基于图像处理的自动调焦技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于数字图像处理的自动调焦技术是根据目标物体成像清晰度进行调焦,是被动调焦技术。图像调焦不需要测距信息就可以完成闭环调焦控制,结构简单,并广泛应用于工业、医学、科学研究等领域。图像清晰度评价以及正焦位置搜索是图像调焦技术中两类基本技术问题。基于上述两类基本问题,本文对图像调焦技术在卡塞格林式望远镜中的应用进行了研究,主要研究内容和结果有以下几个方面:
     本文对目前的图像清晰度评价算法进行了仿真与实验,并重点研究了空域评价算法,得到了目标对象的较优评价算法,即Brenner算法,但是Brenner算法对图像清晰度评价结果依赖阈值选取。针对上述问题,本文通过高通滤波器模板和带通滤波器模板对图像进行清晰度评价。与传统的Brenner算法相比,实验结果表明改进算法在满足评价算法单峰性和无偏性前提下,提高了灵敏度,降低了计算次数。
     在点目标成像的光学系统中,点目标在像平面上实际得到的是一个具有一定面积的圆形光斑,评价图像清晰度一般采用点目标像的能量分布算法。点目标像的能量分布评价算法具有计算量少,物理意义明确等特点,但是没有考虑到点目标成像形状。考虑点目标成像形状,本文基于圆形度提出了一种新的点目标评价算法。在三维图像调焦系统中,实验结果表明新算法比成像能量分布算法具有更好的收敛速度和收敛稳定性。
     在分析比较现有一维搜算算法的基础上选择爬山算法实现了一维调焦闭环控制。爬山法易陷入局部极值使搜索正焦位置失败,本文将仅与系统相关的各类系统信息引入到爬山算法中,改进算法在不改变原系统结构及增加额外传感器条件下能够实现快速、高精度正焦位置搜索。
     图像清晰度评价计算量大,因此清晰度评价算法复杂度和系统实时性的矛盾成为图像清晰度评价系统中较突出的问题。本文对目前图像处理平台进行了比较,选择FPGA平台满足图像评价系统的计算量和实时性要求,采用可视化编程技术在FPGA上实现图像清晰度评价算法。
     在卡塞格林式结构的望远镜中,主次镜光轴、焦点发生偏离时,系统成像质量降低,为了保证系统成像质量而调整主次镜实质是调整主次镜共轴以及焦点重合,这可以看作是广义意义上的调焦,需要采用多维调焦技术。图像调焦技术不需要专门设备,可以简化系统结构,并且评价结果直观。
     本文基于六自由(Six Degrees of Freedom,6-DOF)平台设计三维图像调焦系统,在分析比较多维搜索算法的基础上选择随机并行梯度下降(Stochastic ParallelGradient Descent, SPGD)搜索算法实现了三维调焦闭环控制。针对X、Y、Z三轴耦合性关系,本文提出了一种改进的SPGD控制策略,实验结果表明系统闭环调焦误差小于3%,满足三维调焦系统的精度要求。本文通过实验对算法的精度进行了分析。三维图像调焦实验为实际应用提供了解决方案,具有工程指导意义。
Auto-focus technology based on digital image processing, using the object imagingdefinition, is passive focusing technology. The image focusing systems don’t needdistance information to complete closed-loop focusing control, and are widely applied tomany fields, such as industry, medicine, laboratory research etc. The two basic problemsof image focusing system are evaluating image definition and searching in-focusposition. Based on the above two kinds of problem, this dissertation researches theauto-focus technology in the Cassegrain telescope, and the main contents and results areas follows.
     This dissertation studies the current image definition evaluation algorithms throughsimulation and experiments, and mainly studies the space-domain algorithms, andobtains the optimal algorithm for evaluating object which is Brenner algorithm. But theevaluation result accuracy of the traditional Brenner algorithm depends on the thresholdvalue. For this issue, an improved algorithm is proposed. The improved algorithm useshigh pass filter and bandpass filter to evaluate the image, and overcomes the limitationof traditional Brenner algorithm depending on the threshold value. The experiments andanalysis show that the improved algorithm can meet unimodality, accuracy, and improvesensitivity, and reduce calculating cost.
     In the optical system of point object imaging, the imaging of point object in thefocal plane actually is a circular light spot which has a certain area, and the evaluationalgorithm generally uses the energy distribution of point object imaging. The evaluationalgorithm has less calculation and clear physical meaning, but it doesn’t consider theimaging shape. Using the circularity to describe the imaging shape, an improved pointtarget evaluation algorithm is proposed. In the three-dimensional focusing system, theexperimental results show that the improved algorithm has better convergence speedand stability of convergence.
     Based on analyzing and comparing the current one-dimensional searchingalgorithms, this dissertation selects the hill-climbing algorithm to realize closed-loopfocusing control. But the hill-climbing algorithm is easy to fall into local extreme value,and the in-focus position searching is failure. This dissertation presents an improved hill-climbing algorithm, which uses the known information about the system. Theexperimental results show that the improved hill-climbing algorithm, which doesn’tchange the structure of system and doesn’t increase the sensors, has better searchingspeed and searching accuracy.
     The calculation of evaluating image definition is large, so the contradictionbetween the algorithm complexity and the system real-time is the prominent issue in theimage definition evaluation system. Based on comparing the current image processingplatforms, this dissertation selects the FPGA platform which can satisfy the demands.This dissertation uses the visual programming technology to realize evaluationalgorithm in FPGA.
     The divergence of primary and secondary optical axes reduces the imaging qualityin the Cassegrain telescope. The essence of adjusting primary and secondary mirrors toguarantee the imaging quality is adjusting the focus of primary and secondary mirrors tocoaxiality and superposition. This can be regard as generalized auto-focus technology,and requires a multidimensional auto-focus technology. The image focusing technologydoesn't require specialized equipments and can simplify the structure of system.Furthermore, the evaluation result is intuitive.
     This dissertation designs the three-dimensional image focusing system platformwhich uses the Six Degrees of Freedom (6-DOF) platform. Based on analyzing andcomparing the current multidimensional searching algorithms, this dissertation selectsthe Stochastic Parallel Gradient Descent (SPGD) algorithm to realize three-dimensionalclosed-loop focusing control. According to the coupling relationship of the X-axis,Y-axis, and Z-axis, a modified SPGD control method is presented. The experimentalresults show that the closed-loop error is below3percent, which meets the precisionrequirements of the three-dimensional auto-focusing system. According to the results ofthe experiments, a detailed analysis of the precision of algorithms is conducted. Theexperiments of the three-dimensional image focusing system provide a solution for thepractical application, and have significant instruction meanings for engineering.
引文
[1] Loren Shih. Autofocus survey: a comparison of algorithms[C].Proc. SPIE,2007,6502:1~11.
    [2]王虎.自动对焦原理及方法[J].科技信息,2008,(13):38.
    [3]王健,陈洪斌,张晓明,等.基于图像处理的三维自动调焦系统[J].光电工程,2013,40(2):46~51.
    [4]李奇.数字自动对焦技术的理论及实现方法研究[D].杭州:浙江大学,2004.
    [5] M. Subbarao, A. Nikzad. Focusing techniques [J].Opt. Eng.,1993,32(11):2824~2836.
    [6] E. Krotkov. Focusing [J]. Intl. Journal of Computer Vision,1987,1(3):223~237.
    [7]徐洲.一种基于图像处理的自动聚焦方法的研究[D].北京:中国科学院研究生院(西安光学精密机械研究所),2003,.
    [8]林兆华.基于图像处理自动调焦技术在经纬仪中应用的研究[D].北京:中国科学院研究生院(长春光学精密机械与物理研究所),2012.
    [9]卢振华.推扫式遥感相机基于图像的实时自动调焦研究[D].北京:中国科学院研究生院(长春光学精密机械与物理研究所),2012.
    [10]陈国金.数字图像自动聚焦技术研究及系统实现[D].西安:西安电子科技大学,2007.
    [11]刘兴宝.基于数字图像处理的自动对焦技术研究[D].北京:中国工程物理研究院,2007.
    [12] J. M. Tenenbaum.Accommodation in computer vision [D]. Stanford: Stanford University,1970.
    [13] Vollath D.. Automatic focusing by correlative methods [J].Journal of Microscopy,1987,147:279~288.
    [14] Vollath D.. The influence of the scene parameters and of noise on the behaviour of automatic focusing algorithms [J].Journal of Microscopy,1988,151:133~146.
    [15] S. Jutamulia,T. Asakura,R. D. Bahuguna,et al.Autofocusing based on power-spectra analysis[J].Applied Optics,1994,33(26):6210~6212.
    [16]郭彦珍,邱宗明,李信,等.图像测量技术中一种调焦的判别方法[J].西安理工大学学报,2001,17(1):40~42.
    [17] Frans C. A. Groen, Ian T. Young, Guido Ligthart.A comparison of different focus functions for use in autofocus algorithms [J].Cytometry,1985,6(2):81~91.
    [18]郑玉珍,吴勇,倪旭翔.实时自动对焦的研究[J].光电工程,2004,31(4):64~66.
    [19] Lawrence Firestone, Kitty Cook, Kevin Culp, et al.Comparisons of autofocus methods for automated microscopy [J].Cytometry,1991,12(3):195~206.
    [20]鲍歌堂,赵辉,陶卫.图像测量技术中几种自动调焦算法的对比分析[J].上海交通大学学报,2005,39(1):121~124,128.
    [21]赵辉,鲍歌堂,陶卫.图像测量中自动调焦函数的实验研究与分析[J].光学精密工程,2004,12(5):531~536.
    [22]康牧.图像处理中几个关键算法的研究[D].西安:西安电子科技大学,2009.
    [23] TTE Yeo, SH Ong, Jayasooriah, et al.Autofocusing for tissue microscopy [J].Image andVision Computing,1993,11(10):629~639.
    [24]徐博泓,江和平.一种粗精结合的图像式靶场测量系统自动调焦算法[J].激光与光电子学进展,2010,121203-1~8.
    [25]康宗明,张利,谢攀.一种基于能量和熵的自动聚焦算法[J].电子学报,2003,31(4):552~555.
    [26]杨再华,李玉和,李庆祥,等.一种粗精结合的图像反馈自动调焦方法[J].计算机工程与设计,2005,26(9):2271~2273.
    [27]胡涛,陈世哲,刘国栋,等.大范围自动调焦快速搜索算法[J].光电子激光,2006,17(4):464~467.
    [28]王代华,周锋,吴朝明.基于阈值的调焦方向判断方法[J].仪器仪表学报,2010,31(8):1813~1818.
    [29]韦玉科,李江平,段仰广,等.一种基于图像处理的舌象采集自动调焦算法[J].山东大学学报(工学版),2011,41(4):95~100.
    [30]谢小甫,周进,吴钦章.基于无参考结构清晰度的自适应自动对焦方法[J].光电工程,2011,38(2):84~89.
    [31]白立芬,徐敏娴,于水,等.基于图像处理的显微镜自动调焦方法研究[J].仪器仪表学报,1999,20(6):612~614.
    [32]王建民,浦昭邦,尹继学,等.图像式显微自动调焦、瞄准系统的研究[J].光学技术.2000,26(5):410-412,417.
    [33]余超,王伯雄,郑汉卿,等.显微镜自动粗调焦的TennenGrad改进算法[J].光学精密工程,2007,15(5):784~790
    [34]梁敏华,吴志勇,陈涛.采用最大灰度梯度法实现经纬仪自动调焦控制[J].光学精密工程,2009,17(12):3016~3021.
    [35]李众.双目变焦调焦系统[D].北京:北京理工大学,2011.
    [36] Y. S. Kim, H. S. Kim. Use of null optics for monitoring the optical alignment of a beam director [J]. Applied Optics,2005,44(20):4239~4243.
    [37]韩杏子,俞信,董冰.随机并行梯度下降算法用于次镜校准的仿真研究[J].激光与光电子学进展,2010,47(4):107~112.
    [38] H. Harms,H. M. Aus.Comparison of digital focus criteria for a TV microscope system[J].Cytometry,1984,5(3):236~243.
    [39] Frank R Boddeke, Lucas J van Vliet, Hans Netten, et.al.Autofocusing in microscopy based on the OTF and sampling [J].Bioimaging,1994,2:193~203.
    [40]李奇,冯华君,徐之海.用于全数字对焦的点扩散函数性能分析与评价[J].浙江大学学报(工学版),2006,40(6):1093~1096.
    [41]李林.应用光学(第四版)[M].北京:北京理工大学出版社,2010,162~172.
    [42]裴锡宇,冯华君,李奇,等.一种基于频谱分析的离焦深度自动对焦法[J].光电工程,2003,30(5):62~65.
    [43] J. Ojeda Castaneda,L. R. Berriel Valdos,E. Montes.Spatial filter for increasing the depthof focus[J].Optics Letters,1985,10(11):520~523.
    [44] V. Aslantas, D. T. Pham.Depth from automatic defocusing [J].Optics Express,2007,15(3):1011~1023.
    [45] Murali Subbarao,Jenn-kwei Tyan.Selecting the optimal focus measure for autofocusing and depth-from-focus[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):864~870
    [46]孙国强.基于FPGA的自调焦系统设计[D].西安:西安电子科技大学,2010.
    [47] Zhaohui Li, Keyong Wu.Autofocus system for space cameras [J].Optical Engineering,2005,44(5):05300-1~05300-5.
    [48]李奇,冯华君,徐之海,等.数字图像清晰度评价函数研究[J].光子学报,2002,31(6):736~738.
    [49] A. M. Eskicioglu, P. S. Fisher.Image quality measures and their performance[J].IEEE Transactions on communications,1995,43(12):2959~2965.
    [50] M. Subbarao, G. Surya, T.Wei, Focused image recovery from two defocused images recorded with different camera settings[C].Proceedings of IEEE Computer Society conference on Computer Vision and Pattern Recognition,1994:786~791.
    [51]张德丰.MATLAB数字图像处理(第2版)[M].机械工业出版社,2012,1~420.
    [52] Ying Zhang.Adaptive autofocusing: a closed-loop perspective [J].Optical Society of America,2005,22(4):625~635.
    [53]魏敏.小目标检测与跟踪技术研究[D].北京:中国科学院研究生院(光电技术研究所),2007.
    [54]冈萨雷斯(Gonzalez R. C.),伍兹(Woods R. E.).数字图像处理(第3版)[M].阮秋琦,阮宇智等译.北京:电子工业出版社,2011,1~550.
    [55]张弘.数字图像处理与分析[M].北京:机械工业出版社,2007,1~207.
    [56]刘怀,黄建新.基于彩色数字图像处理的自动调焦技术[J].光子学报,2005,34(9):1434~1437.
    [57]庞建新.图像质量客观评价的研究[D].合肥:中国科学技术大学,2008.
    [58]韦学辉.图像及视频质量的若干研究[D].杭州:浙江大学,2008,1~130.
    [59]任四刚,李见为,谢利利.基于灰度差分法的自动调焦技术[J].光电工程,2003,30(2):53~55.
    [60]王健,陈洪斌,周国忠,等.改进的Brenner图像清晰度评价算法[J].光子学报,2012,41(7):855~858.
    [61]高赞,姜威,朱孔凤.基于Roberts梯度的自动聚焦算法[J].红外与激光工程,2006,35(1):117~121.
    [62]蒋婷,谭跃刚,刘泉.基于Sobel算子的图像清晰度评价函数研究[J].计算机与数字工程,2008,36(8):129~131.
    [63] Jiang Gangyi,Yi Wenjuan,Yu Mei,et al.Digital Autofocusing Method Based on ContourletTransform[J].Optoelectronics Letters,2007,3(5):381~384.
    [64] Mario A. Bueno-Ibarra,Josue Alvarez-Borrego,Leonardo Acho,et al.Fast autofocus algorithm for automated microscopes[J].Optical Engineering,2005,44(6):063601-1~8.
    [65] Siavash Yazdanfar,Kevin B. Kenny,Krenar Tasimi,et al.Simple and robust image-based autofocusing digital microscopy[J].Optics Express,2008,16(12):8670~8677.
    [66]黄娟.被动式自动对焦算法的研究[D].太原:太原理工大学,2008.
    [67]冷建华.傅里叶变换[M].北京:清华大学出版社,2004,1~200.
    [68]李媛媛.数字CMOS自动对焦系统研究[D].杭州:浙江大学.
    [69]谢攀,张利,康宗明,等.一种基于尺度变化的DCT自动聚焦算法[J].清华大学学报:自然科学版,2003,43(1):55~58.
    [70]王义文,刘献礼,谢晖.基于小波变换的显微图像清晰度评价函数及3-D自动调焦技术[J].光学精密工程,2006,14(6):1063~1069.
    [71]蔡明荣,马军山,王福红.自动调焦系统中图像清晰度判别方法的研究[J].光学仪器,2008,30(5):35~39.
    [72]陈国金,朱妙芬,施浒立.小波变换与神经网络复合的图像清晰度识别研究[J].红外技术,2007,29(11):670~674.
    [73]王任华,沈忙作.自动对焦算法研究[J].光电工程,2000,27(4):11~13.
    [74]刘涛.基于FPGA的图像采集、显示与调焦系统设计[D].西安:西北大学,2011.
    [75]祝世平,房建成,周锐.一种新的能量谱-熵图像聚焦评价函数[J].北京航空航天大学学报,1999,25(6):720~723.
    [76]朱铮涛,黎绍发,陈华平.基于图像熵的自动聚焦函数研究[J].光学精密工程,2004,12(5):537~542.
    [77]胡涛,陈世哲,刘国栋,等.显微视觉系统中自动调焦评价函数的选取[J].半导体光电,2006,27(2):216~220.
    [78]宋康,张涛,廖俊必.图像自相关函数作为清晰度评价函数的理论分析[J].西南交通大学学报,2008,43(5):578~581.
    [79]周仁忠,阎吉祥,赵达尊,等.自适应光学[M].北京:国防工业出版社,1996,1~521.
    [80] Piatrou P., M. Roggemann.Beaconless stochastic parallel gradient descent laser beam control: numerical experiments [J].Applied Optics,2007,46(27):6831~6842.
    [81]杨慧珍,陈波,李新阳,等.自适应光学系统随机并行梯度下降控制算法实验研究[J].光学学报,2008,28(2):205~210.
    [82]杨慧珍.无波前探测自适应光学随机并行优化控制算法及其应用[D].北京:中国科学院研究生院(光电技术研究所),2006,1~106.
    [83]赵志彬.机载光电平台可见光摄像机自动调焦技术研究[D].北京:中国科学院研究生院(长春光学精密机械与物理研究所),2010.
    [84]王倩,宋恩民,许向阳,等.基于加权邻域相关性的显微镜自动聚焦函数[J].光学精密工程,2008,16(1):166~171.
    [85]李晓燕,朱庆生.一种基于图像清晰度评价的天文望远镜自动调焦系统[J].天文研究与技术,2008,5(3):294~298.
    [86]张建恩,曹长修,金琼.图像处理中的圆分析算法[J].重庆大学学报(自然科学版),2005,28(11):43~45.
    [87]原育凯,贾伟,裴云天.自动调焦中的评价区域自动选取[J].科学技术与工程,2006,6(23):4764~4766.
    [88]李奇,冯华君,徐之海.自动对焦系统中图像非均匀采样的实验研究[J].光子学报,2003,32(12):1499~1501.
    [89]朱孔凤,姜威,高赞,等.自动聚焦系统中聚焦窗口的选择及参量的确定[J].光学学报,2006,26(6):835-840.
    [90]朱孔凤.自动聚焦区域选择算法[J].安徽大学学报:自然科学版,2009,33(2):31~34.
    [91]朱倩,陈金华,李峰.基于图像分析的数码相机对焦技术研究[J].江苏大学学报:自然科学版,2003,24(4):61~64.
    [92]胡涛,陈世哲,刘国栋,等.图像法自动调焦的最佳调焦区域选取算法[J].光学技术,2006,32(6):851~854.
    [93]张乐,姜威,高赞.数字图像一阶矩的自动聚焦区域选择算法[J].光学技术,2008,34(2):163~165.
    [94]刘力双,孙双花,吕乃光.视觉系统中调焦函数的选择方法研究[J].北京机械工业学院学报,2008,23(1):1~4.
    [95]孙明磊,宗光华,毕树生.基于照度优化的自动聚焦技术[J].光学精密工程,2008,16(8):1508~1514.
    [96] Jingqiang Li.Autofocus searching algorithm considering human visual system limitations[J].Optical Engineering,2005,44(11):113201.
    [97]蒋凤林.基于数字图像处理的自动调焦算法研究[D].哈尔滨:哈尔滨理工大学,2008.
    [98]刘瑞祯,于仕琪.OpenCV教程[M].北京:北京航空航天大学出版社,2007,1~440.
    [99]孙鑫.VC++深入详解(修订版)[M].北京:电子工业出版社,2012,1~520.
    [100]闫宗群,李刚,张雏,等.基于双TMS320DM642处理器的实时红外多目标图像处理系统[J].应用光学,2010,31(4):562~566.
    [101]葛卫龙,张晓晖,韩宏伟,等.基于DM642的激光水下图像处理系统设计与实现[J].红外与激光工程,2012,41(6):1641~1645.
    [102]李洪伟,黄自力,袁斯华,等.基于FPGA/DSP的数字视频消像旋系统设计[J].红外与激光工程,2006,35(2):222~225,233.
    [103]潘小冬,陈泽祥,高升久,等.FPGA+DSP的红外图像数据采集与显示[J].红外与激光工程,2007,36(6):968~971.
    [104]白瑞林,相恒伟,尚佳良.嵌入式CCD图像数据采集系统设计[J].控制工程,2010,17(6):811~814,835.
    [105]王炳健,刘上乾,程玉宝.基于FPGA的红外焦平面实时图像处理系统[J].红外与激光工程,2006,35(6):655~658.
    [106]陈国金,朱妙芬,施浒立,等.图像调焦算法研究及FPGA实现[J].光电工程,2007,34(11):126~130.
    [107]冯辉宗,陈叶,徐洋.基于FPGA的实时图像采集与Sobel边缘检测[J].传感器与微系统,2011,30(6):116~118.
    [108]李燕,汤心溢,葛军,等.基于FPGA的多通道红外图像实时采集系统[J].红外与激光工程,2012,41(5):1363~1368.
    [109]张承畅.多FPGA系统的关键问题及应用研究[D].重庆:重庆大学,2011.
    [110]侯伯亨,刘凯,顾新.VHDL硬件描述语言与数字逻辑电路设计(第3版)[M].西安:西安电子科技大学出版社,2009,1~400.
    [111]李春明.优化方法[M].南京:东南大学出版社,2009,1~187.
    [112]傅英定,成孝予,唐应辉.最优化理论与方法[M].北京:国防工业出版社,2008,1~350.
    [113]金一庆,陈越,王冬梅.数值方法(第2版)[M].北京:机械工业出版社,2007,1~300.
    [114]夏普若(Steven C. Chapra).工程与科学数值方法的MATLAB实现(第2版)[M].唐玲艳,田尊华译.北京:清华大学出版社,2009,1~590.
    [115]陈国良,王煦法,庄镇泉,等.遗传算法及其应用[M].北京:人民邮电出版社,1996,1-150.
    [116]崔珊珊.遗传算法的一些改进及其应用[D].合肥:中国科学技术大学,2010.
    [117]明亮.遗传算法的模式理论及收敛理论[D].西安:西安电子科技大学,2006.
    [118]张金宝,陈波,王彩霞,等.61单元自适应光学系统随机并行梯度下降算法动态实验研究[J].中国激光,2010,37(3):668~674.
    [119]陈波,杨慧珍,张金宝,等.点目标成像自适应光学随机并行梯度下降算法性能指标与收敛速度[J].光学学报,2009,29(5):1143~1148.
    [120]马慧敏,张鹏飞,张京会,等.自适应光学系统随机并行梯度下降算法[J].强激光与粒子束,2010,22(6):1206~1210.
    [121]孙穗,梁永辉,王三宏.随机并行梯度下降自适应光学系统中算法收敛速度的仿真研究[J].光电工程,2011,38(12):6~12.
    [122]杨慧珍,李新阳,姜文汉.自适应光学系统几种随机并行优化控制算法比较[J].强激光与粒子束,2008,20(1):11~16.
    [123]孙丽明.TMS320F2812原理及其C语言程序开发[M].北京:清华大学出版社,2008,1~450.
    [124]苏涛.DSP接口电路设计与编程[M].西安:西安电子科技大学出版社,2003,1~277.
    [125]田耘,徐文波.Xilinx FPGA开发实用教程[M].北京:清华大学出版社,2008,1~609.
    [126]陈是知,姜蕊辉.TMS320F2812原理与开发实践[M].北京:中国电力出版社,2010,1~450.
    [127] D. Stewart.A platform with six degree of freedom [J].Proc. Inst. Mech. Eng, London,1965,180(15):371~386.
    [128]傅德胜,寿益禾.图形图像处理学[M].南京:东南大学出版社,2002,1~385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700