakdown. Cell 1983; 34: 11-12
    [2]Bemassola F, Karin M, Ciechanover A, Melino G. The HECT family of E3 ubiquitin ligases:multiple players in cancer development Cancer Cell 2008; 14:10-21
    [3]Pickart CM. Back to the future with ubiquitin. Cell 2004; 116:181-190
    [4]Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 2006; 8:398-406
    [5]Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6:9-20
    [6]Skaug B, Jiang X, Chen ZJ. The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 2009; 78:769-796
    [7]Hicke L, Schubert HL, Hill CP. Ubiquitin-binding domains. Nat Rev Mol Cell Biol 2005; 6:610-621
    [8]Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006; 22:245-257
    [9]Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15:535-548
    [10]Elsasser S, Finley D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 2005; 7:742-749
    [11]Kim HM, Yu Y, Cheng Y. Structure characterization of the 26S proteasome. Biochim Biophys Acta 2011; 1809:67-79
    [12]Li W, Ye Y. Polyubiquitin chains:functions, structures, and mechanisms. Cell Mol Life Sci 2008; 65:2397-2406
    [13]Voorhees PM, Orlowski RZ. The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 2006; 46:189-213
    [14]Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans 2009; 37:937-953
    [15]Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78:477-513
    [16]Elsasser S, Finley D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 2005; 7:742-749
    [17]Borissenko L, Groll M.20S proteasome and its inhibitors:crystallographic knowledge for drug development Chem Rev 2007; 107:687-717
    [18]Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 2005; 20:687-698
    [19]Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 2008; 30:360-368
    [20]Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J Biol Chem 2008; 283:31813-31822
    [21]Lee C, Prakash S, Matouschek A. Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel. JBiol Chem 2002; 277:34760-34765
    [22]Goldberg AL, Cascio P, Saric T, Rock KL. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 2002; 39: 147-164
    [23]Geng F, Wenzel S, Tansey WP. Ubiquitin and Proteasomes in Transcription. Annu Rev Biochem 2012;
    [24]van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM, Burgering BM. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 2006; 8:1064-1073
    [25]Wilcox AJ, Laney JD. A ubiquitin-selective AAA-ATPase mediates transcriptional switching by remodelling a repressor-promoter DNA complex. Nat Cell Biol 2009; 11: 1481-1486
    [26]Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution Nature 1997; 389:251-260
    [27]Kouzarides T. Snapshot: Histone-modifying enzymes. Cell 2007; 128:802
    [28]Kouzarides T. Chromatin modifications and their function. Cell 2007; 128:693-705
    [29]Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal 2012; 24:410-421
    [30]Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 2003; 17:2733-2740
    [31]Weake VM, Workman JL. Histone ubiquitination: triggering gene activity. Mol Cell 2008; 29:653-663
    [32]Osley MA. Regulation of histone H2A and H2B ubiquitylation. Brief Funct Genomic Proteomic 2006; 5:179-189
    [33]Geng F, Tansey WP. Polyubiquitylation of histone H2B. Mol Biol Cell 2008; 19: 3616-3624
    [34]Robzyk K, Recht J, Osley MA. Rad6-dependent ubiquitination of histone H2B in yeast Science 2000; 287:501-504
    [35]Minsky N, Shema E, Field Y, Schuster M, Segal E, Oren M. Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol 2008; 10:483-488
    [36]Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 2009; 137:459-471
    [37]Zhang F, Yu X. WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell 2011; 41:384-397
    [38]Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 2011; 7:113-119
    [39]Formosa T. The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta 2012; 1819:247-255
    [40]Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 2006; 125:703-717
    [41]Fleming AB, Kao CF, Hillyer C, Pikaart M, Osley MA. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation Mol Cell 2008; 31:57-66
    [42]Wyce A, Xiao T, Whelan KA, Kosman C, Walter W, Eick D, Hughes TR, Krogan NJ, Strahl BD, Berger SL. H2B ubiquitylation acts as a barrier to Ctkl nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol Cell 2007; 27:275-288
    [43]Schaefer A, Nethe M, Hordijk PL. Ubiquitin links to cytoskeletal dynamics, cell adhesion and migration. Biochem J 2012; 442:13-25
    [44]Huang F, Goh LK, Sorkin A. EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci U S A 2007; 104:16904-16909
    [45]Haugsten EM, Malecki J, Bjorklund SM, Olsnes S, Wesche J. Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. Mol Biol Cell 2008; 19:3390-3403
    [46]Marchese A, Raiborg C, Santini F, Keen JH, Stenmark H, Benovic JL. The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev Cell 2003; 5:709-722
    [47]Huttenlocher A, Horwitz AR. Integrins in cell migration. Cold Spring Harb Perspect Biol 2011; 3:a5074
    [48]Lobert VH, Stenmark H. Ubiquitination of alpha-integrin cytoplasmic tails. Commun Integr Biol 2010; 3:583-585
    [49]Kaabeche K, Guenou H, Bouvard D, Didelot N, Listrat A, Marie PJ. Cbl-mediated ubiquitination of alpha5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. J Cell Sci 2005; 118:1223-1232
    [50]Lobert VH, Brech A, Pedersen NM, Wesche J, Oppelt A, Malerod L, Stenmark H. Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell 2010; 19:148-159
    [51]Kaabeche K, Lemonnier J, Le Mee S, Caverzasio J, Marie PJ. Cbl-mediated degradation of Lyn and Fyn induced by constitutive fibroblast growth factor receptor-2 activation supports osteoblast differentiation. J Biol Chem 2004; 279:36259-36267
    [52]Lobert VH, Brech A, Pedersen NM, Wesche J, Oppelt A, Malerod L, Stenmark H. Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell 2010; 19:148-159
    [53]Huveneers S, Danen EH. Adhesion signaling-crosstalk between integrins, Src and Rho. J Cell Sci 2009; 122:1059-1069
    [54]Lobert VH, Brech A, Pedersen NM, Wesche J, Oppelt A, Malerod L, Stenmark H. Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell 2010; 19:148-159
    [55]Dallaire F, Blanchette P, Groitl P, Dobner T, Branton PE. Identification of integrin alpha3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3 ubiquitin ligase complex. J Virol 2009; 83:5329-5338
    [56]Thomas M, Felcht M, Kruse K, Kretschmer S, Deppermann C, Biesdorf A, Rohr K, Benest AV, Fiedler U, Augustin HG. Angiopoietin-2 stimulation of endothelial cells induces alphavbeta3 integrin internalization and degradation. J Biol Chem 2010; 285: 23842-23849
    [57]Harris TJ, Tepass U. Adherens junctions:from molecules to morphogenesis. Nat Rev Mol Cell Biol 2010; 11:502-514
    [58]Palacios F, Tushir JS, Fujita Y, D'Souza-Schorey C. Lysosomal targeting of E-cadherin:a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 2005; 25:389-402
    [59]Shen Y, Hirsch DS, Sasiela CA, Wu WJ. Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. J Biol Chem 2008; 283:5127-5137
    [60]Swaminathan G, Cartwright CA. Rackl promotes epithelial cell-cell adhesion by regulating E-cadherin endocytosis. Oncogene 2012; 31:376-389
    [61]Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF, Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ, Geng JG. Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res 2011; 21:609-626
    [62]Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, Liu L, Ding M, Peng HB, Shao F. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement Mol Cell 2009; 35:841-855
    [63]Nethe M, Hordijk PL. The role of ubiquitylation and degradation in RhoGTPase signalling. J Cell Sci 2010; 123:4011-4018
    [64]Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, Brennwald PJ, Burridge K. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDIl. Nat Cell Biol 2010; 12:477-483
    [65]Skaar JR, Pagano M. Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr Opin Cell Biol 2009; 21:816-824
    [66]Liu S, Yamauchi H. p27-Associated G1 arrest induced by hinokitiol in human malignant melanoma cells is mediated via down-regulation of pRb, Skp2 ubiquitin ligase, and impairment of Cdk2 function Cancer Lett 2009; 286:240-249
    [67]Jonason JH, Gavrilova N, Wu M, Zhang H, Sun H. Regulation of SCF(SKP2) ubiquitin E3 ligase assembly and p27(KIP1) proteolysis by the PTEN pathway and cyclin D1. Cell Cycle 2007; 6:951-961
    [68]Anwar A, Norris DA, Fujita M. Ubiquitin proteasomal pathway mediated degradation of p53 in melanoma Arch Biochem Biophys 2011; 508:198-203
    [69]Jonason JH, Gavrilova N, Wu M, Zhang H, Sun H. Regulation of SCF(SKP2) ubiquitin E3 ligase assembly and p27(KIP1) proteolysis by the PTEN pathway and cyclin D1. Cell Cycle 2007; 6:951-961
    [70]Yang Y, Li CC, Weissman AM. Regulating the p53 system through ubiquitination Oncogene 2004; 23:2096-2106
    [71]Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006; 6:909-923
    [72]Yang W, Rozan LM, McDonald ER, Navaraj A, Liu JJ, Matthew EM, Wang W, Dicker DT, El-Deiry WS. CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation JBiol Chem 2007; 282:3273-3281
    [73]Singh RK, Iyappan S, Scheffher M. Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of Mdm2. J Biol Chem 2007; 282: 10901-10907
    [74]Kawai H, Lopez-Pajares V, Kim MM, Wiederschain D, Yuan ZM. RING domain-mediated interaction is a requirement for MDM2's E3 ligase activity. Cancer Res 2007; 67:6026-6030
    [75]Onel K, Cordon-Cardo C. MDM2 and prognosis. Mol Cancer Res 2004; 2:1-8
    [76]Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, Rodriguez-Galindo C, Quarto M, Francoz S, Mendrysa SM, Guy RK, Marine JC, Jochemsen AG, Dyer MA. Inactivation of the p53 pathway in retinoblastoma Nature 2006; 444:61-66
    [77]Yang Y, Kitagaki J, Wang H, Hou DX, Perantoni AO. Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci 2009; 100:24-28
    [78]Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994; 78:67-74
    [79]Ponce-Castaneda MV, Lee MH, Latres E, Polyak K, Lacombe L, Montgomery K, Mathew S, Krauter K, Sheinfeld J, Massague J, Et A. p27Kip1:chromosomal mapping to 12p12-12p13.1 and absence of mutations in human tumors. Cancer Res 1995; 55: 1211-1214
    [80]Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1:193-199
    [81]Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W. Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA 2001; 98: 5043-5048
    [82]Minella AC, Welcker M, Clurman BE. Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci U S A 2005; 102:9649-9654
    [83]Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, Savage K, Gillett CE, Schmitt FC, Ashworth A, Tutt AN. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 2007; 26:2126-2132
    [84]Atipairin A, Canyuk B, Ratanaphan A. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by the platinum-based anticancer drugs. Breast Cancer Res Treat 2011; 126:203-209
    [85]Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM. Cancer-predisposing mutations within the RING domain of BRCA1:loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A 2001; 98: 5134-5139
    [86]Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM. Cancer-predisposing mutations within the RING domain of BRCA1:loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A 2001; 98: 5134-5139
    [87]Yang Y, Kitagaki J, Wang H, Hou DX, Perantoni AO. Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci 2009; 100:24-28
    [88]Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anaemia Nat Rev Genet 2001; 2:446-457
    [89]Meetei AR, de Winter JP, Medhurst AL, Wallisch M, Waisfisz Q, van de Vrugt HJ, Oostra AB, Yan Z, Ling C, Bishop CE, Hoatlin ME, Joenje H, Wang W. A novel ubiquitin ligase is deficient in Fanconi anemia Nat Genet 2003; 35:165-170
    [90]Kennedy RD, D'Andrea AD. The Fanconi Anemia/BRCA pathway:new faces in the crowd Genes Dev 2005; 19:2925-2940
    [91]Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007; 8:735-748
    [92]Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78:363-397
    [93]Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ, Eilers M. The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 2007; 9:765-774
    [94]Popov N, Herold S, Llamazares M, Schulein C, Eilers M. Fbw7 and Usp28 regulate myc protein stability in response to DNA damage. Cell Cycle 2007; 6:2327-2331
    [95]Zhang XY, Pfeiffer HK, Thome AW, McMahon SB. USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle 2008; 7:1522-1524
    [96]Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 2005; 6:599-609
    [97]Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006; 22:159-180
    [98]Pickart CM, Eddins MJ. Ubiquitin:structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695:55-72
    [99]Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007; 315:201-205
    [100]Jang MJ, Baek SH, Kim JH. UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction Cancer Lett 2011; 302:128-135
    [101]Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ, Lee KJ. Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene 2009; 28: 117-127
    [102]Li Z, Wang D, Na X, Schoen SR, Messing EM, Wu G. Identification of a deubiquitinating enzyme subfamily as substrates of the von Hippel-Lindau tumor suppressor. Biochem Biophys Res Commun 2002; 294:700-709
    [103]Yuasa-Kawada J, Kinoshita-Kawada M, Rao Y, Wu JY. Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proc Natl Acad Sci USA 2009; 106:14530-14535
    [104]de la Vega M, Kelvin AA, Dunican DJ, McFarlane C, Burrows JF, Jaworski J, Stevenson NJ, Dib K, Rappoport JZ, Scott CJ, Long A, Johnston JA. The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility. Nat Commun 2011; 2:259
    [105]Gao J, Huo L, Sun X, Liu M, Li D, Dong JT, Zhou J. The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration.J Biol Chem 2008; 283: 8802-8809
    [106]Wickstrom SA, Masoumi KC, Khochbin S, Fassler R, Massoumi R. CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin.EMBO J 2010; 29:131-144
    [107]Kaluza D, Kroll J, Gesierich S, Yao TP, Boon RA, Hergenreider E, Tjwa M, Rossig L, Seto E, Augustin HG, Zeiher AM, Dimmeler S, Urbich C. Class Ⅱb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin.EMBO J 2011; 30: 4142-4156
    [108]Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR, Yao TP, Lane WS, Seto E. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 2007; 27:197-213
    [109]Lee JY, Yao TP. Quality control autophagy: A joint effort of ubiquitin, protein deacetylase and actin cytoskeleton. Autophagy 2010; 6:
    [110]Ishii Y, Waxman S, Germain D. Targeting the ubiquitin-proteasome pathway in cancer therapy. Anticancer Agents Med Chem 2007; 7:359-365
    [111]Adams J, Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 2004; 22:304-311
    [112]Leonard JP, Furman RR, Coleman M. Proteasome inhibition with bortezomib:a new therapeutic strategy for non-Hodgkin's lymphoma Int J Cancer 2006; 119:971-979
    [113]Nencioni A, Grunebach F, Patrone F, Ballestrero A, Brossart P. Proteasome inhibitors:antitumor effects and beyond Leukemia 2007; 21:30-36
    [114]Kitagaki J, Agama KK, Pommier Y, Yang Y, Weissman AM. Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2. Mol Cancer Ther 2008; 7: 2445-2454
    [115]Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV, Safiran YJ, Oberoi P, Kenten JH, Phillips AC, Weissman AM, Vousden KH. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 2005; 7: 547-559
    [116]Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li CC, Kenten JH, Beutler JA, Vousden KH, Weissman AM. Inhibitors of ubiquitin-activating enzyme (El), a new class of potential cancer therapeutics. Cancer Res 2007; 67:9472-9481
    [1]Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. [J]. Semin Diagn Pathol,2006,23(2):70-83.
    [2]Rubin BP, Heinrich MC, Corless CL. Gastrointestinal stromal tumour. [J]. Lancet,2007, 369(9574):1731-1741.
    [3]Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. [J]. Hum Pathol,2002,33(5):459-465.
    [4]Demetri GD, Baker LH, Benjamin RS, et al. Soft tissue sarcoma.[J]. J Natl Compr Canc Netw,2007,5(4):364-399.
    [5]Chatzipantelis P, Salla C, Karoumpalis I, et al. Endoscopic ultrasound-guided fine needle aspiration biopsy in the diagnosis of gastrointestinal stromal tumors of the stomach. A study of 17 cases.[J]. J Gastrointestin Liver Dis,2008,17(1):15-20.
    [6]Dematteo RP, Gold JS, Saran L, et al. Tumor mitotic rate, size, and location independently predict recurrence after resection of primary gastrointestinal stromal tumor (GIST).[J]. Cancer,2008,112(3):608-615.
    [7]Dematteo RP, Ballman KV, Antonescu CR, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial.[J]. Lancet,2009,373(9669):1097-1104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700