爆发日珥和太阳耀斑的观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆发日珥和耀斑是太阳大气中常见的活动现象,它们都与日冕物质抛射(CME)有着紧密的联系,其中爆发日珥可以被看做是CME在低日冕处的活动表现,而耀斑常常伴随有CME的爆发,因而对这两种事件的研究不单能够帮助理解太阳大气活动中的基本物理过程,还能提高对CME产生机制的认知,从而提高空间天气预报的准确度。本文主要以分析观测资料为主结合理论分析,对爆发日珥和耀斑这两种现象分别进行了研究。
     1,统计分析了日珥爆发或失稳的临界高度:
     首先引用了一套可以从太阳极紫外(EUV)观测图像中自动识别和追踪日珥形态和运动学特征的系统SLIPCAT(Solar LImb Prominences CAtcher&Tracker),然后从SLIPCAT对STEREO(日地关系观测台,Solar TErrestrial RElations Observatory)B星在2007年7月到2009年12月期间的观测图像的应用运行结果中,挑选了362个追踪较好的且高度达到或者超过了0.2个太阳半径的日珥事件来进行统计研究,结果发现在所统计的日珥事件中受扰动日珥(Disrupted Prominences,DPs)占了约71%,而DPs中有42%爆发失败,同时有89%的事件经历了一个突然解稳(Sudden Destabilization,SD)的过程。通过对DPs的详细分析,我们得到了一下几个结论:大部分DPs的临界高度范围为0.06~0.14个太阳半径,同时存在着两个最有可能的临界高度,分别为0.13和0.19个太阳半径,即当日珥达到这两个高度时,平衡很有可能遭到破坏,日珥将变得不再稳定;爆发日珥(Eruptive Prominences,EPs)的爆发速度存在着上限,且这个上限速度会随着高度和质量的增加以幂律的形式降低,爆发日珥的动能也存在着上限,它与日珥的临界高度成反比;稳定日珥(Stable Prominences,SPs)要比DPs长且重,但它们的高度往往不会超过0.4个太阳半径;有62%的EPs与CME相关,但是与CME相关和无关的EPs在SLIPCAT得到的表观参数中并无明显的区别。
     2,研究了耀斑极紫外后相辐射的日面来源以及物理机制:
     按照耀斑的软X射线通量的观测曲线,耀斑一般被认为有两个阶段:一是快速上升的脉冲相,又被称为上升相;二是缓慢下降的恢复相,又被称为下降相或渐变相。近年来,一个新的阶段,耀斑的极紫外后相,在SDO(太阳动力学观测台,Solar Dynamic Observatory)上天以后被发现了,它的观测表现为耀斑主相过后的极紫外观测曲线上会出现另一个大的峰值,为了探寻EUV后相的来源,我们利用AIA(太阳大气成像仪,Atmospheric Imaging Assembly)的多波段高分辨率图像观测资料对两个有着EUV后相的耀斑事件,2010年10月16日的M2.9级耀斑和2011年2月18日的M1.4级耀斑,进行了详细的分析,并得到了以下几个结论:1,EUV后相的辐射并非来自于耀斑环,而是来自于比耀斑环更高、更大的同一活动区中的环系统,并把它称之为耀斑后相环;2,耀斑的后相环与主相环所经历的热过程不同,耀斑主相环几乎同时在各个温度谱线的观测中增亮显现,而后相环会依次出现在温度由高往低的各个波段观测图中,延迟时间超过一个小时;3,耀斑的后相环与主相环在磁结构上是相连的,它们共同组成了一个非对称的磁四极场位形;4,AIA的紫外波段观测显示后相环靠近主相环的足点与主相环的足点几乎同时增亮,而远离主相环的足点的增亮则有大概一分钟的延迟。从这些结果中,我们认为耀斑的后相与主相之间存在着一个因果关系:当主相环发生重联时,推动环上的磁拱上升而造成磁拱与后相环的重联,从而加热了后相环,重联结束后,主相环迅速冷却,而后相环则经历了一个长时间的缓慢冷却过程,最终形成了观测到的EUV后相。
     3,提出了一种新的耀斑分类方法并建立了耀斑列表:
     从GOES(近地同步环境监测卫星,Geostationary Operational Environ-ment Satellite)软X射线通量观测曲线出发,结合SDO的观测资料,我们提出了一种新的耀斑分类方法,主要把耀斑分为四类,分别为:1,标准爆发事件(Standard Eruptive,S-E),即指有CME伴随的,在GOES观测曲线上表现为长恢复相的,足点亮带可观测到明显分离的,在日冕图像中可观测到上升磁环的,在EUV的观测曲线上随着谱线对应温度的降低而峰值响应有所延迟的,满足标准耀斑模型的耀斑事件;2,标准束缚事件(Standard Confined,S-C),指无CME伴随的,在GOES曲线上的恢复相很短的,足点观测未见分离的,日冕图像中观测不到上升磁环的,EUV观测曲线中未见峰值随温度降低而延迟的耀斑事件;3,非标准爆发事件(Non-Standard Eruptive,NS-E),指有着CME伴随,但不符合一项或多项标准爆发事件的其他观测特征的耀斑事件,部分这类事件是会伴随有EUV后相;4,非标准束缚事件(Non-Standard Confined, NS-C),没有CME伴随,但其他的观测特征与标准不爆发事件不符,这类事件往往在GOES曲线上也表现为长的恢复相,在EVE观测中会出现极紫外后相,且与S-E事件相同,在日面边缘处能在高温谱线上观测到磁绳结构的增亮和上升,但不同的是,在NS-C事件中出现的磁绳会在上升过程中达到新的平衡,从而没有真正爆发出去。由这个新的分类出发,我们给出了从2010年5月到2011年12月期间发生的所有M级和X级耀斑事件的列表,表中给出了各个耀斑的观测特征和归属类别。
Eruptive prominences and solar flares are the common phenomenons of the so-lar activities. They all have close relationship with Coronal Mass Ejection (CME), while eruptive prominences can be treated as the tracer of a CME in the lower corona and flares are thought to be the energy source of a CME. Comprehensive studies of the two phenomenons can help understanding the basic physical process of the solar activities and improve the prediction level of the CME onset. Based on the observations of prominences and flare events, the following three aspects are studied:
     1. Critical Height for the Destabilization of Solar Prominences
     First, we introduced an automatic system named SLIPCAT (Solar LImb Prominences CAtcher&and tracker), which can recognize and track solar lim-b prominences based on EUV (Extreme-ultraviolet) images of the Sun. Based on the observations of EUVI (Extreme-ultraviolet Imager) onboard of STEREO (Solar TErrestrial RElations Observatory) B from April2007to December2009, we applied SLIPCAT to get a large number of prominences events. Further, we picked362well-tracked prominences with maximum height exceeding0.2R above limb for our statistical study. We found that there are about71%disrupted prominences (DPs), among which about42%of them did not erupt successfully and about89%of them experienced a sudden destabilization (SD) process. After a comprehensive analysis of the DPs, the following findings are discovered.(1) Most DPs become unstable at the height of0.06-0.14R from the solar surface, and there are two most probable critical heights, at which a prominence is much likely to get unstable; the primary one is0.13R and the secondary one is0.19R.(2) There exists upper limit for the erupting velocity of eruptive prominences (EPs), which decreases following a power law with increasing height and mass; the kinetic energy of EPs accordingly has an upper limit too, which decreases as critical height increases.(3) Stable prominences (SPs) are generally longer and heavier than DPs, and not higher than0.4R.(4) About62%of EPs were asso-ciated with CMEs; but there is no difference in apparent properties between EPs associated with and without CMEs.
     2. The Origin of the Extreme-ultraviolet Late Phase of Solar Flares
     Solar flares typically have an impulsive phase that is often followed by a grad-ual or long-decay phase as best seen in soft X-ray emissions.A recent discovery based on the EUV variability Experiment (EVE) observations onboard the Solar Dynamics Observatory (SDO) reveals that some flare exhibit a second large peak separated from the first main phase peak by tens of minutes to hours. This sec-ond peak is coined as the flare's EUV late phase. The EUV late phase is most evident in "warm" coronal emissions (e.g.~2.5MK from Fe XVI33.5nm).We addressed the origin of the EUV late phase by analyzing in detail two late phase flares, an M2.9flare on2010October16and an M1.4flare on2011February18, using multi-passband imaging observations from the Atmospheric Imaging Assem-bly (AIA) onboard SDO. We found that:(1) the late phase emission originates from a different magnetic loop system, which is much larger and higher than the one response for the main phase emission.(2) The two loop systems also differ in their thermal evolution. While the late phase loop arcade reaches its peak brightness progressively at a later time spanning for more than one hour from high to low temperatures, the main phase loop system reaches its peak bright-ness at almost the same time (within several minutes) in all temperatures.(3) Nevertheless, the two loop systems seem to be connected magnetically i.e., one footpoint of the larger loop arcade is rooted very close to the compact loop sys-tem, forming an asymmetric magnetic quadruple configuration.(4) Further, the footpoint brightenings in UV wavelengths show a systematic delay of about one minute from the shared common region to the remote footpoint of the late phase arcade system. We argue that the EUV late phase is the result of a long-lasting cooling process in the larger magnetic arcade system, which is energized through a second magnetic reconnection between the rising flare region magnetic field and the large loop arcade field.
     3.Flare Categories and Catalog
     Flares are usually divided into two types,i.e.,eruptive flares against confined flares based on the fact that if the flare accompanied with a CME or not.We further proposed a new classification for flares due to many new observations made by SDO.We found flares fall into one of four categories:Standard Eruptive(S-E),Standard Confined(S-C),Non-Standard Eruptive(NS-E) and Non-Standard Confined. Each category has different features:(1) S-E flares are events associated with CME and fit with the standard flare model. They are long duration flare based on GOES soft x-ray flux observation with separating ribbons and rising loop arcade. They always have temperature delay in the EVE observations. In the hot channel of AIA, for the S-E flares near the limb, one can find a twist flux rope expanding and ascending before the flare onset, which would erupt to be the associated CME.(2) S-C flares are events opposite to S-E flares. They are short duration flare without CME and they don't have separation ribbons, rising arcade and temperature delay.(3) NS-E flares are events associated with CME but acting like a S-C flare, i.e., they are short duration flares with non-separating ribbons and non-rising loop arcade. Sometimes, NS-E flares have EUV late phase. For S-C and NS-E flares, there are no pre-exist flux rope.(4) NS-C flares are events without CME but acting like a S-E flare, i.e., they are long duration flares with separating ribbons and rising loop arcade. NS-C flares always have EUV late phase and they have failed eruptive flux rope. By using the new classification, we were going through all the M class and X class observed between May2010to December2011and put them into the four categories. We also derived these events'characteristics from the observations of GOES and SDO. We put these results together and generated a flare catalog in the end.
引文
Andrews, M. D., and Howard, R. A., A two-Type Classification of Lasco Coronal Mass Ejection, S-pace Sci. Rev.,95,147,2001
    Aschwanden, M. J., Physics of the Solar Corona. An Introduction with Problems and Solutions (2nd edi-tion), ed. Aschwanden, M. J.,2005
    Aschwanden, M. J., Tarbell, T. D., Nightingale, R. W., Schirijiver, C. J., Title, A., Kankelborg, C. C, Martens, P. W., and Warren, H. p., Time Variability of the "Quite" Sun Observed with TRACE. I-I. Physical Parameters, Temperature Evolution, and Energetics of Extreme-Ultraviolet Nanoflares, ApJ,535,1047,2000
    Benz, A. O., and Giidel, M., Physical Processes in Magnetically Driven Flares on the Sun, Stars, and Young Stellar Objects, ARA&A,48,241,2010
    Bernasconi, P. N., Rust, D. M., and Hakim, D., Advanced Automated Solar Filament Detection And Characterization Code:Description, Performance, and Results, Sol. Phys.,228,97,2005
    Blush, L. M., Allegrini, F., Bochsler, P., Daoudi, H., Galvi, A., Karrer, R., Kistler, L., Klecker, B., Mobius, E., Opitz, A., Popercki, M., Thompson, B., Wimmer-Schweingruber, R. F., and Wurz, P., Development and calibration of major components for the STEREO/PLASTIC (plasma and suprathermal ion composition) instrument, Advances in Space Research,36,1544,2005
    Boerner, P., Edwards, C, Lemen, J., Rausch, A., Schrijver, C, Shine, R., Shing, L., Stern, R., Tarbell, T., Title, A., Wolfson, C. J., Soufli, R., Spiller, E., Gullikson, E., McKenzie, D., Windt, D., Golub, L., Podgorski, W., Testa, P. and Weber, M., Initial Calibration of the Atmospheric Imaging Assembly (ALA) on the Solar Dynamics Observatory (SDO), Sol. Phys.,275,41,2012
    Bougeret, J. L., Goetz, K., Kaiser, M. L., Bale, S. D., Kellogg, P. J., Maksimovic, M., Monge, N., Monson, S. J., Astier, P. L., Davy, S., Dekkali, M., Hinze, J. J., Manning, R. E., Aguilar-Rodriguez, E., Bonnin, X., Briand, C, Cairns, I. H., Cattell, C. A., Cecconi, B., Eastwood, J., Ergun, R. E., Fainberg, J., Hoang, S., Huttunen, K. E. J., Krucker, S., Lecacheux, A., MacDowall, R. J., Macher, W., Mangeney, A., Meetre, C. A., Moussas, X., Nguyen, Q. N., Oswald, T. H., Pulupa, M., Reiner, M. J., Robinson, P. A., Rucker, H., Salem, C.,Santolik, O., Silvis, J. M., Ullrich, R., Zarka, P., and Zouganelis, I., S/WAVES:The Radio and Plasma Wave Investigation on the STEREO Mission, Space Sci. Rev.,136,487,2008
    Cargill, P. J., Mariska, J. T.,& Antiochos, S. K., Cooling of solar flares plasmas.1:Theoretical considerations, ApJ,439,1034,1995
    Carmichael, H., A Process for Flares, NASA Special Publication,50,451,1964
    Carrington, R. C, Description of a Singular Appearance seen in the Sun on September 1,1859, MNRAS, 20,13,1859
    Cheng, X., Zhang, J., Saar, S. H., and Ding, M. D., Differential Emission Measure Analysis of Multiple Structural Components of Coronal Mass Ejections in the Inner Corona, ApJ,761,62,2012
    Deslandres, H., Remarks on the Methods Employed in the Determination of the Radial Velocities of the Stars, ApJ,9,167,1899
    Filippov, B. P., and Den, O. G., Prominence Height and Vertical Gradient in Magnetic Field, Astronomy Letters,26,322,2000
    Filippov, B., and Koutchmy, S., Causal relationships between eruptive prominences and coronal mass ejections, Ann&les Geophysicae,26,3025,2008
    Fisher, R. A.1936, Annals of Eugenics,7:179-188
    Foullon, C, and Verwichte, E., Automated Detection of EUV Prominences, Sol. Phys.,234,135,2006
    Fuller, J., Gibson, S. E., de Toma, G., and Fan, Y., Observing the Unobservable? Modeling Coronal Cavity Densities, ApJ,678,515,2008
    Fuller, J., and Gibson, S. E., A Survey of Coronal Cavity Density Profiles, ApJ,700,1205,2009
    Gao, J., Wang, H., and Zhou, M., Development of an Automatic Filament Disappearance Detection System, Sol. Phys.,205,93,2002
    Gilbert, H. R., Holzer, T. E., Burkepile, J. T., and Hundhausen, A. J., Active and Eruptive Prominences and Their Relationship to Coronal Mass Ejections, ApJ,537,503,2000
    Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R. A., Prominence Eruptions and Coronal Mass Ejection:A Statistical Study Using Microwave Observations, ApJ,586,562,2003
    Harrison, R. A., The nature of solar flares associated with coronal mass ejection, A&A,304,585,1995
    Harrison, R. A., Davis, C. J., and Eyles, C. J., The STEREO heliospheric imager:how to detect CMEs in the heliosphere, Advances in Space Research,36,1512,2005
    Herschel, W., Observations Tending to Investigate the Nature of the Sun, in Order to Find the Causes or Symptoms of Its Variable Emission of Light and Heat, With Remarks on the Use That May Possibly be Drawn from Solar Observations, Royal Society of London Philosophical Transactions Series I,91, 265,1801
    Hirayama, T., Theoretical Model of Flares and Prominences. I:Evaporating Flare Model, Sol. Phys., 34,323,1974
    Hock, R. A., The Role of Solar Flares in the Variability of the Extreme Ultraviolet Solar Spectral Irradiance, Ph.D. Thesis,2012
    Hodgson, R., Measurements of the optical constants of mercury and mercury-indium amalgams in the spectral region 4000 to 17000 cm" 1, MNRAS,20,15,1859
    House, L. L., Wagner, W. J., Hildner, E., Sawyer, C, and Schmidt, H. U., Studies of the corona with the Solar Maximum Mission coronagraph/polarimeter, ApJ,244, L117,1981
    Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., Plunkett, S. P., Korendyke, C. M., Cook, J. W., Hurley, A., Davila, J. M., Thompson, W. T., St Cyr, O. C.,Mentzell, E.,Mehalick, K., Lemen, J. R., Wuelser, J. P., Duncan, D. W., Tarbell, T. D., Wolfson, C. J., Moore, A., Harrison, R. A., Waltham, N. R., Lang, J., Davis, C. J., Eyles, C. J., Mapson-Menard, H., Simnett, G. M., Halain, J. P., Defise, J. M., Mazy, E., Rochus, P., Mercier, R., Ravet, M. F., Delmotte, F., Auchere, F., Delaboudiniere, J. P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T., Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space Sci. Rev.,136,67,2008
    Kaiser, M. L., The STEREO mission:an overview, Advances in Space Research,36,1483,2005
    Kaiser, M. L., Kucera, T. A., Davila, J. M., St. Cyr, O. C, Guhathakurta, M., and Christian, E., The STEREO Mission:An Introduction, Space Sci. Rev.,136,5,2008
    Kippenhahn, R., and Schliiter, A., Eine Theorie der solaren Filamente. Mit 7 Textabbildungen, ZAp, 43,36,1957
    Kopp, R. A., and Pneuman, G. W., Magnetic reconnection in the corona and the loop prominence phenomenon, Sol. Phys.,50,85,1976
    Kuperus, M., and Raadu, M. A., The Support of Prominences Formed in Neutral Sheets, A&A,31,189, 1974
    Lang, K. R., The Sun from Space, Astronomy and Astrophysics Library. ISBN 978-3-540-76952-1. Springer Berlin Heidelberg,2009
    Leighton, R. B., Noyes, R. W.,&Simon, G. W.1962, ApJ,135,474
    Lemen, James R., Title, Alan M., Akin, David J., Boerner, Paul F., Chou, Catherine, Drake, Jerry F., Duncan, Dexter W., Edwards, Christopher G., Friedlaender, Frank M., Heyman, Gary F., Hurlburt, Neal E., Katz, Noah L., Kushner, Gary D., Levay, Michael, Lindgren, Russell W., Mathur, Dnyanesh P., McFeaters, Edward L., Mitchell, Sarah, Rehse, Roger A., Schrijver, Carolus J., Springer, Larry A., Stern, Robert A., Tarbell, Theodore D., Wuelser, Jean-Pierre, Wolfson, C. Jacob, Yanari, Carl, Bookbinder, Jay A., Cheimets, Peter N., Caldwell, David, Deluca, Edward E., Gates, Richard, Golub, Leon, Park, Sang, Podgorski, William A., Bush, Rock I, Scherrer, Philip H., Gummin, Mark A., Smith, Peter, Auker, Gary, Jerram, Paul, Pool, Peter, Soufli, Regina, Windt, David L., Beardsley, Sarah, Clapp, Matthew, Lang, James, and Waltham, Nicholas, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys.,275,17,2012
    Low, B. C, and Hundhausen, J. R., Magnetostatic structures of the solar corona.2:The magnetic topology of quiescent prominences, ApJ,443,818,1995
    Luhmann, J. G., Curtis, D. W., Schroeder, P., McCauley, J., Lin, R. P., Larson, D. E., Bale, S. D., Sauvaud, J.-A., Aoustin, C, Mewaldt, R. A., Cummings, A. C, Stone, E. C, Davis, A. J., Cook, W. R., Kecman, B., Wiedenbeck, M. E., von Rosenvinge, T., Acuna, M. H., Reichenthal, L. S., Shuman, S., Wortman, K. A., Reames, D. V., Mueller-Mellin, R., Kunow, H., Mason, G. M., Walpole, P., Korth, A., Sanderson, T. R, Russell, C. T., and Gosling, J. T., STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview, Space Sci. Rev.,136,117,2008
    Makarov, V. I., Tavastsherna, K. S., Davydova, E. I., and Sivaraman, K. R., Variations of prominence heights in high latitude global magnetic neutral lines, Byulletin Solnechnye Dannye Akademie Nauk SSSR,3,90,1992
    Morgan, H., Habbal, S. R., and Woo, R., The Depiction of Coronal Structure in White-Light Images, Sol. Phys.,236,263,2006
    Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., and Ross, C. L., The association of coronal mass ejection transients with other forms of solar activity, Sol. Phys.,61,201, 1979
    Olmedo, O., Zhang, J., Wechsler, H., Poland, A., and Borne, K., The Advancement Of An Automatic Solar Eruptive Event Detection System (seeds) To A Near Real-time System, Bulletin of the American Astronomical Society,39,325,2007
    Patsourakos, S., and Vial, J.-C, Soho Contribution to Prominence Science, Sol. Phys.,208,253,2002
    Pesnell, W. D., Thompson, B. J., and Chamberlin, P. C, The Solar Dynamics Observatory (SDO), Sol. Phys.,275,3,2012
    Pettit, E., The Evidence for Tornado Prominences, PASP,62,144,1950
    Pneuman, G. W., The formation of solar prominences by magnetic reconnection and condensation, Sol. Phys.,88,219,1983
    Priest, E. R., Hood, A. W., and Anzer, U., A twisted flux-tube model for solar prominences. I-General properties, ApJ,344,1010,1989
    Priest, E. R., and Forbes, T. G., The magnetic nature of solar flares, A&A Rev.,10,313,2002
    Rompolt, B., Small Scale Structure and Dynamics of Prominences, Hvar Observatory Bulletin,14,37, 1990
    Rust, D. M., and Kumar, A., Helical magnetic fields in filaments, Sol. Phys.,155,69,1994
    Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoeksema, J. T., Liu, Y., Duvall, T. L., Zhao, J., Title, A. M., Schrijver, C. J., Tarbell, T. D., and Tomczyk, S., The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO), Sol. Phys.,275, 207,2012
    Schmelz, J. T., Worley, B. T., Anderson, D. J., Pathak, S., Kimble, J. A., Jenkins, B. S., Saar, S. H., Isothermal and Multithermal Analysis of Coronal Loops Observed with Atmospheric Imaging Assembly. II.211? Selected Loops, ApJ,739,33,2011
    Shibata, Kazunari, Ishido, Yoshinori, Acton, Loren W., Strong, Keith T., Hirayama, Tadashi, Uchida, Yutaka, McAllister, Alan H., Matsumoto, Ryoji, Tsuneta, Saku, Shimizu, Toshifumi, Hara, Hirohisa, Sakurai, Takashi, Ichimoto, Kiyoshi, Nishino, Yohei, Ogawara, Yoshiaki, Observations of X-ray jets with the YOHKOH Soft X-ray Telescope, PASJ,44, L173,1992
    Simon, G. W., and Leighton, R. B., Velocity Fields in the Solar Atmosphere. Ⅲ. Large-Scale Motions, the Chromospheric Network, and Magnetic Fields., ApJ,140,1120,1964
    Sturroc P.A., A model of solar flares. Kiepenheur (ed.), Structure and development of solar active regions. IAU Symposium no.35,471,1968
    Svestka, Z., Cooling of a coronal flare loop through radiation and conduction, Sol. Phys.,108,411,1987
    Tandberg-Hanssen, E., Book Review:The nature of solar prominences, Space Sci. Rev.,77,371,1996
    Thomas, R. J., Crannell, C. J., and Starr, R., Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements, Sol. Phys.,95,323,1985
    Thompson, William T., Davila, Joseph M., Fisher, Richard R., Orwig, Larry E., Mentzell, John E., Hetherington, Samuel E., Derro, Rebecca J., Federline, Robert E., Clark, David C, Chen, Philip T. C., Tveekxem, June L., Martino, Anthony J., Novello, Joseph, Wesenberg, Richard P., StCyr, Orville C, Reginald, Nelson L., Howard, Russell A., Mehalick, Kimberly I., Hersh, Michael J., Newman, Miles D., Thomas, Debbie L., Card, Gregory L., Elmore, David F., COR1 inner coronagraph for STEREO-SECCHI, Proc. SPIE,4853,1,2003
    Unsold, A., Konvektion in der Sonnenatmosphare, ZAp,1,138,1930
    van Ballegooijen, A. A., and Martens, P. C. H., Formation and eruption of solar prominences, ApJ,343, 971,1989
    Wang, Yuming, Cao, Hao, Chen, Junhong, Zhang, Tengfei, Yu, Sijie, Zheng, Huinan, Shen, Chenglong, Zhang, Jie, and Wang, S., ApJ,717,973,2010
    Wang, Y., and Zhang, J.A, Comparative Study between Eruptive X-Class Flares Associated with Coro-nal Mass Ejections and Confined X-Class Flares, ApJ,665,1428,2007
    Woods, Thomas N., Hock, Rachel, Eparvier, Frank, Jones, Andrew R., Chamberlin, Phillip C, Klim-chuk, James A., Didkovsky, Leonid, Judge, Darrell, Mariska, John, Warren, Harry, Schrijver, Carolus J., Webb, David F., Bailey, Scott, Tobiska, and W. Kent, New Solar Extreme-ultraviolet Irradiance Observations during Flares, ApJ,739,59,2011
    Woods, T. N., Eparvier, F. G., Hock, R., Jones, A. R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W. K., and Viereck, R., Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO):Overview of Science Objectives, Instrument Design, Data Products, and Model Developments, Sol. Phys.,275,115,2012
    Wuelser, Jean-Pierre, Lemen, James R., Tarbell, Theodore D., Wolfson, C. J., Cannon, Joseph C, Carpenter, Brock A., Duncan, Dexter W., Gradwohl, Glenn S., Meyer, Syndie B., Moore, Au-gustus S., Navarro, Rosemarie L., Pearson, J. D.(Rossi, George R., Springer, Larry A., Howard, Russell A., Moses, John D., Newmark, Jeffrey S., Delaboudiniere, Jean-Pierre, Artzner, Guy E., Auchere, Frederic, Bougnet, Marie, Bouyries, Philippe, Bridou, Francoise, Clotaire, Jean-Yves, Co-las, Gerard, Delmotte, Franck, Jerome, Arnaud, Lamare, Michel, Mercier, Raymond, Mullot, Michel, Ravet, Marie-Francoise, Song, Xueyan, Bothmer, Volker, and Deutsch, Werner, EUVI:the STEREO-SECCHI extreme ultraviolet imager, Proc. SPIE,5171,111,2004
    Yang, G., and Wang, H., Statistical Studies of Filament Disappearances and CMEs, Solar-Terrestrial Magnetic Activity and Space Environment,113,2002
    Yang, S. H., Zhang, J., Jin, C. L., Li, L. P., and Duan, H. Y., Response of the solar atmosphere to magnetic field evolution in a coronal hole region, A&A,501,745,2009
    Yashiro, S., Akiyama, S., Gopalswamy, N., and Howard, R. A., Different Power-Law Indices in the Frequency Distributions of Flares with and without Coronal Mass Ejections, ApJ,650, L143,2006
    Young, C. A., The American Eclipse, Nature,1,532,1870
    Zhang, J., Cheng, X., and Ding, M.-D., Observation of an evolving magnetic flux rope before and during a solar eruption, Nature Communications,3,2012
    Zirin, H., The ecology of prominences, IAU Colloq.44:Physics of Solar Prominences,193,1979
    方成,丁明德,陈鹏飞.太阳活动区物理.南京大学出版社,书号:978-7-305-05503-4,南京,2008.
    林元章太阳物理导论.科学出版社,书号:7-03-0087760-7/p.1234,北京,2000.
    章振大.日冕物理.科学出版社,书号:7-03-008086-6/P.1175,北京,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700