顺硝烯新烟碱杀虫剂的同位素标记合成、手性分离鉴定及土壤中的归趋研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哌虫啶和环氧虫啶是具有显著活性的顺硝烯新烟碱类化合物,具有良好的市场前景。目前,哌虫啶因对抗性褐飞虱的高活性,已获得临时登记,由华东理工大学和江苏克胜联合开发。环氧虫啶也因其对抗性褐飞虱和白粉虱的高效性,由华东理工大学、上海生农生化及美国富美实公司的三方合作进行商品化开发。为了进一步研究哌虫啶和环氧虫啶的作用靶标、作用机理、代谢过程、环境行为与归趋、安全性评价和使用技术等,本文研究了其放射性及稳定同位素的标记合成,为借助同位素示踪与波谱、质谱及现代分子生物学等相关技术,深入、系统进行上述研究提供先决条件。
     (1)结合放射性同位素原料供应和合成方法,设计了三条中间体6-Cl-PMNI的微量或半微量合成路线,分别以硼氢化钠、硝基甲烷、乙二胺盐酸盐为起始原料。化合物6-Cl-PMNI与巴豆醛成环、正丙醇醚化得到产物哌虫啶,或直接与丁二醛环合得到环氧虫啶。对微量合成路线进行了优化,提高起始原料的利用率,并最终应用于放射性及稳定同位素的合成,得到4个放射性标记化合物和4个稳定同位素标记化合物。放射性化合物经核磁和质谱结构鉴定,化学和放化纯度分析,确定比活度;稳定同位素的引入也得到同位素核磁确认。
     (2)通过手性制备HPLC对哌虫啶和环氧虫啶的异构体进行拆分,分离得到目标光学纯异构体,手性HPLC分析其光学纯度大于99%。异构体经1H NMR、13C NMR和2D HSQC和HMBC对其进行碳氢归属,确证哌虫啶和环氧虫啶化学结构;通过2DNOESY分析其空间构型,推测对映(差向)异构体之间的构型差异性。获得哌虫啶4个异构体和环氧虫啶2个异构体的单晶,确认异构体之间的空间构型差异性。最后,通过研究各异构体在有机溶剂、磷酸盐缓冲液和CaCl2水溶液中的稳定性,模拟哌虫啶和环氧虫啶异构体在手性分析、农药剂型和土壤中代谢过程中的手性变化,以寻找较稳定的分析和处理手性化合物的溶剂环境。
     (3)研究14C标记的环氧虫啶及其异构体在淹水胁迫条件下在土壤中的归趋,比较其在不同土壤中可提态残留(ER)、结合态残留(BR)和矿化的差异。结果表明:100天培养结束,ER在三种土壤中均呈现减小趋势,三种土中BR随时间显著增加,矿化累积量也不断增加,但不同土壤间差异显著,与部分理化性质呈线性相关。BR和矿化在灭菌和非灭菌条件差异显著,消旋体和2个异构体之间的ER、BR和矿化没有明显的差异。这些结果有助于推进环氧虫啶的环境风险评估和商业化进程。
Paichongding and Cycloxaprid are two novel cis-neonicotinoids with good industrialisation prospects for their high activities. Due to higher activity against imidacloprid-resistant brown planthopper (nilaparvata lugens), paichongding was jointly developed by East China University of Science and Technology (ECUST) and Jiangsu Kwin Company. Cycloxaprid has high activities against imidacloprid-resistant brown planthopper and whitefly (besimia tebaci), it has already obtained joint efforts from ECUST, Shanghai Shengnong Pesticide Co. Ltd and FMC Corporation. To improve the studies of modes of action, metabolism environment behavior, safety evolution and application, radio and stable isotopic synthesis of paichongding and cycloxaprid were studied, which will facilitate future research combined with isotopic tracer, high-resolution spectroscopy instrument, molecular biology and other related technologies. The contents were as follows:
     1) Semi-/micro-syntheses of6-Cl-PMNI were performed using three commercial radio or stable isotope labeled starting materials, NaBH4, nitromethane and ethylenediamine dihydrochloride, respectively. Cyclization of6-C1-PMNI with crotonaldehyde followed by etherification with propanol, or reaction with succinaldehyde affords paichongding or cycloxaprid, respectively. Four radio or stable isotope labeled compounds were obtained under the optimizing reaction condition. Chemical and radiochemical purities and special activities of radiolabeled compound were determined by HPLC or HPLC-LSC. All labeled compounds were characterized by1H,13C NMR or MS.
     2) Isomers of paichongding or cycloxaprid were separated by chiral HPLC with optical purities over99%. Chemical structures of these chiral isomers were characterized by1H,13C NMR,2D HSQC and HMBC. Configuration differences in four isomers of paichongding and two isomers of cycloxaprid were analyzed by2D NOESY, and finally determined by crystal structures. Then, chiral stability of the isomers in organic solvents, buffer solutions or soil water was explored, to stimulate the process of enantiomers analysis, pesticide formulation or soil metabolism research, and find suitable solvents for analysis and sample treatment.
     3)14C labeled cycloxaprid and its isomers were used to understand the transformation of cycloxaprid in flooded soils, and their differences in extractable residues (ER), bound residues (BR) and mineralization were compared. After100d incubation, ER for14C labels followed a similar dissipation trend, BR increased obviously with time, and mineralization to CO2also increased cumulatively. All these changed were depended closely on the soil type and showed correlation coefficients with properties of the soils. No significant difference in ER, BR and mineralization were observed between two isomers and racemates. All these findings would promote the process of environment risk assessment and commercialization.
引文
[1]苏少泉.植物学.除草剂作用靶标与新品种创制.化学工业出版社:2001.
    [2]Devine, M.; Duke, S.; Fedtke, C. Oxygen toxicity and herbicidal action. Physiology of Herbicide Action. Englewood Cliffs, NJ:Prentice Hall.1993,177-188.
    [3]Singh, B. K.; Walker, A.; Morgan, J. A. W.; Wright, D. J. Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Applied and environmental microbiology.2004,70 (8):4855-4863.
    [4]Singh, B. K.; Walker, A.; Morgan, J. A. W.; Wright, D. J. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Applied and environmental microbiology.2003,69 (9):5198-5206.
    [5]Atallah, Y. H.; Dorough, H. W. Insecticide residues in cigarette smoke. Transfer and fate in rats. Journal of Agricultural and Food Chemistry.1975,23 (1):64-71.
    [6]贾明宏,李本昌.农药学研究的重要手段-放射性同位素示踪技术.农药科学与管理.1996,17(4):14-19.
    [7]贾明宏,李本昌.示踪分析法研究农药残留与代谢.农药科学与管理.1999,(A05):21-26.
    [8]Sree Ramulu, S. Isotope in Agriculture. Oxford & IBH Publishing Co., New Delhi, Bombay, Calcutta, India:1982.
    [9]陈子元.不断开创我国同位素示踪技术新体系.核农学报.2003,17(5):325-327.
    [10]金守鸣FAO/IAEA "土壤农药结合残留量测定的标准方案”及其联合试验.核农学通报.1987,3.
    [11]谢学民,陈子元.核农学论文选集.Z杭州:浙江教育出版社.1998.
    [12]Jennings, W. A. Evolution over the past century of quantities and units in radiation dosimetry. Journal of Radiological Protection.2007,27 (1):5.
    [13]Wambersie, A. The role of the ICRU in quality assurance in radiation therapy. International Journal of Radiation Oncology Biology Physics.1984,10:81-86.
    [14]Yang, Z. M.; Ye, Q. F.; Lu, L. Synthesis of herbicidal ZJ0273 labeled with tritium and carbon-14. Journal of Labelled Compounds and Radiopharmaceuticals.2008,51 (4):182-186.
    [15]Teebor, G. W.; Frenkel, K.; Goldstein, M. S. Ionizing radiation and tritium transmutation both cause formation of 5-hydroxymethyl-2'-deoxyuridine in cellular DNA. Proceedings of the National Academy of Sciences.1984,81 (2):318-321.
    [16]Zolotarev, Y. A.; Dadayan, A.; Bocharov, E.; Borisov, Y. A.; Vaskovsky, B.; Dorokhova, E.; Myasoedov, N. New development in the tritium labelling of peptides and proteins using solid catalytic isotopic exchange with spillover-tritium. Amino Acids.2003,24 (3):325-333.
    [17]Elmore, C. S. The use of isotopically labeled compounds in drug discovery. Annual Reports in Medicinal Chemistry.2009,44:515-534.
    [18]Maxwell, B. D.; Bronstein, J. C. An improved synthesis of UDP-3-O-acyl-N-[3H-acetyl] glucosamine:a probe for inhibitors of LpxC in gram-negative bacteria. Journal of Labelled Compounds and Radiopharmaceuticals.2005,48 (14):1049-1054.
    [19]Bukowski, J.; Kanski, R.; Kanska, M. Carbon-14 kinetic isotope effects in the debromination of dibromocinnamic acid. Journal of radioanalytical and nuclear chemistry. 2002,251 (1):101-104.
    [20]Kamlage, B.; Blaut, M. Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups. Journal of bacteriology.1993,175 (10): 3043-3050.
    [21]Blakley, R. The interconversion of serine and glycine:role of pteroylglutamic acid and other cofactors. Biochemical Journal.1954,58 (3):448.
    [22]WILES, C.; WATTS, P. The scale-up of organic synthesis using micro reactors. Chimica oggi-Chemistry Today.2010,28:3-5.
    [23]Glasgow, G. P. Radiation Protection Instrumentation. Wiley Online Library:1988.
    [24]French, T.; Popjak, G. Biological synthesis of lactose from carbon-14 glucose. Nature. 1952,169:71.
    [25]Gevao, B.; Mordaunt, C.; Semple, K. T.; Piearce, T. G.; Jones, K. C. Bioavailability of nonextractable (bound) pesticide residues to earthworms. Environmental science & technology.2001,35 (3):501-507.
    [26]Barriuso, E.; Benoit, P.; Dubus, I. G. Formation of pesticide nonextractable (bound) residues in soil:magnitude, controlling factors and reversibility. Environmental science & technology.2008,42 (6):1845-1854.
    [27]Bernal, J.; Jimenez, J.; Rivera, J. M.; Toribio, L.; del Nozal, M. J. On-line solid-phase extraction coupled to supercritical fluid chromatography with diode array detection for the determination of pesticides in water. Journal of Chromatography A.1996,754 (1):145-157.
    [28]MacCoss, M. J.; Wu, C. C.; Matthews, D. E.; Yates Ⅲ, J. R. Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. Analytical chemistry.2005,77 (23):7646-7653.
    [29]Barnidge, D. R.; Goodmanson, M. K.; Klee, G. G.; Muddiman, D. C. Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-MS/MS using protein cleavage and isotope dilution mass spectrometry. Journal of proteome research.2004, 3 (3):644-652.
    [30]Yang, Z. M.; Ji, Z. Q.; Ye, Q. F.; Wu, W. J. Synthesis of 6β-([1-14C]propoxy) celangulin V. Journal of Labelled Compounds and Radiopharmaceuticals.2008,51 (2):109-112.
    [31]Yang, Z. M.; Wang, W.; Han, A. L.; Ye, Q. F.; Lu, L. Determination of herbicide ZJ0273 residue in rapeseed by radioisotopic tracing method. Food Chemistry.2009,114 (1):300-305.
    [32]Wang, H.; Ye, Q.; Yue, L.; Yu, Z.; Han, A.; Yang, Z.; Lu, L. Kinetics of extractable residue, bound residue and mineralization of a novel herbicide, ZJ0273, in aerobic soils. Chemosphere.2009,76:1036-1040.
    [33]Wang, H.; Ye, Q.; Yue, L.; Han, A.; Yu, Z.; Wang, W.; Yang, Z.; Lu, L. Fate characterization of a novel herbicide ZJ0273 in aerobic soils using multi-position 14C labeling. Sci. Total Environ.2009,407:4134-4139.
    [34]Han, A.; Yue, L.; Li, Z.; Wang, H.; Wang, Y.; Ye, Q.; Lu, L.; Gan, J. Plant availability and phytotoxicity of soil bound residues of herbicide ZJ0273, a novel acetolactate synthase potential inhibitor. Chemosphere.2009,77 (7):955-961.
    [35]Wang, W.; Ye, Q. F.; Ding, W.; Han, A. L.; Wang, H. Y.; Lu, L.; Gan, J. Influence of Soil Factors on the Dissipation of a New Pyrimidynyloxybenzoic Herbicide ZJ0273. Journal of agricultural and food chemistry.2010,58 (5):3062-3067.
    [36]Ishaaya, I.; Nauen, R.; Horowitz, A. R. Insecticides design using advanced technologies. Springer:2007.
    [37]Ohkawa, H.; Miyagawa, H.; Lee, P. W. Pesticide chemistry:crop protection, public health, environmental safety. Wiley-VCH:2007.
    [38]Bai, D.; Lummis, S. C. R.; Leicht, W.; Breer, H.; Sattelle, D. B. Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pesticide science.1991,33 (2):197-204.
    [39]Yamamoto, I.; Casida, J. E. Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer Verlag:1999.
    [40]Talley, T. T.; Harel, M.; Hibbs, R. E.; Radic, Z.; Tomizawa, M.; Casida, J. E.; Taylor, P. Atomic interactions of neonicotinoid agonists with AChBP:molecular recognition of the distinctive electronegative pharmacophore. Proceedings of the National Academy of Sciences. 2008,105 (21):7606-7611.
    [41]Tomizawa, M.; Maltby, D.; Talley, T. T.; Durkin, K. A.; Medzihradszky, K. F.; Burlingame, A. L.; Taylor, P.; Casida, J. E. Atypical nicotinic agonist bound conformations conferring subtype selectivity. Proceedings of the National Academy of Sciences.2008,105 (5):1728-1732.
    [42]Ohno, I.; Tomizawa, M.; Durkin, K. A.; Naruse, Y.; Casida, J. E.; Kagabu, S. Molecular features of neonicotinoid pharmacophore variants interacting with the insect nicotinic receptor. Chemical research in toxicology.2009,22 (3):476-482.
    [43]Tomizawa, M.; Casida, J. E. Molecular recognition of neonicotinoid insecticides:the determinants of life or death. Accounts of chemical research.2008,42 (2):260-269.
    [44]J eschke, P.; Nauen, R. Neonicotinoids-from zero to hero in insecticide chemistry. Pest management science.2008,64 (11):1084-1098.
    [45]Kagabu, S.; Itazu, Y.; Nishimura, K. Preparation of alkylene-tethered acyclic divalent neonicotinoids and their insecticidal and neuroblocking activities for American cockroach (Periplaneta americana L.). Journal of Pesticide Science.2004,29 (1):40-42.
    [46]Ohno, I.; Tomizawaa, M.; Durkin, K. A.; Casida, J. E.; Kagabu, S. Bis-neonicotinoid insecticides:Observed and predicted binding interactions with the nicotinic receptor. Bioorganic & medicinal chemistry letters.2009,19(13):3449-3452.
    [47]Ohno, I.; Hirata, K.; Ishida, C.; Ihara, M.; Matsuda, K.; Kagabu, S. Proinsecticide candidatesN-(5-methyl-2-oxo-1,3-dioxol-4-yl) methyl derivatives of imidacloprid and 1-chlorothiazolylmethyl-2-nitroimino-imidazolidine. Bioorganic & medicinal chemistry letters.2007,17 (16):4500-4503.
    [48]Tomizawa, M.; Kagabu, S.; Ohno, I.; Durkin, K. A.; Casida, J. E. Potency and selectivity of trifluoroacetylimino and pyrazinoylimino nicotinic insecticides and their fit at a unique binding site niche. Journal of medicinal chemistry.2008,51 (14):4213-4218.
    [49]Ohno, I.; Tomizawa, M.; Durkin, K. A.; Casida, J. E.; Kagabu, S. Neonicotinoid substituents forming a water bridge at the nicotinic acetylcholine receptor. Journal of agricultural and food chemistry.2009,57 (6):2436-2440.
    [50]Kagabu, S.; Takagi, M.; Ohno, I.; Mikawa, T.; Miyamoto, T. Crown-capped imidacloprid: A novel design and insecticidal activity. Bioorganic & medicinal chemistry letters.2009,19 (11):2947-2948.
    [51]Wang, Y.; Cheng, J.; Qian, X.; Li, Z. Actions between neonicotinoids and key residues of insect nAChR based on an ab initio quantum chemistry study:Hydrogen bonding and cooperative π-π interaction. Bioorganic & medicinal chemistry.2007,15 (7):2624-2630.
    [52]Ihara, M.; Okajima, T.; Yamashita, A.; Oda, T.; Hirata, K.; Nishiwaki, H.; Morimoto, T.; Akamatsu, M.; Ashikawa, Y.; Kuroda, S. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invertebrate Neuroscience.2008,8 (2):71-81.
    [53]Uneme, H.; Iwanaga, K.; Higuchi, N.; Minamida, I.; Okauchi, T. Preparation of (pyridylmethyl) guanidines as insecticides. Eur Pat Appl.1990.
    [54]Kiriyama, K.; Nishimura, K. Structural effects of dinotefuran and analogues in insecticidal and neural activities. Pest management science.2002,58 (7):669-676.
    [55]Jeschke, P.; Nauen, R.; Gilbert, L.; Iatrou, K.; Gill, S. Comprehensive Molecular Insect Science. Elsevier Ltd. Press, Oxford:2005.
    [56]Soloway, S.; Henry, A.; Kollmeyer, W.; Padgett, W.; Powell, J.; Roman, S.; Tiemann, C. Corey, R.; Home, C. Nitromethylene heterocycles as insecticides. Pesticide and Venom Neurotoxicology.1978:153-158.
    [57]Kagabu, S.; Medej, S. Stability comparison of imidacloprid and related compounds under simulated sunlight, hydrolysis conditions, and to oxygen. Bioscience, biotechnology, and biochemistry.1995,59 (6):980-985.
    [58]Maienfisch, P.; Huerlimann, H.; Rindlisbacher, A.; Gsell, L.; Dettwiler, H.; Haettenschwiler, J.; Sieger, E.; Walti, M. The discovery of thiamethoxam:a second-generation neonicotinoid. Pest management science.2001,57 (2):165-176.
    [59]Nauen, R.; Ebbinghaus-Kintscher, U.; Elbert, A.; Jeschke, P.; Tietjen, K. Acetylcholine receptors as sites for developing neonicotinoid insecticides. Biochemical sites of insecticide action and resistance.2001:77-105.
    [60]Ishimitsu, K.; Suzuki, J.; Ohishi, H.; Yamada, T.; Hatano, R.; Takakusa, N.; Mitsui, J. Preparation of pyridylalkylamine derivatives as insecticides. PCT Int. Appl. WO.1991, 9104965.
    [61]殷平,柏亚罗.新烟碱类杀虫剂的回顾和展望[J].世界农药.2003,25(4):8-11.
    [62]Markley, L. D.; Sparks, T. C.; Dripps, J. E.; Gifford, J. M.; Schoonover, J. R.; Neese, P. A.; Dintenfass, L. P.; Karr, L. L.; Benko, Z. L.; Amicis, C. V. D. E. COMPOUNDS USEFUL AS INSECTICIDES, COMPOUNDS USEFUL AS ACARICIDES, AND PROCESSES TO USE AND MAKE SAME. EP Patent 1,313,704:2003.
    [63]Kagabu, S.; Nishiwaki, H.; Sato, K.; Hibi, M.; Yamaoka, N.; Nakagawa, Y. Nicotinic acetylcholine receptor binding of imidacloprid-related diaza compounds with various ring sizes and their insecticidal activity against Musca domestica. Pest management science.2002, 58 (5):483-490.
    [64]Moriie, K.; Ootsu, J.; Hatsutori, Y.; Watanabe, A.; Ito, A. Preparation of nitroiminotetrahydrooxadiazines as insecticides. Jpn. Patent JP.1995,7224062.
    [65]Maienfisch, P.; Angst, M.; Brandl, F.; Fischer, W.; Hofer, D.; Kayser, H.; Kobel, W.; Rindlisbacher, A.; Senn, R.; Steinemann, A. Chemistry and biology of thiamethoxam:a second generation neonicotinoid. Pest management science.2001,57 (10):906-913.
    [66]Shiokawa, K.; Tsuboi, S.; Kagabu, S.; Sasaki, S.; Moriya, K.; Hattori, Y. US Patent 4,849,432:1987.
    [67]Tomizawa, M.; Lee, D. L.; Casida, J. E. Neonicotinoid insecticides:molecular features conferring selectivity for insect versus mammalian nicotinic receptors. Journal of agricultural and food chemistry.2000,48 (12):6016-6024.
    [68]Tomizawa, M.; Zhang, N.; Durkin, K. A.; Olmstead, M. M.; Casida, J. E. The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinic receptor:an anomaly for the nicotinoid cation-π interaction model. Biochemistry.2003,42 (25):7819-7827.
    [69]Jeschke, P.; Schindler, M.; Beck, M. In Neonicotinoid insecticides-retrospective consideration and prospects, The BCPC Conference:Pests and diseases, Volumes 1 and 2. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK,18-21 November 2002., British Crop Protection Council:2002; pp 137-144.
    [70]MORIYA, K.; SHIBUYA, K.; HATTORI, Y.; TSUBOI, S.; SHIOKAWA, K.; KAGABU, S. 1-(6-Chloronicotinyl)-2-nitroimino-imidazolidines and related compounds as potential new insecticides. Bioscience, biotechnology, and biochemistry.1992,56 (2):364-365.
    [71]KAGABU, S.; MORIYA, K.; SHIBUYA, K.; HATTORI, Y.; Tsuboi, S.; SHIOKAWA, K. l-(6-Halonicotinyl)-2-nitromethylene-imidazolidines as potential new insecticides. Bioscience, biotechnology, and biochemistry.1992,56 (2):362-363.
    [72]Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.; Huang, J. X.; Gerwick, B. C.; Babcock, J. M.; Kelley, D.; Hegde, V. B. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. Journal of agricultural and food chemistry. 2010,59 (7):2950-2957.
    [73]Tian, Z.; Shao, X.; Li, Z.; Qian, X.; Huang, Q. Synthesis, insecticidal activity, and QSAR of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification. Journal of agricultural and food chemistry.2007,55 (6): 2288-2292.
    [74]Kagabu, S.; Matsuno, H. Chloronicotinyl insecticides.8. Crystal and molecular structures of imidacloprid and analogous compounds. Journal of agricultural and food chemistry.1997,45 (1):276-281.
    [75]Matsuda, K.; Shimomura, M.; Ihara, M.; Akamatsu, M.; Sattelle, D. B. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets:electrophysiology, molecular biology, and receptor modeling studies. Bioscience, biotechnology, and biochemistry.2005,69 (8):1442-1452.
    [76]Wolf, H.; Becker, B.; Homeyer, B.; Stendel, W.1,2,3,6-tetrahydro-5-nitro-pyrimidine derivatives. Google Patents:1989.
    [77]Shiokawa, K.; Tsuboi, S.; Sasaki, S.; Moriya, K.; Hattori, Y.; Shibuya, K. Preparation of nitro-substituted heterocyclic compounds as insecticides. Eur Pat Appl EP.1988,296453.
    [78]Latli, B.; Tomizawa, M.; Casida, J. E. Synthesis of a novel [125I] neonicotinoid photoaffinity probe for the Drosophila nicotinic acetylcholine receptor. Bioconjugate chemistry.1997,8(1):7-14.
    [79]Okazawa, A.; Akamatsu, M.; Ohoka, A.; Nishiwaki, H.; Cho, W. J.; Nakagawa, Y.; Nishimura, K.; Ueno, T. Prediction of the binding mode of imidacloprid and related compounds to house-fly head acetylcholine receptors using three-dimensional QSAR analysis. Pesticide science.1999,54 (2):134-144.
    [80]Nishiwaki, H.; Nakagawa, Y.; Ueno, T.; Kagabu, S.; Nishimura, K. Insecticidal and binding activities of N3-substituted imidacloprid derivatives against the housefly Musca domestica and the α-bungarotoxin binding sites of nicotinic acetylcholine receptors. Pest management science.2001,57 (9):810-814.
    [81]钱旭红,李忠,田忠贞,黄青春,方继朝,宋恭华.硝基亚甲基衍生物及其用途,Chem Abstr,2005, pp 1709-1709.
    [82]Jeschke, P.; Nauen, R. Neonicotinoid insecticides. Comprehensive molecular insect science.2005,3:53-105.
    [83]Yamamoto, I.; Tomizawa, M.; Saito, T.; Miyamoto, T.; Walcott, E. C.; Sumikawa, K. Structural factors contributing to insecticidal and selective actions of neonicotinoids. Archives of insect biochemistry and physiology.1998,37 (1):24-32.
    [84]田忠贞.新烟碱类杀虫剂的研究.2006.
    [85]Loso, M. R.; Nugent, B. M.; Huang, J. X. Insecticidal N-substituted (heteroaryl) cycloalkyl sulfoximines. Google Patents:2009.
    [86]ZHU, Y., MULTI-SUBSTITUTED PYRIDYL SULFOXIMINES AND THEIR USE AS INSECTICIDES. WO Patent WO/2008/057,129:2008.
    [87]邵旭升.顺式硝基烯类新烟碱化合物结构多样性衍生及生物活性研究.2009.
    [88]Shao, X.; Zhang, W.; Peng, Y.; Li, Z.; Tian, Z.; Qian, X. cis-Nitromethylene neonicotinoids as new nicotinic family:Synthesis, structural diversity, and insecticidal evaluation of hexahydroimidazo [1,2-[a]] pyridine. Bioorganic & medicinal chemistry letters. 2008,18 (24):6513-6516.
    [89]徐晓勇,邵旭升,吴重言,吴伟.新颖杀虫剂-哌虫啶.世界农药.2009,31(4):1.
    [90]Shao, X.; Fu, H.; Xu, X.; Liu, Z.; Li, Z.; Qian, X. Divalent and Oxabridged Neonicotinoids Constructed by Dialdehydes and Nitromethylene Analogues of Imidacloprid: Design, Synthesis, Crystal Structure, and Insecticidal Activities. Journal of Agricultural and Food Chemistry.2009,58 (5):2696-2702.
    [91]Zhang, W.; Chen, Y.; Chen, W.; Liu, Z.; Li, Z. Designing Tetrahydroimidazo[1,2-a] pyridine Derivatives via Catalyst-free Aza-Diels-Alder Reaction (ADAR) and Their Insecticidal Evaluation. Journal of Agricultural and Food Chemistry.2010,58 (10): 6296-6299.
    [92]张文文.新烟碱类化合物结构衍生和生物活性测试研究.华东理工大学,2012.
    [93]Zhang, W.; Yang, X.; Chen, W.; Xu, X.; Li, L.; Zhai, H.; Li, Z. Design, Multicomponent Synthesis, and Bioactivities of Novel Neonicotinoid Analogues with 1,4-Dihydropyridine Scaffold. Journal of Agricultural and Food Chemistry.2009,58 (5):2741-2745.
    [94]Shao, X. S.; Fu, H.; Xu, X. L.; Liu, Z. W.; Li, Z.; Qian, X. H. Divalent and Oxabridged Neonicotinoids Constructed by Dialdehydes and Nitromethylene Analogues of Imidacloprid: Design, Synthesis, Crystal Structure, and Insecticidal Activities. Journal of agricultural and food chemistry.2009,58 (5):2696-2702.
    [95]叶振君.新烟碱类似物的合成及生物活性研究.华东理工大学,2012.
    [96]Wang, B.; Cheng, J.; Xu, Z.; Xu, X.; Shao, X.; Li, Z. Synthesis and Biological Activity Evaluation of Novel β-Substituted Nitromethylene Neonicotinoid Analogues. Molecules. 2012,17(9):10014-10025.
    [97]Xu, X.; Bao, H.; Shao, X.; Zhang, Y.; Yao, X.; Liu, Z.; Li, Z. Pharmacological characterization of cis-nitromethylene neonicotinoids in relation to imidacloprid binding sites in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology.2010,19(1):1-8.
    [98]Zhang, A.; Kaiser, H.; Maienfisch, P.; Casida, J. E. Insect nicotinic acetylcholine receptor: conserved neonicotinoid specificity of [3H] imidacloprid binding site. Journal of neurochemistry.2002,75 (3):1294-1303.
    [99]Huang, Y.; Williamson, M. S.; Devonshire, A. L.; Windass, J. D.; Lansdell, S. J.; Millar, N. S., Molecular Characterization and Imidacloprid Selectivity of Nicotinic Acetylcholine Receptor Subunits from the Peach-Potato Aphid Myzus persicae. Journal of neurochemistry. 2002,73(1):380-389.
    [100]Schippers, N.; Schwack, W., Synthesis of the 15N-labelled insecticide imidacloprid. Journal of Labelled Compounds and Radiopharmaceuticals.2006,49 (3):305-310.
    [101]Latli, B.; Casida, J. E., [3H]imidacloprid:Synthesis of a candidate radioligand for the nicotinic acetylcholine receptor. Journal of Labelled Compounds and Radiopharmaceuticals. 1992,31 (8):609-613.
    [102]Latli, B.; Than, C.; Morimoto, H.; Williams, P. G.; Casida, J. E. [6-chloro-3-pyridylmethyl-3H]Neonicotinoids as High-Affinity Radioligands for the Nicotinic Acetylcholine Receptor:Preparation Using NaB3H4 and LiB3H4. Journal of Labelled Compounds and Radiopharmaceuticals.1996,38:971-978.
    [103]Liu, M.-Y.; Latli, B.; Casida, J. E. Imidacloprid Bingding Site in Musca Nicotinic Acetylcholine Receptor:Interactions with Physostigmine and a Variety of Nicotinic Agonists with Chloropyridyl and Chlorothiazolyl Substituents. Pesticide Biochemistry and Physiology. 1995,52:170-181.
    [104]Liu, M. Y.; Casida, J. E. High Affinity Binding of [3H] Imidacloprid in the Insect Acetylcholine Receptor. Pesticide biochemistry and physiology.1993,46 (1):40-46.
    [105]Liu, M.; Lanford, J.; Casida, J. Relevance of [3H] Imidacloprid Binding Site in House Fly Head Acetylcholine Receptor to Insecticidal Activity of 2-Nitromethylene-and 2-Nitroimino-imidazolidines. Pesticide biochemistry and physiology.1993,46 (3):200-206.
    [106]Liu, M. Y.; Latli, B.; Casida, J. E. Nitromethyleneimidazolidine Radioligand ([3H] NMI):High Affinity and Cooperative Binding for House Fly Acetylcholine Receptor. Pesticide biochemistry and physiology.1994,50(2):171-182.
    [107]Liu, Z.; Williamson, M. S.; Lansdell, S. J.; Denholm, I.; Han, Z.; Millar, N. S. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proceedings of the National Academy of Sciences of the United States of America.2005,102 (24):8420-8425.
    [108]Laurent, F. M.; Rathahao, E. Distribution of [14C] imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. Journal of agricultural and food chemistry. 2003,51 (27):8005-8010.
    [109]Ishii, Y.; Kobori,I.; Araki, Y.; Kurogochi, S.; Iwaya, K.; Kagabu, S. HPLC determination of the new insecticide imidacloprid and its behavior in rice and cucumber. Journal of agricultural and food chemistry.1994,42 (12):2917-2921.
    [110]Mota-Sanchez, D.; Cregg, B.; Hoffmann, E.; Flore, J.; Wise, J. C. Penetrative and Dislodgeable Residue Characteristics of 14C-Insecticides in Apple Fruit. Journal of agricultural and food chemistry.2012,60 (12):2958-2966.
    [111]Nishiwaki, H.; Sato, K.; Nakagawa, Y.; Miyashita, M.; Miyagawa, H. Metabolism of imidacloprid in houseflies. Journal of Pesticide Science.2004,29 (2):110-116.
    [112]Suchail, S.; De Sousa, G.; Rahmani, R.; Belzunces, L. P. In vivo distribution and metabolisation of 14C-imidacloprid in different compartments of Apis mellifera L. Pest management science.2004,60 (11):1056-1062.
    [113]El-Hamady, S. E.; Kubiak, R.; Derbalah, A. S. Fate of imidacloprid in soil and plant after application to cotton seeds. Chemosphere.2008,71(11):2173-2179.
    [114]Celis, R.; Koskinen, W. C. An isotopic exchange method for the characterization of the irreversibility of pesticide sorption-desorption in soil. Journal of agricultural and food chemistry.1999,47 (2):782-790.
    [115]Byrne, F. J.; Castle, S.; Prabhaker, N.; Toscano, N. C. Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest management science.2003, 59 (3):347-352.
    [116]Bean, B. P. Nitrendipine block of cardiac calcium channels:high-affinity binding to the inactivated state. Proceedings of the National Academy of Sciences.1984,81 (20): 6388-6392.
    [117]Braestrup, C.; Squires, R. F. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H) diazepam binding. Proceedings of the National Academy of Sciences. 1977,74 (9):3805-3809.
    [118]Junker, T.; Alexy, R.; Knacker, T.; Kummerer, K. Biodegradability of 14C-labeled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations. Environmental science & technology.2006,40 (1):318-324.
    [119]Garrison, A. W. Probing the enantioselectivity of chiral pesticides. Environmental science & technology.2006,40 (1):16-23.
    [120]Hegeman, W. J. M.; Laane, R. Enantiomeric enrichment of chiral pesticides in the environment. Reviews of environmental contamination and toxicology.2002,173:85-116.
    [121]Wang, P.; Jiang, S.; Liu, D.; Zhang, H.; Zhou, Z. Enantiomeric resolution of chiral pesticides by high-performance liquid chromatography. Journal of agricultural and food chemistry.2006,54 (5):1577-1583.
    [122]Avetisov, V.; Goldanskii, V. Mirror symmetry breaking at the molecular level. Proceedings of the National Academy of Sciences.1996,93 (21):11435-11442.
    [123]企兰;江波.手性技术在药物中的应用.遵义医学院学报.2004,27(2):188-192.
    [124]Weissbuch, I.; Leiserowitz, L.; Lahav, M. Stochastic "Mirror symmetry breaking" via self-assembly, reactivity and amplification of chirality:relevance to abiotic conditions. Prebiotic Chemistry.2005:83-83.
    [125]李旭坤,刘凤玲.手性农药的合成技术.山东化工.2001,30(4):22-26.
    [126]Ye, J.; Wu, J.; Liu, W. Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. TrAC Trends in Analytical Chemistry.2009,28 (10):1148-1163.
    [127]Lee, W. Y. Environmental applications of chiral HPLC and development of new chiral stationary phases.2000.
    [128]陆文昌.β-芳基取代的手性三氮唑化合物的合成与生物活性研究.华中师范大学,2008.
    [129]Liu, W.; Gan, J.; Schlenk, D.; Jury, W. A. Enantioselectivity in environmental safety of current chiral insecticides. Proceedings of the National Academy of Sciences of the United States of America.2005,102 (3):701-706.
    [130]Sogorb, M. A.; Vilanova, E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicology letters.2002,128 (1):215-228.
    [131]Ying, Z.; Ling, L.; Kunde, L.; Xinping, Z.; Weiping, L. Enantiomer separation of triazole fungicides by high-performance liquid chromatography. Chirality.2008,21 (4): 421-427.
    [132]Cai, X.; Liu, W.; Sheng, G. Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures. Journal of agricultural and food chemistry. 2008,56 (6):2139-2146.
    [133]戴立信,陆熙炎,朱光美.手性技术的兴起.化学通报.1995,6:15-22.
    [134]Wang, Y. S.; Tai, K. T.; Yen, J. H. Separation, bioactivity, and dissipation of enantiomers of the organophosphorus insecticide fenamiphos. Ecotoxicology and environmental safety. 2004,57 (3):346-353.
    [135]徐逸楣.光学活性农药开发的现状与展望(上).农药译丛.1998,20(1):6-16.
    [136]Ariens, E. J. Stereochemistry:a source of problems in medicinal chemistry. Medicinal research reviews.2006,6 (4):451-466.
    [137]唐除痴,李煜昶,陈彬,杨华铮,金桂玉.农药化学.天津.南开大学出版社EEB:1998.
    [138]文辉,边庆花,王敏.光学纯2-氯丙酸及其酯的合成与在手性农药中的应用.农药.2004,43(8):363-366.
    [139]郑祖彪,李新军,王翠翠,邹新琢.偏氯含氟菊酯异构体的合成及其杀虫活性.有机化学.2011,31(10):1624-1630.
    [140]Martin, S. J.; Jung, R.; Garvin, C. G. A risk-benefit assessment of levofloxacin in respiratory, skin and skin structure, and urinary tract infections. Drug safety.2001,24 (3): 199-222.
    [141]王普善,王宇梅.手性药物开发战略的再认识.精细与专用化学品.2004,12(10):4-4.
    [142]Kolanowski. J. A risk-benefit assessment of anti-obesity drugs. Drug safety.1999,20 (2):119-131.
    [143]Liu, W.; Gan, J. J.; Lee, S.; Werner, I. Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin. Journal of agricultural and food chemistry.2004,52 (20): 6233-6238.
    [144]徐冬梅,许晓路,刘文丽,刘维屏.异丙甲草胺及其S型对映体对蚯蚓的急性毒性差异.中国环境科学.2009,29(9):1000-1004.
    [145]尚稚珍,张壬午,邹永华,王银淑,吴玉霞,李英,于维强,唐除痴.O-乙基O-苯基S-(β-乙氧基)乙基硫代磷酸酯的旋光异构体生物活性的立体特异性.昆虫学报.1983.26(1):10-16.
    [146]Williams, A. Opportunities for chiral agrochemicals. Pesticide science.1999,46 (1): 3-9.
    [147]Muller, T.; Kohler, H. P. E. Chirality of pollutants-effects on metabolism and fate. Applied microbiology and biotechnology.2004,64 (3):300-316.
    [148]Lewis, D. L.; Garrison, A. W.; Wommack, K. E.; Whittemore, A.; Steudler, P.; Melillo, J. Influence of environmental changes on degradation of chiral pollutants in soils. Nature.1999, 401 (6756):898-901.
    [149]Ma, Y.; Liu, W. P.; Wen, Y. Z. Enantioselective degradation of Rac-metolachlor and S-metolachlor in soil. Pedosphere.2006,16 (4):489-494.
    [150]Ye, J.; Zhao, M.; Liu, J.; Liu, W. Enantioselectivity in environmental risk assessment of modern chiral pesticides. Environmental pollution.2010,158 (7):2371-2383.
    [151]李朝阳,武彤,李景印,张炳烛.手性农药对映体选择性环境行为的研究进展.生态环境.2008,17(3):1268-1275.
    [152]Meisenheimer, J.; Lichtenstadt, L. Uber optisch-aktive Verbindungen des Phosphors. Berichte der deutschen chemischen Gesellschaft.1911,44 (1):356-359.
    [153]Collet, A.; Brienne, M. J.; Jacques, J. Optical resolution by direct crystallization of enantiomer mixtures. Chemical Reviews.1980,80 (3):215-230.
    [154]Lorenz, H.; Perlberg, A.; Sapoundjiev, D.; Elsner, M. P. Seidel-Morgenstern, A., Crystallization of enantiomers. Chemical Engineering and Processing:Process Intensification. 2006,45 (10):863-873.
    [155]Kurihara, N.; Miyamoto, J. Chirality in agrochemicals. John Wiley & Sons:1998.
    [1 56]蒋木庚,钱康南.新型旋光性农药的研究与展望.农药.2000,39(12):1-3.
    [157]周珊珊.手性有机磷农药的稳定性及立体选择性生物行为研究.浙江大学,2009.
    [158]范瑞芳.色谱技术在农药手性拆分中的应用.化学通报.2005,68(1):1-5.
    [159]张玮,张坤玲.手性有机化合物与手性拆分.石家庄职业技术学院学报.2005,17(2):62-64.
    [160]Subramanian, G. Chiral separation techniques. Wiley-VCH:2008.
    [161]Yashima, E. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A.2001,906 (1):105-125.
    [162]Okamoto, Y.; Kaida, Y. Resolution by high-performance liquid chromatography using polysaccharide carbamates and benzoates as chiral stationary phases. Journal of Chromatography A.1994,666 (1):403-419.
    [163]Liu, W.; Gan, J. J. Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction-enantioselective gas chromatography. Journal of agricultural and food chemistry.2004,52 (4):736-741.
    [164]Liu, W.; Gan, J. J. Separation and analysis of diastereomers and enantiomers of cypermethrin and cyfluthrin by gas chromatography. Journal of agricultural and food chemistry.2004,52 (4):755-761.
    [165]Lin, K.; Zhou, S.; Xu, C.; Liu, W. Enantiomeric resolution and biotoxicity of methamidophos. Journal of agricultural and food chemistry.2006,54 (21):8134-8138.
    [166]Nillos, M. G.; Qin, S.; Larive, C.; Schlenk, D.; Gan, J. Epimerization of cypermethrin stereoisomers in alcohols. Journal of agricultural and food chemistry.2009,57 (15): 6938-6943.
    [167]Qin, S.; Gan, J. Abiotic enantiomerization of permethrin and cypermethrin:Effects of organic solvents. Journal of agricultural and food chemistry.2007,55 (14):5734-5739.
    [168]Liu, W.; Qin, S.; Gan, J. Chiral stability of synthetic pyrethroid insecticides. Journal of agricultural and food chemistry.2005,53 (10):3814-3820.
    [169]Leicht, W.; Fuchs, R.; Londershausen, M. Stability and biological activity of cyfluthrin isomers. Pesticide science.1996,48 (4):325-332.
    [170]Li, Z.; Zhang, Y.; Li, Q.; Wang, W.; Li, J. Enantioselective Degradation, Abiotic Racemization, and Chiral Transformation of Triadimefon in Soils. Environmental science & technology.2011,45 (7):2797-2803.
    [171]Danel, C.; Azaroual, N.; Brunel, A.; Lannoy, D.; Odou, P.; Decaudin, B.; Vermeersch, G.; Bonte, J. P.; Vaccher, C. Configurational stability of 9-hydroxyrisperidone. Kinetics and mechanism of racemization. Tetrahedron:Asymmetry.2009,20 (10):1125-1131.
    [172]陈亮,何凤慈.手性药物的药动学,药效学及不良反应.药物不良反应杂志.2003, 2:73-76.
    [173]Gschwend, P. M.; Wu, S. On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants. Environmental science & technology.1985,19 (1):90-96.
    [174]Wu, S. C.; Gschwend, P. M. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environmental science & technology.1986,20 (7):717-725.
    [175]Polo, M.; Gomez-Noya, G.; Quintana, J.; Llompart, M.; Garcia-Jares, C.; Cela, R. Development of a solid-phase microextraction gas chromatography/tandem mass spectrometry method for polybrominated diphenyl ethers and polybrominated biphenyls in water samples. Analytical chemistry.2004,76 (4):1054-1062.
    [176]Laskowski, D. A. Physical and chemical properties of pyrethroids. Reviews of environmental contamination and toxicology.2002,174:49.
    [177]WU, H.; ZHU, G., Study on the Degradation of Chlorpyrifos in Sterilized and Nonsterilized Soil [J]. Chinese Journal of Pesticide Science.2003,4:011.
    [178]Li, Y.; Zimmerman, W.; Gorman, M.; Reiser, R.; Fogiel, A.; Haney, P. Aerobic soil metabolism of metsulfuron-methyl. Pesticide science.1999,55 (4):434-445.
    [179]欧晓明,裴晖,王晓光,樊德方.新农药硫肟醚在土壤中降解的影响因子研究.安全与环境学报.2006,6(004):31-34.
    [180]欧晓明,张俐,裴晖,王晓光,樊德方.新农药硫肟醚在土壤中的降解.中国环境科学.2005,25(6):705-709.
    [181]刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素-吸附和脱附.中国环境科学.1996,16(1):25-30.
    [182]李克斌,许中坚,刘维屏.农药在土壤上吸着/解吸及其对生物利用率影响的研究进展.环境污染治理技术与设备.2002,3(4):18-24.
    [183]马强,林爱军,马蔽,朱永官.土壤中总石油:污染(TPH)的微生物降解与修复研究进展.Asian Journal of Ecotoxicology.2008,3(1).
    [184]Gevao, B.; Semple, K. T.; Jones, K. C. Bound pesticide residues in soils:a review. Environmental pollution.2000,108 (1):3-14.
    [185]Tao, S.; Cao, H.; Liu, W.; Li, B.; Cao, J.; Xu, F.; Wang, X.; Coveney Jr, R. M.; Shen, W.; Qin, B. Fate modeling of phenanthrene with regional variation in Tianjin, China. Environmental science & technology.2003,37 (11):2453-2459.
    [186]Skidmore, M.; Paulson, G.; Kuiper, H.; Ohlin, B.; Reynolds, S. Bound xenobiotic residues in food commodities of plant and animal origin. Pure and applied chemistry.1998,70 (7):1423-1447.
    [187]Craven, A.; Hoy, S. Pesticide persistence and bound residues in soil-regulatory significance. Environmental pollution.2005,133 (1):5-9.
    [188]Craven, A. Bound residues of organic compounds in the soil:the significance of pesticide persistence in soil and water:a European regulatory view Specialist Research Workshop. Lancaster:October 1998. Environmental pollution.2000,108 (1):15-18.
    [189]郭江峰,孙锦荷,叶庆富.C2绿黄隆结合残留的释放研究.核农学报.1999,13(2): 107-110.
    [190]Barraclough, D.; Kearney, T.; Croxford, A. Bound residues:environmental solution or future problem? Environmental pollution.2005,133 (1):85-90.
    [191]孙锦荷,郭江峰,叶庆富.结合态14C-绿黄隆和/或其降解物的释放与释出物的组成研究.核农学报.2000,14(5):295-300.
    [192]Tolosa, I.; Readman, J.; Mee, L. Comparison of the performance of solid-phase extraction techniques in recovering organophosphorus and organochlorine compounds from water. Journal of Chromatography A.1996,725 (1):93-106.
    [193]Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A,4-n-nonylphenol, and 4-tert-octylphenol. Analytical chemistry.2003,75 (10):2517-2521.
    [194]李权龙,袁东星.多壁碳纳米管用于富集水样中有机磷农药残留的研究.厦门大学学报:自然科学版.2004,43(4):531-536.
    [195]Rodil, R.; Quintana, J. B.; Lopez-Mahia, P.; Muniategui-Lorenzo, S.; Prada-Rodriguez, D. Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of chromatography. A.2009,1216 (14):2958.
    [196]Belmonte Vega, A.; Garrido Frenich, A.; Martinez Vidal, J. Monitoring of pesticides in agricultural water and soil samples from Andalusia by liquid chromatography coupled to mass spectrometry. Analytica chimica acta.2005,538 (1):117-127.
    [197]Mordaunt, C. J.; Gevao, B.; Jones, K. C.; Semple, K. T. Formation of non-extractable pesticide residues:observations on compound differences, measurement and regulatory issues. Environmental pollution.2005,133 (1):25-34.
    [198]阮长青,叶非.超临界流体萃取技术在农药残留分析中的应用进展.农药科学与管理.2001,22(4):20-22.
    [199]Shao, X.; Lee, P. W.; Liu, Z.; Xu, X.; Li, Z.; Qian, X. cis-Configuration:A New Tactic/Rationale for Neonicotinoid Molecular Design. Journal of Agricultural and Food Chemistry.2011,59 (7):2943-2949.
    [200]Ye, Z.; Xu, R.; Shao, X.; Xu, X.; Li, Z. One-pot synthesis of polyfunctionalized 4H-pyran derivatives bearing fluorochloro pyridyl moiety. Tetrahedron Letters.2010,51 (38): 4991-4994.
    [201]Ye, Z.; Xia, S.; Shao, X.; Cheng, J.; Xu, X.; Xu, Z.; Li, Z.; Qian, X. Design, Synthesis, Crystal Structure Analysis, and Insecticidal Evaluation of Phenylazoneonicotinoids. Journal of agricultural and food chemistry.2011,59 (19):10615-10623.
    [202]Zhang, W.; Fan, Y.; Yu, T.; Xu, Z.; Xu, X.; Cheng, J.; Li, Z. Erratum:Synthesis, Insecticidal Assay and Molecular Docking Study of Novel Neonicotinoids N-Oxide Analogues. Chinese Journal of Chemistry.2012,30 (10):2598-2598.
    [203]Zhao, X. F.; Shao, X. S.; Zou, Z. Y; Xu, X. Y Photodegradation of Novel Nitromethylene Neonicotinoids with Tetrahydropyridine-Fixed Cis Configuration in Aqueous Solution(?). Journal of Agricultural and Food Chemistry.2010,58 (5):2746-2754.
    [204]Wang, Y.; Cheng, J.; Qian, X.; Li, Z. Actions between neonicotinoids and key residues of insect nAChR based on an ab initio quantum chemistry study:Hydrogen bonding and cooperative [pi]-[pi] interaction. Bioorganic & medicinal chemistry.2007,15 (7):2624-2630.
    [205]Qian, X.; Liu, Z.; Li, Z.; Song, G. Synthesis and quantitative structure-activity relationships of fluorine-containing 4,4-dihydroxylmethyl-2-aryliminooxazo (thiazo) lidines as trehalase inhibitors. Journal of Agricultural and Food Chemistry.2001,49 (11):5279-5284.
    [206]Qian, X.; Lee, P. W.; Cao, S. China:Forward to the Green Pesticides via a Basic Research Programt. Journal of Agricultural and Food Chemistry.2010,58 (5):2613-2623.
    [207]LI, Z.; Qian, X.; Shao, X.; XU, X.; Tian, Z.; Huang, Q. PREPARATION METHOD AND USE OF COMPOUNDS HAVING HIGH BIOCIDAL ACTIVITIES. EP Patent 1,997,820:2008.
    [208]郑敬敏,何爱华,冯建雄,时晓磊,张武,侯江利,张杰,李明甫,张崇斌,孙瑞,赵海军;梅红玉;乌小瑜;段莹;苏蓓.一种含有哌虫啶和醚菊酯的杀虫组合物.2010-1-25.
    [209]郑敬敏,何爱华,冯建雄,时晓磊,张武,侯江利,张杰,李明甫,张崇斌,孙瑞,赵海军,梅红玉,乌小瑜,段莹,苏蓓.一种含有哌虫啶和吡蚜酮的杀虫组合物.2010-1-25.
    [210]张伟.一种含环氧虫啶和新烟碱类的杀虫组合物.2011-12-21.
    [211]许中怀,吴重言,董雪娟,吴伟.一种含有哌虫啶和新烟碱农药组合物.2010-6-29.
    [212]吴重言,许中怀,吴伟,董雪娟.哌虫啶水分散粒剂及其制备方法.2010-6-29.
    [213]沈建中,李忠,徐晓勇,叶振辉,须志平,张芝平,钱旭红.环氧虫啶水分散片剂及其制备方法.2011-12-25.
    [214]李忠,张芝平,徐晓勇,徐海燕,邵旭升,施顺发,曾步兵,陈军,蒋晓华.环氧虫啶水分散粒剂及其制备方法.2011-3-31.
    [215]李忠,徐海燕,徐晓勇,施顺发,曾步兵,张芝平,邵旭升,李标,叶洒燕.环氧虫啶悬浮剂及其制备方法.2011-3-31.
    [216]李忠,施顺发,徐晓勇,张芝平,曾步兵,徐海燕,邵旭升,沈建忠,蒋晓华.环氧虫啶可湿性粉剂及其制备方法.2011-3-31.
    [217]Liu, Z.; Williamson, M. S.; Lansdell, S. J.; Han, Z.; Denholm, I.; Millar, N. S. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. Journal of neurochemistry.2006,99 (4):1273-1281.
    [218]Armarego, W.; Chai, C., Purification of Laboratory Chemicals (实验室化学品纯化手册)Translated by LIN Ying-Jie(林英杰),LIU Wei(刘伟),WANG Hui-Ping(王会萍).Beijing:Chemical Industry Press:2006.
    [219]贾正桂.1,1-二甲硫基-2-硝基乙烯的合成.四川化工.2005,8(6):4.
    [220]贾正桂.1,1-二甲硫基-2-硝基乙烯的合成.精细化工中间体.2006,36(1):52-54.
    [221]李忠,钱旭红,邵旭升,徐晓勇,田忠贞,黄青春,吴重言,孙琴.一类具有高杀虫活性化合物的制备方法及用途.2006-3-28,2006.
    [222]王党生.烯啶虫胺的合成路线.农药.2002,41(10):43-44.
    [223]Luo, J.; Hu, Z. Y.; Qiu, M. H. Research About How to Extract Hydrochloride Existing in Ethylenediamine. Journal of Jishou University (Natural Science Edition).2004,25:92-93.
    [224]Lantzsch, R., Dr. Process for the preparation of the N-[(2-chloropyridin-5-yl) methyl]-ethylenediamine EP0542086,1994.
    [225]邵旭升.新烟碱类杀虫剂及稠环固定的顺式衍生物研究进展.农药学学报.2008,10(2):10.
    [226]吴重言.哌虫啶及其中间体的新合成方法研究.今日农药.2012,(7).
    [227]吴重言,吴言富,秦立华,徐其文,许中怀.哌虫啶稠环化、醚化工艺及其前体“2-氯-2-氯甲基-4-氰基丁醛”新合成方法研究.北京农业.2012,(15).
    [228]李璐,邵旭升,吴重言,孙琴,李忠,徐晓勇.杀虫剂哌虫啶合成的工艺优化.现代农药.2009,8(2):16-19.
    [229]吴重言,李忠,朱瑞恒,徐晓勇,吴伟,徐其文.一种制备哌虫啶的方法2012.
    [230]陈万之.烯丙基衍生物氢甲酰化合成精细化学品.精细石油化工.1991,(001):6-10.
    [23 1]许文林,王雅琼.固定床电化学反应器内电化学氧化法制备2,5-二甲氧基二氢呋喃.化学反应工程与工艺.2001,17(2):4.
    [232]Tian, Z.; Jiang, Z.; Li, Z.; Song, G.; Huang, Q. Syntheses and biological activities of octahydro-1 H-cyclopenta [d] pyrimidine derivatives. Journal of Agricultural and Food Chemistry.2007,55 (1):143-147.
    [233]Guibin Ma, R. M., Michael Ferguson, Ronald G Cavell, Brian O. Patrick, Brian R. James, Thomas Q. Hu. Ruthenium(II) Diphosphine/Diamine/Diimine Complexes and Catalyzed Hydrogen-Transfer to Ketones. Organometallics.2007,26 (4):846-854.
    [234]Mehrsheikh, A., Synthesis of 13C- and 14C-labeled 3-(dichloroacetyl)-5-(2-furanyl)-2,2-dimethyloxazolidine. Journal of Labelled Compounds and Radiopharmaceuticals.1996, 38 (7):631-636.
    [235]范瑞芳,方展强,于志强,盛国英,傅家谟.手性农药的环境行为研究进展.生态环境.2008,17(4):1690-1695.
    [236]Kurihara, N.; Miyamoto, J.; Paulson, G.; Zeeh, B.; Skidmore, M.; Hollingworth, R.; Kuiper, H. Chirality in synthetic agrochemicals:bioactivity and safety consideration. Pure Appl Chem.1997,69 (6):1335-1348.
    [237]Buser, H. R.; Muller, M. D. Occurrence and transformation reactions of chiral and achiral phenoxyalkanoic acid herbicides in lakes and rivers in Switzerland. Environmental science & technology.1998,32 (5):626-633.
    [238]Diao, J.; Lv, C.; Wang, X.; Dang, Z.; Zhu, W.; Zhou, Z. Influence of soil properties on the enantioselective dissipation of the herbicide lactofen in soils. Journal of agricultural and food chemistry.2009,57 (13):5865-5871.
    [239]Wu, Y.; Lee, H.; Li, S. High-performance chiral separation of fourteen triazole fungicides by sulfated β-cyclodextrin-mediated capillary electrophoresis. Journal of Chromatography A.2001,912(1):171-179.
    [240]Toribio, L.; Del Nozal, M.; Bernal, J.; Jimenez, J.; Alonso, C. Chiral separation of some triazole pesticides by supercritical fluid chromatography. Journal of Chromatography A.2004, 1046(1):249-253.
    [241]Faraoni, M.; Messina, A.; Polcaro, C. M.; Aturki, Z.; Sinibaldi, M. Chiral Separation of Pesticides by Coupled-Column Liquid Chromatography Application to the Stereoselective Degradation of Fenvalerate in Soil. Journal of liquid chromatography & related technologies. 2005,27 (6):995-1012.
    [242]Buser, H. R.; Muller, M. D.; Poiger, T.; Balmer, M. E. Environmental behavior of the chiral acetamide pesticide metalaxyl:enantioselective degradation and chiral stability in soil. Environmental science & technology.2002,36 (2):221-226.
    [243]Li, Z.; Zhang, Z.; Zhang, L.; Leng, L. Isomer-and enantioselective degradation and chiral stability of fenpropathrin and fenvalerate in soils. Chemosphere.2009,76 (4):509-516.
    [244]Zhang, C.; Jin, L.; Zhou, S.; Zhang, Y.; Feng, S.; Zhou, Q. Chiral separation of neonicotinoid insecticides by polysaccharide-type stationary phases using high-performance liquid chromatography and supercritical fluid chromatography. Chirality.2011,23 (3): 215-221.
    [245]Reist, M.; Testa, B.; Carrupt, P. A.; Jung, M.; Schurig, V. Racemization, enantiomerization, diastereomerization, and epimerization:Their meaning and pharmacological significance. Chirality.1995,7 (6):396-400.
    [246]Li, Z.; Wu, T; Li, Q.; Zhang, B.; Wang, W.; Li, J. Characterization of racemization of chiral pesticides in organic solvents and water. Journal of Chromatography A.2010,1217 (36): 5718-5723.
    [247]李朝阳;张艳川;李巧玲;王未肖;李景印.三唑农药的手性拆分及对映体的转化.分析化学.2010,(002):237-240.
    [248]Khan, S. U. Bound pesticide residues in soil and plants. Residue Reviews, USA.1982, 84:1-25.
    [249]苏允兰;莫汉宏.土壤中结合态农药环境毒理研究进展.环境科学进展.1999,7(3):45-51.
    [250]汪海珍;徐建民;谢正苗.农药与土壤腐殖物质的结合残留及其环境意义.生态环境.2003,12(2):208-212.
    [251]Robertson, B. K.; Alexander, M. Sequestration of DDT and dieldrin in soil: Disappearance of acute toxicity but not the compounds. Environmental toxicology and chemistry.1998,17(6):1034-1038.
    [252]陈祖义;程薇.14C-绿磺隆的土壤结合残留及其有效性.南京农业大学学报.1996,19(002):78-83.
    [253]Wang, H.; Ye, Q.; Yue, L.; Yu, Z.; Han, A.; Yang, Z.; Lu, L. Kinetics of extractable residue, bound residue and mineralization of a novel herbicide, ZJ0273, in aerobic soils. Chemosphere.2009,76 (8):1036-1040.
    [254]刘维屏.农药环境化学.化学工业出版社:2006.
    [255]Wang, H.; Ye, Q.; Yue, L.; Han, A.; Yu, Z.; Wang, W.; Yang, Z.; Lu, L. Fate characterization of a novel herbicide ZJ0273 in aerobic soils using multi-position 14C labeling. Science of the Total Environment.2009,407 (13):4134-4139.
    [256]Haiyan, W.; Zhiyang, Y.; Ling, Y.; Ailiang, H.; Yanfei, Z.; Juying, L.; Qingfu, Y.; Zhengmin, Y.; Long, L. Transformation of 14C-pyrimidynyloxybenzoic herbicide ZJ0273 in aerobic soils. Science of the Total Environment.2010,408 (10):2239-2244.
    [257]Cai, Z.; Chen, Q.; Wang, H.; He, Y.; Wang, W.; Zhao, X.; Ye, Q. Degradation of the novel herbicide ZJ0273 by Amycolatopsis sp. M3-1 isolated from soil. Applied microbiology and biotechnology.2012:1-9.
    [258]Yeomans, J.; Bremner, J. A rapid and precise method for routine determination of organic carbon in soil 1. Communications in Soil Science & Plant Analysis.1988,19 (13): 1467-1476.
    [259]Nelson, D.; Sommers, L. In A rapid and accurate procedure for estimation of organic carbon in soils, Proceedings-Indiana Academy of Science,1975.
    [260]He, L.; Song, J.; Peng, P. Characterization of extractable and non-extractable polycyclic aromatic hydrocarbons in soils and sediments from the Pearl River Delta, China. Environmental pollution.2008,156 (3):769-774.
    [261]Capriel, P.; Haisch, A.; Khan, S. U. Distribution and nature of bound (nonextractable) residues of atrazine in a mineral soil nine years after the herbicide application. Journal of agricultural and food chemistry.1985,33 (4):567-569.
    [262]Montforts, M. H. M. M. Assessment of persistency and bioaccumulation in pesticide registration frameworks within the Organization for Economic Cooperation and Development. Integrated Environmental Assessment and Management.2006,2(1):13-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700