皮肤组织扩张与细胞牵拉培养对表皮细胞生长及表达硫氧还蛋白影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     建立充分模拟皮肤组织扩张过程的贴壁细胞机械牵拉培养体外模型;研究不同牵拉方式对表皮细胞增殖的影响。研究皮肤组织扩张与细胞机械牵拉对表皮细胞表达硫氧还蛋白(thioredoxin, TXN)的影响。质粒转染人永生化表皮细胞HaCat细胞使其过表达TXN,探讨TXN对细胞增殖的影响。一方面为研究人皮肤组织扩张术的分子机制提供新的线索;另一方面,将TXN作为新的潜在的分子靶点,为研究TXN的转基因治疗用于加快组织扩张速率提供新的实验证据。
     方法
     1、选取额部扩张器的患者,在附加切口分别取张力最大处扩张皮肤组织和邻近颞侧正常皮肤组织,分离出表皮层,利用Real Time PCR检测SMC5L1, PTH2_HUMAN, CKLF, TXN, S100B, TGIF2, SNAI2, PPP1R3C在mRNA水平的表达,利用免疫组织化学染色和Western Blot蛋白半定量检测TXN蛋白的表达。
     2、根据国外报道常用的机械牵拉细胞培养模型的原理,结合皮肤组织扩张术的临床应用特点,自行设计并制作机械牵拉贴壁细胞培养模型;取植皮术中剩余的全厚皮,常规原代培养皮肤成纤维细胞和表皮细胞,取2-5代的细胞种植于模型的弹性膜上继续培养,观察成纤维细胞和表皮细胞在牵拉后细胞排列的差异。为研究不同牵拉方式对HaCat细胞增殖的影响,牵拉实验分为对照组(C,未牵拉组)、实验1组(M1,采用单次最大牵拉40%的延长度)、实验2组(M2,采用渐进式分四次达到最大牵拉40%的延长度,牵拉10%→停留→牵拉20%→停留→牵拉30%→停留→牵拉40%)。分别于牵拉后12h、24h、36h、48h、60h、72h时间点后,计数每个时间点的细胞数,利用MTT法检测细胞的增殖情况。于牵拉后48小时用Western blot蛋白半定量检测表皮细胞系在不同牵拉条件下和非牵拉条件下表达增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)的情况。
     3、采用自制的可调控细胞牵拉培养装置对HaCat细胞实行牵拉培养和无牵拉培养,Western blot蛋白半定量检测牵拉培养实施48小时后TXN蛋白表达情况。
     4、用质粒pcDNA3.1-hTXN转染HaCat细胞,Western blot蛋白半定量检测转染48h和72h TXN和PCNA的表达。
     结果
     1、与前期基因芯片结果一致,定量PCR显示TXN mRNA相对表达水平在扩张皮肤组织和正常皮肤组织中分别为2.01±0.41和1.00±0.00,说明在mRNA水平扩张皮肤表皮层TXN表达较正常皮肤表皮层明显上调,有统计学意义(P<0.05);TXN在表皮细胞、毛囊细胞和汗腺细胞的细胞核中高表达,扩张皮肤组织和正常皮肤组织中TXN阳性细胞率分别为(59.87±4.2)%和(41.52±8.4)%,扩张皮肤组织中TXN阳性细胞较正常皮肤组织高,有统计学意义(P<0.001);扩张皮肤组织和正常皮肤表皮层中TXN蛋白表达量分别为1.48±0.24和0.65±0.14,显示扩张皮肤组织较正常皮肤组织表皮层显著升高,有统计学意义(P<0.05)。
     2、研制两套牵拉细胞培养模型,一个是置入式牵拉细胞培养装置,该装置既可完成牵拉培养,又可置入普通培养皿,另一个是可控式牵拉细胞培养装置,可对细胞进行大幅度的持续性、渐进性的牵拉。二者方便消毒,易于观察细胞形态。
     3、对人皮肤成纤维细胞和表皮细胞经牵拉培养发现,牵拉膜上的细胞生长状态良好,细胞沿牵拉方向呈明显极性排列,而未牵拉的皿内细胞排列杂乱无序。
     4、与对照组(C组)相比,渐进牵拉组(M2组)和单次牵拉组(M1组)的细胞数目均增加,在48h处达到高峰;牵拉48h后,台盼蓝计数法结果显示三组的细胞数分别为(1.65±0.46)×105、(2.36±0.35)×105和(2.08±0.43)×105;MTT法结果显示三组的细胞吸光值分别为1.765±0.065、2.866±0.205和1.986±0.033。与C组相比,M2组细胞数增加明显,有统计学意义(P<0.05)。
     5、比较不同牵拉方式作用48h后HaCat细胞表达PCNA蛋白的情况,正常组(C组)、渐进牵拉组(M2组)和单次牵拉组(M1组)中PCNA表达量分别为3.29±0.21、7.49±0.34和3.98±0.18,M2组与C组比较PCNA表达明显增加,有统计学意义(P<0.05);M1组与C组比较PCNA表达有所增加,无统计学意义(P>0.05)。
     6、比较机械应力牵拉培养48h后HaCat细胞表达TXN蛋白的情况,渐进式牵拉组(M组)较非牵拉组(C组)HaCat细胞表达TXN蛋白高,M组和C组中TXN表达量分别为0.79±0.09和0.14±0.05,M组与C组比较TXN表达明显增加,有统计学意义(P<0.05)。
     7、将pcDNA3.1-hTXN质粒转染HaCat细胞,对照组、48h组和72h组TXN表达量分别为0.009±0.0003、0.048±0.0020和0.068±0.0110,对照组、48h组和72h组PCNA表达量分别为0.029±0.0001、0.076±0.0109和0.091±0.0093。72h组PCNA蛋白水平较C组表达增加明显,有统计学意义(P<0.05),48h组PCNA蛋白较C组有所增加,无统计学意义(P>0.05)。说明TXN的过表达会导致PCNA的表达增加。
     结论
     1、TXN在表皮细胞、毛囊细胞和汗腺细胞的细胞核中高表达,扩张皮肤组织表皮层中TXN mRNA和蛋白表达明显高于邻近正常皮肤组织表皮层;
     2、可调控式牵拉培养装置可对贴壁细胞进行渐进式牵拉,渐进式牵拉方式更能充分模拟体内组织扩张术的过程。
     3、机械应力可刺激表皮细胞表达TXN增多,TXN可能与机械应力促进细胞增殖有一定关系。
     4、表皮细胞系中过表达TXN可能促进细胞的增殖,为后续研究组织扩张分子机制和转基因技术加快组织扩张速度提供实验基础。
Objective:
     To establish a new cell culture model with mechanical stress that fully simulates the process of tissue expansion. To learn the influence of mechanical stress on human being epidermal keratinocyte proliferation in vitro by using different mechanical stretching methods. To investigate the influence of tissue expansion and mechanical stretching culture on the thioredoxin expression of skin keratinocyte. To explore effects of TXN overexpression on cell proliferation in HaCat cell. To provide new clues to studies on molecular mechanisms of tissue expansion and experimental evidence for clinic application of TXN gene therapy on speeding up the rate of tissue expansion by using TXN as a new potential molecular target.
     Method:
     1. Patients with frontal tissue expander were selected, from which skin tissues at the location of force-maximum and the temporalis normal skin tissues were taken at the extra-incision respectively to isolate epidermis. Utilize Real Time PCR to test the differential mRNA expression of SMC5L1, PTH2_HUMAN, CKLF, TXN, S100B, TGIF2, SNAI2, PPP1R3C. Test the protein expression of TXN by immunohischemistry and Western-Blot.
     2. Based on mechanical stress cell culture theory regularly used in abroad reports, combined with the clinical characteristic of tissue expansion and skin stretching techniques, adherent cell culture model with mechanical stress was decised and constructed. Primary cultured skin fibroblasts and keratinocytes were obtained from full thickness skin of human being. The2-5passages fibroblasts and keratinocytes (cell density:5000-10000/cm2) digested with trypsin, were seeded on elastic membranes of the model. Then to investigate effects of different stretch methods to the keratinocyte on the cell proliferation, the cells were divided into three groups: group1、group2and control group. Group1was used as single maximum stress stretch (Ml group, only40%stretch), while group2was used as progressive and accumulative stress stretch way ((M2group.10%stretch→retention→20%stretch→retention→30%stretch→retention→40%stretch). The control group was no mechanical stress in the experiment. The number of HaCat cells was counted individually in12h、24h、36h、48h、60h、72h after the last of the mechanical stress, drawn out the proliferation curve and compared the cell proliferation between the tested group and the control one at different time with MTT. The total protein was also harvested from different groups in48h after the last mechanical stress. Cell cycle protein PCN A was analysised by Western Blot.
     3. Stretched and unstretched HaCat cell culture were carried out by using self-made adjustable cell culture mechanical strain model. In48h after cultured in the stretching model, the total protein of HaCat cell was obtained and TXN protein was analysised by Western Blot.
     4. The pcDNA3.1-hTXN recombinant vector was transfected into the HaCat cell to make the TXN enhanced.48h and72h after transfection, the protein levels of PCN A and TXN were analyzed by Western Blot.
     Results:
     1. In line with former data of microarray, the mRNA relative expression of TXN in epidermis of expanded skin tissue and normal skin tissue was2.01±0.4land1.00±0.00respectively. The mRNA of TXN in epidermis of expanded skin tissue increased compared with normal skin tissue group and there was statistical significance between groups(P<0.05). The TXN is mostly located in the nucleus of epidermal cells, hair follicles and sweat glands cell from the Immunohischemistry Staining. The positive cells rate of TXN expression in the expanded skin tissue and normal skin tissue was (59.87±4.2)%and (41.52±8.4)%respectively, and there was statistical significance between groups(P<0.001).The band density of TXN protein expression in epidermis of expanded skin tissue and normal skin tissue from Western Blot was1.48±0.24and0.65±0.14respectively, and there was statistical significance between groups(P<0.05).
     2. Two sets of cell culture mechanical strain models were developed. One is the insertable cell culture mechanical strain model, which can be used to complete the stretch cultivation and at the same time can be insertable into the normal cell culture dish. The other is adjustable cell culture mechanical strain model, which can have substantial, continuous and gradual stretch on adherent cells. Both are easy to disinfect and are apt to observe cell morphology.
     3. Results from the culture on human skin fibroblast cells and epidermal cells after stretches show that cells on the elastic membrane develop well.Cell morphology showed a polarity arranged along the stretch direction, while cells in the unstretched culture dishes arranged disorderly.
     4. Compared with the control group (C), the number of cells in the accumulative stress stretch group (M2) and a single maximum stretch group (M1) were increased, peaked at48h After48h of stretching, the number of the cells in C group^M2group and M1group was (1.65±0.46)×105、(2.36±0.35)×105and (2.08±0.43)×105respectively from cell counting method, and1.765±0.065、2.866±0.205and1.986±0.033respectively from MTT method.Cell number of M2group apparently increased compared with C group, and there was statistical significance between groups(P<0.05).
     5. After48h of stretching, the PCNA protein expression of C group、M2group and M1group was3.29±0.21、7.49±0.34and3.98±0.18. The PCNAprotein expression of M2group apparently increased compared with C group, and there was statistical significance between groups(P<0.05). The PCNA protein expression of M1group lightly increased compared with C group, and there was not statistical significance between groups(P>0.05).
     6. After48h of stretching, the TXN protein expression of accumulative stress stretch group (M) and unstretched group(C) was0.79±0.09and0.14±0.05, and there was statistical significance between groups(P<0.05).
     7. The TXN protein expression of untransfected group (C)、48h transfected group (48h) and72h transfected group (72h) was0.009±0.0003、0.048±0.0020and0.068±0.0110. The PCNA protein expression of untransfected group (C)、48h transfected group (48h) and72h transfected group (72h) was0.029±0.0001、0.076±0.0109and0.091±0.0093. The PCNA protein expression of72h group apparently increased compared with C group, and there was statistical significance between groups(P<0.05). The PCNA protein expression of48h group lightly increased compared with C group, and there was not statistical significance between groups(P>0.05).TXN overexpression will lead to increased expression of PCNA.
     Conclusions:
     1. TXN is overexpressed in the nucleus of epidermal cells, hair follicle cells and sweat gland cells. The TXN mRNA and protein expression in epidermis of expanded skin is significantly more than the neighbouring normal skin epidermis.
     2. Adjustable cell culture mechanical strain model can help to have gradual traction to adherent cells, which can fully imitate the process of in vivo tissue expansion
     3. Mechanical stress can stimulate TXN expression in skin keratinocytes, which suggests that there may exist some relevance between TXN and cell proliferation stimulated by mechanical stress.
     4. Overexpression of TXN may stimulate cell proliferation of HaCat celL This study offers experimental basis for follow-up studies on the mechanism of cell proliferation with mechanical stress in the tissue expansion and the increase of tissue expansion speed by gene therapy.
引文
[1]Austad E.D., Pasyk K.A., McClatchey K.D., et al. Histomorpho logic evaluation of guinea pig skin and soft tissue after controlled tissue expansion[J]. Plast Reconstr Surg, 1982,70 (6):704-710.
    [2]Squier C.A. The stretching of mouse skin in vivo:effect on epidermal proliferation and thickness[J]. J Invest Dermatol,1980,74 (2):68-71.
    [3]Pietramaggiori G., Liu P., Scherer S.S., et al. Tensile forces stimulate vascular remodeling and epidermal cell proliferation in living skin[J]. Ann Surg,2007,246 (5): 896-902.
    [4]Johnson T.M., Lowe L., Brown M.D., et al. Histology and physiology of tissue expansion[J]. J Dermatol Surg Oncol,1993,19(12):1074-1078.
    [5]Austad E.D., Thomas S.B., Pasyk K. Tissue expansion:dividend or loan?[J]. Plast Reconstr Surg,1986,78 (1):63-67.
    [6]Boezeman J.B., Bauer F.W., de Grood R.M. Flow cytometric analysis of the recruitment of GO cells in human epidermis in vivo following tape stripping[J]. Cell Tissue Kinet,1987,20(1):99-107.
    [7]Pasyk K.A., Argenta L.C., Hassett C. Quantitative analysis of the thickness of human skin and subcutaneous tissue following controlled expansion with a silicone implant[J]. Plast Reconstr Surg,1988,81 (4):516-523.
    [8]Pasyk K. A., Argenta L.C., Austad E.D. Histopathology of human expanded tissue[J]. Clin Plast Surg,1987,14 (3):435-445.
    [9]张正文,卢伟.扩张皮肤移植后的组织学转归[J].临床医学,2000,20(9):1-2.
    [10]Melis P., Noorlander M.L., van der Horst C.M., et al. Rapid alignment of collagen fibers in the dermis of undermined and not undermined skin stretched with a skin-stretching device[J]. Plast Reconstr Surg,2002,109 (2):674-680; discussion 681-672.
    [11]Knight K.R., McCann J.J., VanderkoIk C.A., et al. The redistribution of collagen in expanded pig skin[J]. Br J Plast Surg,1990,43 (5):565-570.
    [12]焦虎,范金财.机械应力对皮肤生物学改变及促细胞增殖机制的研究进展[J].中华整形外科杂志2010,26(4):313-316.
    [13]Mustoe T.A., Bartell T.H., Garner W.L. Physical. biomechanical, histologic, and biochemical effects of rapid versus conventional tissue expansion[J]. Plast Reconstr Surg, 1989,83 (4):687-691.
    [14]李江,鲁开化,艾玉峰,等.持续扩张术中皮肤胶原代谢的改变[J].第四军医 大学学报,1998,19:307-309.
    [15]鲁开化,艾玉峰,郭树忠(Ed.),新编皮肤软组织扩张术[M],第二军医大学出版社,上海,2007.
    [16]Johnson P.E., Kernahan D.A., Bauer B.S. Dermal and epidermal response to soft-tissue expansion in the pig[J]. Plast Reconstr Surg,1988,81 (3):390-397.
    [17]Timmenga E.J., Das P.K. Histomorp ho logical observations on dermal repair in expanded rabbit skin:a preliminary report[J]. Br J Plast Surg,1992,45 (7):503-507.
    [18]Plenz G., Loffler A., Siegert R., et al. The effect of tissue expansion on the expression of collagen type Ⅰ and type Ⅲ mRN A in distinct areas of skin in the dog as an animal model[J]. Eur Arch Otorhinolaryngol. 1998,255 (9):473-477.
    [19]Loffler J.A., Plenz G., Siegert R, et aL Experimental tissue expansion induces changes in expression of procollagen Ⅰ and Ⅲ messenger RNA[J]. Eur Arch Otorhinolaryngol. 1995,252 (8):475-477.
    [20]刘凯,范志宏,钱云良,等.皮肤扩张后转化生长因子β1的变化与作用的实验研究[J].中华整形外科杂志,2002,18(1):33-35.
    [21]Webb K., Hitchcock R.W., Smeal R.M., et al. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane conslructs[J]. J Biomech,2006,39 (6):1136-1144.
    [22]van Rappard J.H., Sonneveld G.J., Borghouts J.M. Histologic changes in soft tissues due to tissue expansion (in animal studies and humans)[J]. Facial Plast Surg,1988, 5 (4):280-286.
    [23]Lee Y, Gil M.S., Hong J.J. Histomorpho logic changes of hair follicles in human expanded scalp[J]. Plast Reconstr Surg,2000,105 (7):2361-2365.
    [24]李江,鲁开化,艾玉峰,等.扩张囊外纤维包膜的组织学结构及其意义[J].中华医学美容美学杂志,2001,7(4):191-193.
    [25]Kostakoglu N., Kecik A., Ozyilmaz F.,et al. Expansion of fascial flaps: histopathologic changes and clinical benefits[J]. Plast Reconstr Surg,1993,91 (1):72-79.
    [26]Lew D., Fuseler J.W. The effect of stepwise expansion on the mitotic activity and vascularity of subdermal tissue and induced capsule in the rat[J]. J Oral Maxillofac Surg, 1991,49 (8):848-853.
    [27]Morris S.F., Pang C. Y, Mahoney J., et aL Effect of capsulectomy on the hemodynamics and viability of random-pattern skin flaps raised on expanded skin in the pig[J]. Plast Reconstr Surg,1989,84 (2):314-322; discussion 323-314.
    [28]刘文阁,杨佩瑛,马桂娥,等.内外双囊扩张器注药加速组织扩张的实验研究 [J].中华整形外科杂志,2000,16(3):139-142.
    [29]Manders E.K., Saggers G.C., Diaz-Alonso P., et al. Elongation of peripheral nerve and viscera containing smooth muscte[J]. Clin Plast Surg,1987,14(3):551-562.
    [30]Wood F.M., McMahon S.B. The response of the peripheral nerve field to controlled soft tissue expansion[J]. Br J Plast Surg,1989,42 (6):682-686.
    [31]van der Wey L.P., Gabreels-Festen A.A., Merks M.H., et al. Peripheral nerve elongation by laser Doppler flowmetry controlled expansion:morphological aspects[J]. Acta Neuropathol,1995,89 (2):166-171.
    [32]Mutaf M. Venous changes in expanded skin:a microangio graphic and histological study in rabbits[J]. Ann Plast Surg,1996,37 (1):75-83.
    [33]Siegert R., Danter J., Jurk V., et al. Dermal microvasculature and tissue selective thinning techniques (ultrasound and water-jet) of short-time expanded skin in dogs[J]. Eur Arch Otorhinolaryngol,1998,255 (6):325-330.
    [34]Stark G.B., Hong C., Futrell J.W. Rapid elongation of arteries and veins in rats with a tissue expander[J]. Plast Reconstr Surg,1987,80(4):570-581.
    [35]Sasaki G.H., Pang C.Y. Pathophysiology of skin flaps raised on expanded pig skin[J]. Plast Reconstr Surg,1984,74 (1):59-67.
    [36]McCann J.J., Mitchell G.M., O'Brien B.M., et al. Comparative viability of expanded and unexpanded axial pattern skin flaps in pigs[J]. Br J Plast Surg,1988,41 (3): 294-297.
    [37]Schneider M.S., Wyatt D.B., Konvolinka C.W., et al. Comparison of rapid versus slow tissue expansion on skin-flap viability[J]. Plast Reconstr Surg,1993,92(6): 1126-1132.
    [38]Vanderkolk C.A., McCann J.J., Mitchell G.M., et al. Changes in area and thickness of expanded and unexpanded axial pattern skin flaps in pigs[J]. Br J Plast Surg,1988,41 (3):284-293.
    [39]Cherry G.W., Austad E., Pasyk K., et al. Increased survival and vascularity of random-pattern skin flaps elevated in controlled, expanded skin[J]. Plast Reconstr Surg, 1983,72 (5):680-687.
    [40]李江,鲁开化,艾玉峰,等.持续恒压和间断常规组织扩张术对皮肤细胞增殖与凋亡的影响[J].中华医学美容美学杂志,2002,8(5):247-249.
    [41]卢刚,周刚,陈光宇,等.过度扩张对轴型皮瓣血运影响的实验研究[J].中华整形外科杂志,2002,18(5):280-282.
    [42]李江,鲁开化,艾玉峰,等.皮肤扩张术后的组织退行性变研究[J].中华整形 外科杂志,2001,17(6):347-349.
    [43]Borman H., Deniz M., Bahar T., et aL An alternative method of using an interpositional silicone sheet in tissue expansion[J]. J Craniofac Surg,2009,20 (3): 905-908.
    [44]贺忠文,何云志,陈智.皮肤软组织扩张术的血流动力学观察[J].中华外科杂志,1992,30(12):755-757.
    [45]Lee P., Squier C.A., Bardach J. Enhancement of tissue expansion by anticontractile agents[J]. Plast Reconstr Surg,1985,76 (4):604-610.
    [46]栾杰、唐勇、杨佩瑛,等.外用罂粟碱霜加速组织扩张的实验研究[J].中华整形外科杂志,2002,18(1):29-32.
    [47]栾杰、唐勇、张旭辉,等.外用罂粟碱霜对扩张皮肤血流量及扩张皮瓣成活长度的影响[J].实用美容整形外科杂志,2002,13(4):209-212.
    [48]高春锦,王友斌,乔群,等.高压氧预处理对扩张皮瓣成活的影响[J].中华航海医学与高气压医学杂志,2011,18(1):43-44.
    [49]段晨旺,徐刚,周建红,等.A型肉毒毒素对肌皮瓣超量扩张的影响[J].中国修复重建外科杂志,2011,25(9):1063-1066.
    [50]Hirshowitz B., Kaufinan T., Ullman J. Reconstruction of the tip of the nose and ala by load cycling of the nasal skin and harnessing of extra skin[J]. Plast Reconstr Surg, 1986,77 (2):316-321.
    [51]孙志刚,郭树忠,鲁开化,等.皮肤伸展术后组织形态学变化[J].中国美容医学,2000,9(2):91-93.
    [52]Francis A.J., Marks R. Skin stretching and epidermopoiesis[J]. Br J Exp Pathol. 1977,58 (1):35-39.
    [53]Olenius M., Dalsgaard C.J., Wickman M. Mitotic activity in expanded human skin[J]. Plast Reconstr Surg,1993,91 (2):213-216.
    [54]刘洋,李建福,付小兵,等.皮肤扩张过程中p63和细胞角蛋白的表达特征及意义[J].中国美容医学,2005,14(6):665-668.
    [55]Ingber D.E. Cellular mechanotransduction:putting all the pieces together again[J]. FASEB J,2006,20 (7):811-827.
    [56]Reichelt J. Mechanotransduction of keratinocytes in culture and in the epidermis[J]. Eur J Cell Biol,2007,86 (11-12):807-816.
    [57]Won J., Kim M., Kim N., et al. Small molecule-based reversible reprogramming of cellular lifespan[J]. Nat Chem Biol,2006,2 (7):369-374.
    [58]Fu X., Sun X., Li X., et aL Dedifferentiation of epidermal cells to stem cells in vivo[J]. Lancet,2001,358(9287):1067-1068.
    [59]付小兵,孙晓庆,孙同柱,等.表皮细胞生长因子治疗创面出现的干细胞岛现象[J].中华医学杂志,2001,81(12):733-736.
    [60]Takei T., Mills I., Arai K., et al. Molecular basis for tissue expansion:clinical implications for the surgeon[J]. Plast Reconstr Surg,1998,102 (1):247-258.
    [61]刘学军,张海明,孙广慈.扩张皮肤中b-FGF和EGF的含量与扩张量的关系[J].中华整形外科杂志,2004,20(3):228-230.
    [62]贾平,郭树忠,张琳西,等.牵拉培养对表皮细胞生长及EGF分泌的影响[J].中国美容医学,2004,13(5):517-519.
    [63]Yano S., Komine M., Fujimoto M., et al. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes[J]. J Invest Dermatol,2004,122 (3):783-790.
    [64]贾平,郭树忠,赵一岭,等.磷酸化ERK在扩张皮肤组织中的分布和表达[J].中国美容医学,2003,12(1):19-21.
    [65]Schneider M.S., Borkow J.E., Cruz I.T., et al. The tensiometric properties of expanded guinea pig skin[J]. Plast Reconstr Surg,1988,81 (3):398-405.
    [66]段晨旺,鲍世威,徐刚,等.A型肉毒毒素对小型猪肌皮瓣扩张的影响[J].中华整形外科杂志,2011,27(1):31-35.
    [67]鲍世威,李森恺,呼春晖.A型肉毒毒素辅助额部皮肤软组织扩张的生物力学研究[J].中国美容医学,2012,21(2):253-256.
    [68]李江,鲁开化,艾玉峰,等.组织扩张术囊上皮肤来源、扩张率和回缩率研究[J].中华医学美容杂志,1998,3(4):118-121.
    [69]郭文哲,仇树林,闫焱,等.几丁糖对扩张后皮瓣纤维包膜影响的临床研究[J].中国美容医学,2012,20(7):1090-1093.
    [70]Fan J., Liu L., Tian J., et al. The expanded "flying-wings" scalp flap for aesthetic hemiscalp alopecia reconstruction in children[J]. Aesthetic Plast Surg,2009,33 (3): 361-365.
    [71]Fan J., Liu L., Tian J., et al. Aesthetic full-perioral reconstruction of burn scar by using a bilateral-pedicled expanded forehead flap[J]. Ann Plast Surg,2009,63 (6): 640-644.
    [72]Neale H.W., High R.M., Billmire D.A., et al. Complications of controlled tissue expansion in the pediatric burn patient[J]. Plast Reconstr Surg,1988,82 (5):840-848.
    [73]Antonyshyn O., Gruss J.S., Zuker R., et al. Tissue expansion in head and neck reconstruction[J]. Plast Reconstr Surg,1988,82 (1):58-68.
    [74]Huang X., Qu X., Li Q. Risk factors for complications of tissue expansion:a 20-year systematic review and meta-analysis[J]. Plast Reconstr Surg,2011,128(3): 787-797.
    [75]Karagergou E., Papas A., Forogiou P., et al. Management of the complications of tissue expansion during a 5-year period (2005-2010)[J]. J Plast Surg Hand Surg,2012,46 (3-4):167-171.
    [76]范金财,张卓男,陈玉刚,等.组织扩张器非感染行并发症相关细菌学分析研究[J].中国美容医学,2007,16(2):151-152.
    [77]付思祺,范金财,刘立强,等.扩张皮瓣转移修复术后远期草绿色链球菌感染一例[J].中国美容医学,2012,21(5):845-846.
    [78]Keller W.G., Aron D.N., Rakich P.M., et al. Rapid tissue expansion for the development of rotational skin flaps in the distal portion of the hindlimb of dogs:an experimental study[J]. Vet Surg,1994,23 (1):31-39.
    [79]Schmidt S.C., Logan S.E., Hayden J.M., et al. Continuous versus conventional tissue expansion:experimental verification of a new technique[J]. Plast Reconstr Surg, 1991,87 (1):10-15.
    [80]Logan S.E., Hayden J. A control unit for maximal-rate continuous tissue expansion (CTE)[J]. Biomed Sci Instrum,1989,25:27-33.
    [81]Raposio E., Santi P.L. Topical application of DMSO as an adjunct to tissue expansion for breast reconstruction[J]. Br J Plast Surg,1999,52 (3):194-197.
    [82]胡亚兰,郭树忠,鲁开化bFGF和硫糖铝在持续恒压扩张术中局部联合应用对组织细胞增殖的影响[J].中华整形外科杂志,2003,19(3):203-206.
    [83]Turner C.H., Owan I., Takano Y. Mechanotransduction in bone:role of strain rate[J]. Am J Physiol,1995,269 (3 Pt 1):E438-442.
    [84]Orr A.W., Helmke B.P., Blackman B.R., et al. Mechanisms of mechanotransduction[J]. Dev Cell,2006,10(1):11-20.
    [85]Matsubayashi Y, Ebisuya M., Honjoh S., et al. ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing[J]. Curr Biol, 2004,14 (8):731-735.
    [86]Martinac B. Mechanosensitive ion channels:molecules of mechanotransduction[J]. J Cell Sci,2004,117 (Pt 12):2449-2460.
    [87]Yano S., Komine M., Fujimoto M., et al. Activation of Akt by mechanical stretching in human epidermal keratinocytes[J]. Exp Dermatol,2006,15 (5):356-361.
    [88]Takei T., Han O., Ikeda M., et al. Cyclic strain stimulates isoform-specific PKC activation and translocation in cultured human keratinocytes[J]. J Cell Biochem,1997,67 (3):327-337.
    [89]Moqrich A., Hwang S.W., Earley T.J., et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin[J]. Science,2005,307 (5714): 1468-1472.
    [90]O'Neil R.G., Heller S. The mechanosensitive nature of TRPV channels[J]. Pflugers Arch,2005,451(1):193-203.
    [91]Evans W.H., De Vuyst E., Leybaert L. The gap junction cellular internet:connexin hemichannels enter the signalling Hmelight[J]. Biochem J,2006,397(1):1-14.
    [92]Jiang J.X., Siller-Jackson A.J., Burra S. Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress[J]. Front Biosci,2007, 12(1450-1462.
    [93]Hennings H., Michael D., Cheng C., et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture[J]. Cell,1980,19 (1):245-254.
    [94]Wilson E., Mai Q., Sudhir K., et al. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF[J]. J Cell Biol,1993,123 (3): 741-747.
    [95]Zhang B., Peng F., Wu D., et al. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells[J]. Cell Signal,2007,19(8): 1690-1700.
    [96]Knies Y, Bernd A., Kaufinann R., et al. Mechanical stretch induces clustering of betal-integrins and facilitates adhesion[J]. Exp Dermatol,2006,15 (5):347-355.
    [97]Vogel V. Mechanotransduction involving multimodular proteins:converting force into biochemical signals[J]. Annu Rev Biophys Biomol Struct,2006,35:459-488.
    [98]Kung C. A possible unifying principle for mechanosensation[J]. Nature,2005,436 (7051):647-654.
    [99]Vogel V., Sheetz M. Local force and geometry sensing regulate cell functions[J]. Nat Rev Mol Cell Biol,2006,7 (4):265-275.
    [100]Katz B.Z., Zamir E., Bershadsky A., et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions[J]. Mol Biol Cell, 2000,11 (3):1047-1060.
    [101]Tamada M., Sheetz M.P., Sawada Y. Activation of a signaling cascade by cytoskeleton stretch[J]. Dev Cell,2004,7(5):709-718.
    [102]Sawada Y, Tamada M., Dubin-Thaler B.J., et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas[J]. Cell,2006,127(5):1015-1026.
    [103]Sawada Y, Nakamura K., Doi K., et al Rapl is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase[J]. J Cell Sci,2001,114 (Pt 6): 1221-1227.
    [104]Lee G., Abdi K., Jiang Y, et al. Nanospring behaviour of ankyrin repeats [J]. Nature, 2006,440 (7081):246-249.
    [105]Ortiz V, Nielsen S.O., Klein M.L., et al. Unfolding a linker between helical repeats[J]. J Mol Biol,2005,349 (3):638-647.
    [106]Craig D., Krammer A., Schulten K., et al. Comparison of the early stages of forced unfolding for fibronectin type Ⅲ modules[J]. Proc Natl Acad Sci U S A,2001,98 (10): 5590-5595.
    [107]Gao M., Craig D., Vogel V., et al Identifying unfolding intermediates of FN-Ⅲ(10) by steered molecular dynamics[J]. J Mol Biol,2002,323 (5):939-950.
    [108]Geiger B., Bershadsky A. Exploring the neighborhood:adhesion-coupled cell mechanosensors[J]. Cell,2002,110(2):139-142.
    [109]Zhong C., Chrzanowska-Wodnicka M., Brown J., et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly[J]. J Cell Biol,1998,141 (2):539-551.
    [110]Rubin C.T., Lanyon L.E. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling[J]. J Theor Biol,1984,107 (2):321-327.
    [111]Shirinsky V.P., Antonov A.S., Birukov K.G., et al. Mechano-chemical control of human endothelium orientation and size[J]. J Cell Biol,1989,109 (1):331-339.
    [112]Takemasa T., Yamaguchi T., Yamamoto Y, et al. Oblique alignment of stress fibers in cells reduces the mechanical stress in cyclically deforming fields[J]. Eur J Cell Biol, 1998,77 (2):91-99.
    [113]Hofinann M., Zaper J., Bernd A., et al. Mechanical pressure-induced phosphorylation of p38 mitogen-activated protein kinase in epithelial cells via Src and protein kinase C[J]. Biochem Biophys Res Commun,2004,316 (3):673-679.
    [114]Gormar F.E., Bernd A., Bereiter-Hahn J., et al. Anew model of epidermal differentiation:induction by mechanical stimulation[J]. Arch Dermatol Res,1990,282 (1):22-32.
    [115]Swensson O., Langbein L., McMillan J.R., et al. Specialized keratin expression pattern in human ridged skin as an adaptation to high physical stress[J]. Br J Dermatol, 1998,139 (5):767-775.
    [116]Felsenfeld D.P., Schwartzberg P.L., Venegas A., et al. Selective regulation of integrin-- cytoskeleton interactions by the tyrosine kinase Src[J]. Nat Cell Biol,1999,1 (4):200-206.
    [117]Wang J.H., Thampatty B.P., Lin J.S., et al. Mechanoregulation of gene expression in flbroblasts[J]. Gene,2007,391 (1-2):1-15.
    [118]Cukierman E., Pankov R., Stevens D.R., et al. Taking cell-matrix adhesions to the third dimensbion[J]. Science,2001,294(5547):1708-1712.
    [119]Katsumi A., Orr A.W., Tzima E., et al. Integrins in mechanotransduction[J]. J Biol Chem,2004,279 (13):12001-12004.
    [120]Turchi L., Chassot A.A., Bourget I., et al. Cross-talk between RhoGTPases and stress activated kinases for matrix metalloproteinase-9 induction in response to keratinocytes injury[J]. J Invest Dermatol, 2003,121 (6):1291-1300.
    [121]Burridge K.,Fath K. Focal contacts:transmembrane links between the extracellular matrix and the cytoskeleton[J]. Bioessays,1989,10(4):104-108.
    [122]Okuda M., Takahashi M., Suero J., et al. Shear stress stimulation of p130(cas) tyrosine phosphorylation requires calcium-dependent c-Src activation[J]. J Biol Chem, 1999,274 (38):26803-26809.
    [123]Roovers K., Assoian R.K. Effects of rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G(1) phase cyclin-dependent kinases[J]. Mol Cell Biol, 2003,23 (12):4283-4294.
    [124]Jalali S., del Pozo M.A., Chen K., et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands[J]. Proc Natl Acad Sci U S A,2001,98 (3):1042-1046.
    [125]Katsumi A., Naoe T., Matsushita T., et al. Integrin activation and matrix binding mediate cellular responses to mechanical stretch[J]. J Biol Chem,2005,280(17): 16546-16549.
    [126]Shemesh T., Geiger B., Bershadsky A.D., et al. Focal adhesions as mechanosensors: a physical mechanism[J]. Proc Natl Acad Sci U S A,2005,102 (35):12383-12388.
    [127]Tzima E., Irani-Tehrani M., Kiosses W.B., et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress[J]. Nature,2005,437 (7057): 426-431.
    [128]Bershadsky A.D., Balaban N.Q., Geiger B. Adhesion-dependent cell mechanosensitivity[J]. Annu Rev Cell Dev Biol,2003,19 (677-695.
    [129]Takei T, Rivas-Gotz C., Delling C.A., et al. Effect of strain on human keratinocytes in vitro[J]. J Cell Physiol,1997,173 (1):64-72.
    [130]Takei T., Kito H., Du W., et al. Induction of interleukin (IL)-1 alpha and beta gene expression in human keratinocytes exposed to repetitive strain:their role in strain-induced keratinocyte proliferation and morphological change[J]. J Cell Biochem, 1998,69(2):95-103.
    [131]Nguyen H.T., Adam R.M., Bride S.H., et al. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells[J]. Am J Physiol Cell Physiol,2000,279 (4):C1155-1167.
    [132]Kippenberger S., Loitsch S., Guschel M., et al. Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin Ⅱ type 1 receptor and epidermal growth factor receptor[J]. J Biol Chem,2005,280 (4): 3060-3067.
    [133]Zou Y., Akazawa H., Qin Y., et al. Mechanical stress activates angiotensin Ⅱ type 1 receptor without the involvement of angiotensin Ⅱ[J]. Nat Cell Biol,2004,6(6): 499-506.
    [134]Cabodi S., Moro L., Bergatto E., et al. Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses[J]. Biochem Soc Trans,2004,32 (Pt3):438-442.
    [135]Daub H., Weiss F.U., Wallasch C.,et al. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors[J]. Nature,1996,379(6565): 557-560.
    [136]Rosette C., Karin M. Ultraviolet light and osmotic stress:activation of the JNK cascade through multiple growth factor and cytokine receptors[J]. Science,1996,274 (5290):1194-1197.
    [137]Moro L., Venturino M., Bozzo C., et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival[J]. EMBO J,1998, 17 (22):6622-6632.
    [138]Stenson W.F. Prostaglandins and epithelial response to injury[J]. Curr Opin Gastroenterol,2007,23 (2):107-110.
    [139]Lee RT., Briggs W.H., Cheng G.C., et aL Mechanical deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist J]. J Immunol,1997,159 (10): 5084-5088.
    [140]Morrison D.K., Kaplan D.R, Escobedo J.A., et al. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor[J]. Cell,1989,58 (4):649-657.
    [141]Ingber D.E. Cellular tensegrity:defining new rules of biological design that govern the cytoskeleton[J]. J Cell Sci,1993,104 (Pt 3) (613-627.
    [142]Ingber D.E. Tensegrity Ⅱ. How structural networks influence cellular information processing networks[J]. J Cell Sci,2003,116 (Pt 8):1397-1408.
    [143]Ingber D.E. Tensegrity I. Cell structure and hierarchical systems biology[J]. J Cell Sci,2003,116 (Pt 7):1157-1173.
    [144]Ingber D.E. The mechanochemical basis of cell and tissue regulation[J]. Mech Chem Biosyst,2004,1 (1):53-68.
    [145]Ingber D.E. Mechanical control of tissue morphogenesis during embryological development[J]. Int J Dev Biol,2006,50 (2-3):255-266.
    [146]Giannone G., Sheetz M.P. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways[J]. Trends Cell Biol,2006,16(4):213-223.
    [147]Butler B., Gao C., Mersich A.T., et al. Purified integrin adhesion complexes exhibit actin-polymerization activity [J]. Curr Biol,2006,16 (3):242-251.
    [148]Schober M., Raghavan S., Nikoloova M., et al. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics [J]. J Cell Biol,2007,176 (5):667-680.
    [149]Lammerding J., Schulze P.C., Takahashi T., et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction[J]. J Clin Invest,2004,113 (3): 370-378.
    [150]Herrmann H., Bar H., Kreplak L., et al. Intermediate filaments:from cell architecture to nanomechanics[J]. Nat Rev Mol Cell Biol,2007,8(7):562-573.
    [151]Reichelt J., Bussow H., Grund C., et al. Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice[J]. Mol Biol Cell,2001, 12(6):1557-1568.
    [152]Wong P., Coulombe P.A. Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair[J]. J Cell Biol,2003,163 (2):327-337.
    [153]Reichelt J., Furstenberger G., Magin T.M. Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice[J]. J Invest DermatoL,2004,123 (5):973-981.
    [154]Reichelt J., Magin T.M. Hyperproliferation, induction of c-Myc and 14-3-3sigma, but no cell fragility in keratin-10-null mice[J]. J Cell Sci, 2002,115 (Pt 13):2639-2650.
    [155]Smith P.G., Garcia R., Kogerman L. Strain reorganizes focal adhesions and cytoskeleton in cultured airway smooth muscle cells[J]. Exp Cell Res,1997,232 (1): 127-136.
    [156]Russell D., Andrews RD., James J., et al. Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes[J]. J Cell Sci,2004,117 (Pt 22):5233-5243.
    [157]Vasioukhin V., Bowers E., Bauer C.,et al. Desmoplakin is essential in epidermal sheet formation[J]. Nat Cell Biol, 2001,3 (12):1076-1085.
    [158]Windoffer R, Kolsch A., Woll S., et al. Focal adhesions are hotspots for keratin filament precursor formation[J]. J Cell Biol,2006,173 (3):341-348.
    [159]Arany P.R., Flanders K.C., Kobayashi T., et al. Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure[J]. Proc Natl Acad Sci U S A,2006,103 (24):9250-9255.
    [160]Nelson C.M., Bissell M.J. Of extracellular matrix, scaffolds, and signaling:tissue architecture regulates development, homeostasis, and cancer[J]. Annu Rev Cell Dev Biol, 2006,22 (287-309.
    [161]Discher D.E., Janmey P., Wang Y.L. Tissue cells feel and respond to the stiffness of their substrate[J]. Science,2005,310(5751):1139-1143.
    [162]Paszek M.J., Zahir N., Johnson K.R., et al.Tensional homeostasis and the malignant phenotype[J]. Cancer Cell,2005,8 (3):241-254.
    [163]Engler A.J., Griffin M.A., Sen S., et al. Myotubes differentiate optimally on substrates with tissue-like stiffness:pathological implications for soft or stiff microenvironments[J]. J Cell Biol,2004,166 (6):877-887.
    [164]Engler A.J., Sen S., Sweeney H.L., et al. Matrix elasticity directs stem cell lineage specification[J]. Cell,2006,126 (4):677-689.
    [165]Wilson E., Sudhir K., Ives H.E. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions[J]. J Clin Invest,1995, 96 (5):2364-2372.
    [166]Nicolas A., Safran S.A. Limitation of cell adhesion by the elasticity of the extracellular matrix[J]. Biophys J,2006,91 (1):61-73.
    [167]Yuan Y, Verma R. Measuring microelastic properties of stratum corneum[J]. Colloids Surf B Biointerfaces,2006,48 (1):6-12.
    [168]Didier C.,Pouget J.P., Cadet J., et al. Modulation of exogenous and endogenous levels of thioredoxin in human skin fibroblasts prevents DNA damaging effect of ultraviolet A radiation[J]. Free Radie Biol Med,2001,30 (5):537-546.
    [169]Ono R., Masaki T., Dien S., et al. Suppressive effect of recombinant human thioredoxin on ultraviolet light-induced inflammation and apoptosis in murine skin[J]. J Dermatol,2012,39(10):843-851.
    [170]Abdiu A., Nakamura H., Sahaf B., et al. Thioredoxin blood level increases after severe burn injury[J]. Antioxid Redox Signal,2000,2 (4):707-716.
    [171]Laurent T.C., Moore E.C., Reichard P. Enzymatic Synthesis of Deoxyribonucleotides. Iv. Isolation and Characterization of Thioredoxin, the Hydrogen Donor from Escherichia Coli B[J]. J Biol Chem,1964,239(10):(3436-3444.
    [172]Moore E.C. A thioredoxin--thioredoxin reductase system from rat tumor[J]. Biochem Biophys Res Commun,1967,29 (3):264-268.
    [173]Holmgren A. Thioredoxin.6. The amino acid sequence of the protein from escherichia coli B[J]. Eur J Biochem,1968,6 (4):475-484.
    [174]Holmgren A. Thioredoxin[J]. Annu Rev Biochem,1985,54 (237-271.
    [175]Holmgren A., Buchanan B.B., Wolosiuk R.A. Photosynthetic regulatory protein from rabbit liver is identical with thioredoxin[J]. FEBS Lett,1977,82(2):351-354.
    [176]Teshigawara K., Maeda M., Nishino K., et al. Adult T leukemia cells produce a rymphokine that augments interleukin 2 receptor expression[J]. J Mol Cell Immunol, 1985,2(1):17-26.
    [177]Tagaya Y, Maeda Y, Mitsui A., et al. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction[J]. EMBO J,1989,8 (3):757-764.
    [178]Yodoi J., Tursz T. ADF, a growth-promoting factor derived from adult T cell leukemia and homologous to thioredoxin:involvement in lymphocyte immortalization by HTLV-I and EBV[J]. Adv Cancer Res,1991,57 (381-411.
    [179]Yodoi J., Uchiyama T. Diseases associated with HTLⅤ-Ⅰ:virus, IL-2 receptor dysregulation and redox regulation[J]. Immunol Today,1992,13 (10):405-411.
    [180]Wakasugi H., Rimsky L., Mahe Y, et al. Epstein-Barr virus-containing B-cell line produces an interleukin 1 that it uses as a growth factor[J]. Proc Natl Acad Sci U S A, 1987,84 (3):804-808.
    [181]Clarke F.M., Orozco C., Perkins A.V., et al. Identification of molecules involved in the'early pregnancy factor'phenomenon[J]. J Reprod Fertil,1991,93 (2):525-539.
    [182]Holmgren A., Soderberg B.O., Eklund H., et al. Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 Aresolution[J]. Proc Natl Acad Sci U S A,1975, 72 (6):2305-2309.
    [183]Martin J.L. Thioredoxin--a fold for all reasons[J]. Structure,1995,3 (3):245-250.
    [184]WoIlman E.E., d'Auriol L., Rimsky L., et al. Cloning and expression of a cDNA for human thioredoxin[J]. J Biol Chem,1988,263(30):15506-15512.
    [185]Ago T., Sadoshima J. Thioredoxin and ventricular remodeling[J]. J Mol Cell Cardiol,2006,41 (5):762-773.
    [186]Berggren M., Gallegos A., Gasdaska J.R., et al. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia[J]. Anticancer Res,1996,16 (6B):3459-3466.
    [187]Gasdaska P.Y., Gasdaska J.R., Cochran S., et al. Cloning and sequencing of a human thioredoxin reductase[J]. FEBS Lett,1995,373 (1):5-9.
    [188]Makino Y, Yoshikawa N., Okamoto K., et al. Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function[J]. J Biol Chem,1999,274 (5):3182-3188.
    [189]Masutani H., Hirota K., Sasada T., et al. Transactivation of an inducible anti-oxidative stress protein, human thioredoxin by HTLⅤ-Ⅰ Tax[J]. Immunol Lett,1996, 54 (2-3):67-71.
    [190]Hirota K.,Matsui M., Iwata S., et al. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1 [J]. Proc Natl Acad Sci U S A,1997,94 (8):3633-3638.
    [191]Grogan T.M., Fenoglio-Prieser C., Zeheb R., et al. Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival[J]. Hum Pathol,2000,31 (4):475-481.
    [192]Gasdaska P.Y., Berggren M.M., Berry M.J., et al. Cloning, sequencing and functional expression of a novel human thioredoxin reductase[J]. FEBS Lett,1999,442 (1):105-111.
    [193]Lee S.R., Kim J.R., Kwon K.S., et al. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver[J]. J Biol Chem,1999,274 (8):4722-4734.
    [194]Miranda-Vizuete A., Damdimopoulos A.E., Pedrajas J.R., et al. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization[J]. Eur J Biochem,1999,261 (2):405-412.
    [195]Sadek C.M., Jimenez A, Damdimopoulos A.E., et al. Characterization of human thioredoxin-like 2. A novel microtubule-binding thioredoxin expressed predominantly in the cilia of lung airway epithelium and spermatid manchette and axoneme[J]. J Biol Chem,2003,278(15):13133-13142.
    [196]Das D.K. Thioredoxin regulation of ischemic preconditioning[J]. Antioxid Redox Signal,2004,6 (2):405-412.
    [197]Kobayashi M., Nakamura H., Yodoi J., et al. Immunohistochemical localization of thioredoxin and glutaredoxin in mouse embryos and fetuses[J]. Antioxid Redox Signal, 2000,2 (4):653-663.
    [198]Godoy J.R, Funke M., Ackermann W., et al. Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse[J]. Biochim Biophys Acta,2011,1810 (1):2-92.
    [199]Dammeyer P., Arner E.S. Human Protein Atlas of redox systems-what can be learnt?[J]. Biochim Biophys Acta,2011,1810 (1):111-138.
    [200]Schroeder P., Popp R., Wiegand B., et al. Nuclear redox-signaling is essential for apoptosis inhibition in endothelial cells--important role for nuclear thioredoxin-1 [J]. Arterioscler Thromb Vasc Biol,2007,27 (11):2325-2331.
    [201]Dunn L.L., Buckle A.M., Cooke J.P., et al. The emerging role of the thioredoxin system in angiogenesis[J]. Arterioscler Thromb Vasc Biol,2010,30 (11):2089-2098.
    [202]World C., Spindel O.N.,Berk B.C. Thioredoxin-interacting protein mediates TRX1 translocation to the plasma membrane in response to tumor necrosis factor-alpha:a key mechanism for vascular endothelial growth factor receptor-2 transactivation by reactive oxygen species[J]. Arterioscler Thromb Vase Biol,2011,31 (8):1890-1897.
    [203]Spindel O.N., World C., Berk B.C. Thioredoxin interacting protein:redox dependent and independent regulatory mechanisms[J]. Antioxid Redox Signal,2012,16 (6):587-596.
    [204]Yamawaki H., Pan S., Lee R.T., et al. Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells[J]. J Clin Invest,2005,115 (3):733-738.
    [205]Zitman-Gal T, Green J., Pasmanik-Chor M., et al. Endothelial pro-atherosclerotic response to extracellular diabetic-like environment:possible role of thioredoxin-interacting protein[J]. Nephrol Dial Transplant,2010,25(7):2141-2149.
    [206]Patwari P., Higgins L.J., Chutkow W.A., et al. The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange [J]. J Biol Chem,2006,281 (31):21884-21891.
    [207]Nishinaka Y., Nishiyama A., Masutani H., et al. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation:implications for adult T-cell leukemia leukemogenesis[J]. Cancer Res,2004,64 (4):1287-1292.
    [208]Yoneda Y. Nucleocytoplasmic protein traffic and its significance to cell function[J]. Genes Cells,2000,5 (10):777-787.
    [209]Chen K., Chen J., Li D., et al. Angiotensin Ⅱ regulation of collagen type Ⅰ expression in cardiac fibroblasts:modulation by PPAR-gamma Hgand pioglitazone[J]. Hypertension,2004,44 (5):655-661.
    [210]Tao L., Gao E., Bryan N.S., et al. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion:role of S-nitrosation [corrected][J]. Proc Natl Acad Sci U S A,2004,101 (31):11471-11476.
    [211]Damdimopoulos A.E., Miranda-Vizuete A., Treuter E., et al. An alternative splicing variant of the selenoprotein thioredoxin reductase is a modulator of estrogen signaling[J]. J Biol Chem,2004,279(37):38721-38729.
    [212]Gromer S., Urig S., Becker K. The thioredoxin system--from science to clinic[J]. Med Res Rev,2004,24 (1):40-89.
    [213]Lillig C.H., Holmgren A. Thioredoxin and related molecules--from biology to health and disease[J]. Antioxid Redox Signal,2007,9 (1):25-47.
    [214]Hirota K.,Nakamura H., Masutani H., et al. Thioredoxin superfamily and thioredoxin-inducing agents[J]. Ann N Y Acad Sci,2002,957 (189-199.
    [215]Wakasugi N.,Tagaya Y., Wakasugi H., et al. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type Ⅰ-and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2[J]. Proc Natl Acad Sci U S A,1990,87 (21):8282-8286.
    [216]Nakamura H., Herzenberg L.A., Bai J., et al. Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis[J]. Proc Natl Acad Sci U S A,2001, 98(26):15143-15148.
    [217]Pekkari K.,Avila-Carino J., Bengtsson A., et al. Truncated thioredoxin (Trx80) induces production of interleukin-12 and enhances CD14 expression in human monocytes[J]. Blood,2001,97(10):3184-3190.
    [218]Nakamura H., De Rosa S.C., Yodoi J., et al. Chronic elevation of plasma thioredoxin:inhibition of chemotaxis and curtailment of life expectancy in AIDS[J]. Proc Natl Acad Sci U S A,2001,98 (5):2688-2693.
    [219]Weichsel A., Gasdaska J.R., Powis G., et al. Crystal structures of reduced, oxidized, and mutated human thioredoxins:evidence for a regulatory homodimer[J]. Structure, 1996,4 (6):735-751.
    [220]Tao L., Gao E, Hu A., et al. Thioredoxin reduces post-ischemic myocardial apoptosis by reducing oxidative/nitrative stress[J]. Br J Pharmacol,2006,149(3): 311-318.
    [221]Arner E.S. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions[J]. Biochim Biophys Acta,2009,1790 (6):495-526.
    [222]Babior B.M., Lambeth J.D., Nauseef W.The neutrophil NADPH oxidase[J]. Arch Biochem Biophys,2002,397 (2):342-344.
    [223]Fantel A.G., Person RE., Tumbic R.W., et al. Studies of mitochondria in oxidative embryotoxicity[J]. Teratology,1995,52(4):190-195.
    [224]Granger D.N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury[J]. Am J Physio 1,1988,255 (6 Pt2):H1269-1275.
    [225]Nathan C.F., Hibbs J.B., Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity[J]. Curr Opin Immunol,1991,3 (1):65-70.
    [226]Takano H., Zou Y., Hasegawa H., et al. Oxidative stress-induced signal transduction pathways in cardiac myocytes:involvement of ROS in heart diseases[J]. Antioxid Redox Signal,2003,5 (6):789-794.
    [227]Tanaka H., Okada T., Konishi H., et al. The effect of reactive oxygen species on the biosynthesis of collagen and glycosaminoglycans in cultured human dermal fibroblasts[J]. Arch Dermatol Res,1993,285 (6):352-355.
    [228]Wlaschek M., Heinen G., Poswig A., et al. UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6[J]. Photochem Photobiol,1994,59 (5):550-556.
    [229]Scharffetter-Kochanek K., Wlaschek M., Briviba K., et al. Singlet oxygen induces collagenase expression in human skin fibroblasts[J]. FEBS Lett,1993,331 (3):304-306.
    [230]Denu J.M., Tanner K.G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide:evidence for a sulfenic acid intermediate and implications for redox regulation[J]. Biochemistry,1998,37(16):5633-5642.
    [231]Chung K.Y., Agarwal A, Uitto J., et aL An AP-1 binding sequence is essential for regulation of the human alpha2(I) collagen (COL1A2) promoter activity by transforming growth factor-beta[J]. J Biol Chem,1996,271 (6):3272-3278.
    [232]Schallreuter K.U., Moore J., Wood J.M., et aL In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase[J]. J Investig Dermatol Symp Proc,1999,4(1):91-96.
    [233]Sravani P.V., Babu N.K., Gopal K.V., et al. Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin[J]. Indian J Dermatol Venereol Leprol,2009,75 (3):268-271.
    [234]Pelle E., Mammone T., Maes D., et al. Keratinocytes act as a source of reactive oxygen species by transferring hydrogen peroxide to melanocytes[J]. J Invest Dermatol, 2005,124 (4):793-797.
    [235]McCord J.M., Fridovich I. Superoxide dismutase:the first twenty years (1968-1988)[J]. Free Radic Biol Med,1988,5 (5-6):363-369.
    [236]Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalaeses[J]. Cell Mol Life Sci,2004,61 (2):192-208.
    [237]Mustacich D., Powis G. Thioredoxin reductase[J]. Biochem J,2000,346 Pt 1:1-8.
    [238]Nakamura H., Matsuda M., Furuke K., et al. Adult T cell leukemia-derived factor/human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide[J]. Immunol Lett,1994,42 (1-2):75-80.
    [239]Buechner N., Schroeder P., Jakob S., et al. Changes of MMP-1 and collagen type Ialphal by UVA, UVB and IRA are differentially regulated by Trx-1[J]. Exp Gerontol, 2008,43 (7):633-637.
    [240]Meuillet E.J., Mahadevan D., Berggren M., et al. Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding:a mechanism for the functional loss of PTEN's tumor suppressor activity[J]. Arch Biochem Biophys,2004,429(2):123-133.
    [241]Lee S.R., Yang K.S.,Kwon J., et al. Reversible inactivation of the tumor suppressor PTEN by H2O2[J]. J Biol Chem,2002,277 (23):20336-20342.
    [242]Yoshida T., Oka S., Masutani H., et al. The role of thioredoxin in the aging process: involvement of oxidative stress[J]. Antioxid Redox Signal,2003,5 (5):563-570.
    [243]Song J.S., Cho H.H., Lee B.J., et al. Role of thioredoxin 1 and thioredoxin 2 on proliferation of human adipose tissue-derived mesenchymal stem cells[J]. Stem Cells Dev,2011,20(9):1529-1537.
    [244]Rubartelli A., Bonifaci N., Sitia R. High rates of thioredoxin secretion correlate with growth arrest in hepatoma cells[J]. Cancer Res,1995,55 (3):675-680.
    [245]Biguet C, Wakasugi N., Mishal Z., et al. Thioredoxin increases the proliferation of human B-cell lines through a protein kinase C-dependent mechanism[J]. J Biol Chem, 1994,269 (46):28865-28870.
    [246]Vogt A., Tamura K., Watson S., et al. Antitumor imidazDlyl disulfide IV-2 causes irreversible G(2)/M cell cycle arrest without hyperphosphorylation of cyclin-dependent kinase Cdkl[J]. J Pharmacol Exp Ther,2000,294 (3):1070-1075.
    [247]Abate C, Patel L., Rauscher F.J.,3rd, et al. Redox regulation of fos and jun DNA-binding activity in vitro [J]. Science,1990,249(4973):1157-1161.
    [248]Muller E.G. Aglutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth[J]. Mol Biol Cell,1996,7(11): 1805-1813.
    [249]陈孝平,陈正望.硫氧还蛋白促使乳腺癌MCF-7细胞进入S期[J].华中科技大学学报,2008,37(2):154-157.
    [250]Schenk H., Vogt M., Droge W., et al. Thioredoxin as a potent costimulus of cytokine expression[J]. J Immunol,1996,156 (2):765-771.
    [251]Powis G., Gasdaska J.R., Gasdaska P.Y., et al. Selenium and the thioredoxin redox system:effects on cell growth and death[J]. Oncol Res,1997,9 (6-7):303-312.
    [252]Mochizuki M., Kwon Y.W., Yodoi J., et al. Thioredoxin regulates cell cycle via the ERK1/2-cyclin D1 pathway[J]. Antioxid Redox Signal,2009,11 (12):2957-2971.
    [253]Freemerman A.J., Gallegos A., Powis G. Nuclear factor kappaB transactivation is increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cells[J]. Cancer Res,1999,59 (16):4090-4094.
    [254]Matthews J.R., Wakasugi N., Virelizier J.L., et al. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62[J]. Nucleic Acids Res,1992,20 (15):3821-3830.
    [255]Turunen N., Karihtala P., Mantyniemi A, et al. Thioredoxin is associated with proliferation, p53 expression and negative estrogen and progesterone receptor status in breast carcinoma[J]. APMIS,2004,112 (2):123-132.
    [256]Rubartelli A., Bajetto A, Allavena G., et al. Secretion of thioredoxin by normal and neoplastic cells through aleaderless secretory pathway[J]. J Biol Chem,1992,267(34): 24161-24164.
    [257]Gasdaska J.R., Berggren M., Powis G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism[J]. Cell Growth Differ,1995,6 (12): 1643-1650.
    [258]Powis G., Montfort W.R. Properties and biological activities of thioredoxins[J]. Annu Rev Pharmacol Toxicol,2001,41 (261-295.
    [259]Nakamura H., Nakamura K., Yodoi J. Redox regulation of cellular activation[J]. Annu Rev Immunol,1997,15 (351-369.
    [260]Pekkari K., Goodarzi M.T., Scheynius A., et al. Truncated thioredoxin (Trx80) induces differentiation of human CD14+ monocytes into a novel cell type (TAMs) via activation of the MAP kinases p38, ERK, and JNK[J]. Blood,2005,105 (4):1598-1605.
    [261]Pekkari K., Holmgren A. Truncated thioredoxin:physiological functions and mechanism[J]. Antioxid Redox Signal,2004,6(1):53-61.
    [262]Schenk H., Klein M., Erdbrugger W., et al. Distinct effects of thioredoxin and antioxidants on the activation of transcription fectors NF-kappa B and AP-1[J]. Proc Natl Acad Sci U S A,1994,91 (5):1672-1676.
    [263]Meyer M., Schreck R., Baeuerle P.A. H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells:AP-1 as secondary antioxidant-responsive factor[J]. EMBO J,1993,12(5):2005-2015.
    [264]Jordan A., Reichard P. Ribonucleotide reductases[J]. Annu Rev Biochem,1998, 67:71-98.
    [265]Wei S.J., Botero A., Hirota K., et al. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation[J]. Cancer Res,2000,60 (23):6688-6695.
    [266]Karimpour S., Lou J., Lin L.L., et al. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation[J]. Oncogene,2002,21 (41):6317-6327.
    [267]Haendeler J., Hoffmann J., Tischler V, et al. Redox regulatory and anti-apoptotic junctions of thioredoxin depend on S-nitrosylation at cysteine 69[J], Nat Cell Biol. 2002, 4(10):743-749.
    [268]Masutani H., Ueda S., Yodoi J. The thioredoxin system in retroviral infection and apoptosis[J]. Cell Death Differ,2005,12 Suppl 1 (991-998.
    [269]Haendeler J., Tischler V., Hoffmann J., et al. Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression[J]. FEBS Lett,2004,577 (3):427-433.
    [270]Didier C.,Kerblat I., Drouet C., et al. Induction of thioredoxin by ultraviolet-A radiation prevents oxidative-mediated cell death in human skin fibroblasts[J], Free Radie Biol Med,2001,31 (5):585-598.
    [271]Shioji K.,Kishimoto C.,Nakamura H., et al. Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity[J]. Circulation,2002,106 (11):1403-1409.
    [272]Mitsui A., Hamuro J., Nakamura H., et al. Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span[J]. Antioxid Redox Signal,2002,4 (4):693-696.
    [273]Lee S.Y., Andoh T., Murphy D.L., et al. 17beta-estradiol activates ICI 182,780-sensitive estrogen receptors and cyclic GMP-dependent thioredoxin expression for neuroprotection[J]. FASEB J,2003,17 (8):947-948.
    [274]Tsutsui T., Koide H., Fukahori H., et al. Adenoviral transfection of hepatocytes with the thioredoxin gene confers protection against apoptosis and necrosis[J]. Biochem Biophys Res Commun,2003,307 (4):765-770.
    [275]Arnold N.B., Ketterer K., Kleeff J., et al. Thioredoxin is downstream of Smad7 in a pathway that promotes growth and suppresses cisplatin-induced apoptosis in pancreatic cancer[J]. Cancer Res,2004,64 (10):3599-3606.
    [276]Yamada T., Iwasaki Y, Nagata K., et al. Thioredoxin-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls[J]. Pulm Pharmacol Ther,2007, 20 (6):650-659.
    [277]Schulze P.C., Yoshioka J., Takahashi T., et al. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein[J]. J Biol Chem,2004,279 (29):30369-30374.
    [278]Tanito M., Nakamura H., Kwon Y.W., et al. Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats[J]. Antioxid Redox Signal, 2004,6 (1):89-97.
    [279]Saitoh M., Nishitoh H., Fujii M., et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1[J]. EMBO J,1998,17 (9):2596-2606.
    [280]Liu Y, Min W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner[J]. Circ Res, 2002,90(12):1259-1266.
    [281]Zhang R., Al-Lamki R., Bai L., et al. Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner[J]. Circ Res,2004,94 (11): 1483-1491.
    [282]Nishida K., Otsu K. The role of apoptosis signal-regulating kinase 1 in cardiomyocyte apoptosis[J]. Antioxid Redox Signal,2006,8(9-10):1729-1736.
    [283]Kaimul Ahsan M., Nakamura H., Tanito M., et al. Thioredoxin-1 suppresses lung injury and apoptosis induced by diesel exhaust particles (DEP) by scavenging reactive oxygen species and by inhibiting DEP-induced downregulation of Akt[J]. Free Radic Biol Med,2005,39 (12):1549-1559.
    [284]Ichijo H., Nishida E., Irie K., et al Induction of apoptosis by ASK 1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways[J]. Science,1997,275 (5296):90-94.
    [285]Nishitoh H., Saitoh M., Mochida Y, et al ASK1 is essential for JNK/SAPK activation by TRAF2[J]. Mol Cell,1998,2(3):389-395.
    [286]Song J.J., Lee Y.J. Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1 [J]. Biochem J, 2003,373 (Pt 3):845-853.
    [287]Datta S.R., Dudek H., Tao X., et al Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery[J]. Cell,1997,91 (2):231-241.
    [288]Cardone M.H., Roy N., Stennieke H.R., et al. Regulation of cell death protease caspase-9 by phosphorylation[J]. Science,1998,282 (5392):1318-1321.
    [289]Seyfried J., Wullner U. Inhibition of thioredoxin reductase induces apoptosis in neuronal cell lines:role of glutathione and the MKK4/JNK pathway[J]. Biochem Biophys Res Commun,2007,359 (3):759-764.
    [290]Dawn B., Xuan Y.T., Marian M., et al. Cardiac-specific abrogation of NF-kappa B activation in mice by transdominant expression of a mutant I kappa B alpha[J]. J Mol Cell Cardiol,2001,33(1):161-173.
    [291]Rundlof A.K., Arner E.S. Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events[J]. Antioxid Redox Signal,2004,6 (1):41-52.
    [292]Ueno M., Masutani H., Arai R.J., et al. Thioredoxin-dependent redox regulation of p53-mediated p21 activation[J]. J Biol Chem,1999,274(50):35809-35815.
    [293]Anestal K., Arner E.S. Rapid induction of cell death by selenium-compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine[J]. J Biol Chem,2003,278(18):15966-15972.
    [294]Chen X.P., Liu S., Tang W.X., et al. Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells[J]. Biochem Biophys Res Commun,2007, 361 (2):362-366.
    [295]Bertini R., Howard O.M., Dong H.F., et al. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells[J]. J Exp Med,1999,189(11):1783-1789.
    [296]Miller L.A., Usachenko J., McDonald R.J., et al Trafficking of neutrophils across airway epithelium is dependent upon both thioredoxin-and pertussis toxin-sensitive signaling mechanisms[J]. J Leukoc Biol,2000,68 (2):201-208.
    [297]Nakamura H., De Rosa S., Roederer M., et al. Elevation of plasma thioredoxin levels in HIV-infected individuals[J]. Int Immunol,1996,8 (4):603-611.
    [298]Yoshida S., Katoh T., Tetsuka T., et aL Involvement of thioredoxin in rheumatoid arthrit is:its costimulatory roles in the TNF-alpha-induced production of IL-6 and IL-8 from cultured synovial fibroblasts[J]. J Immunol,1999,163 (1):351-358.
    [299]Chang M.M., Harper R., Hyde D.M., et al. A novel mechanism of retinoic acid-enhanced interleukin-8 gene expression in airway epithelium[J]. Am J Respir Cell Mol Biol,2000,22 (4):502-510.
    [300]Siebenlist U., Franzoso G., Brown K. Structure, regulation and function of NF-kappa B[J]. Annu Rev Cell Biol,1994,10 (405-455.
    [301]Hirota K., Murata M., Sachi Y., et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB[J]. J Biol Chem,1999,274 (39):27891-27897.
    [302]Das K.C.c-Jun NH2-terminal kinase-mediated redox-dependent degradation of IkappaB:role of thioredoxin in NF-kappaB activation[J]. J Biol Chem,2001,276 (7): 4662-4670.
    [303]Higuchi T., Watanabe Y, Waga I. Protein disulfide isomerase suppresses the transcriptional activity of NF-kappaB[J]. Biochem Biophys Res Commun,2004,318(1): 46-52.
    [304]Sakurai A., Yuasa K., Shoji Y, et al. Overexpression of thioredoxin reductase 1 regulates NF-kappa B activation[J]. J Cell Physiol,2004,198 (1):22-30.
    [305]Lane D.P. p53 and human cancers[J]. Br Med Bull,1994,50 (3):582-599.
    [306]Hainaut P., Milner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro[J]. Cancer Res,1993,53 (19):4469-4473.
    [307]Parks D., Bolinger R., Mann K. Redox state regulates binding of p53 to sequence-specific DNA, but not to non-specific or mismatched DNA[J]. Nucleic Acids Res,1997,25(6):1289-1295.
    [308]Ruppitsch W., Meisslitzer C, Hirsch-Kauffrnann M., et aL Overexpression of thioredoxin in Fanconi anemia fibroblasts prevents the cytotoxic and DNA damaging effect of mitomycin C and diepoxybutane[J]. FEBS Lett,1998,422 (1):99-102.
    [309]Hu J., Ma X., Lindner D.J., et al Modulation of p53 dependent gene expression and cell death through thioredoxin-thioredoxin reductase by the Interferon-Retinoid combination[J]. Oncogene,2001,20(31):4235-4248.
    [310]Jayaraman L., Murthy K.G., Zhu C, et al. Identification ofredox/repair protein Ref-1 as a potent activator of p53[J]. Genes Dev,1997,11 (5):558-570.
    [311]Wiesel P., Foster L.C., Pellacani A., et al Thioredoxin facilitates the induction of heme oxygenase-1 in response to inflammatory mediators[J]. J Biol Chem,2000,275 (32):24840-24846.
    [312]Das K.C., Lewis-Mo lock Y., White C.W. Elevation of manganese superoxide dismutase gene expression by thioredoxin[J], Am J Respir Cell Mol Biol,1997,17(6): 713-726.
    [313]Kontou M., Will R.D., AdelfaIk C., et al. Thioredoxin, a regulator of gene expression[J]. Oncogene,2004,23 (12):2146-2152.
    [314]Minami T., Sugiyama A., Wu S.Q., et al. Thrombin and phenotypic modulation of the endothelium[J]. Arterioscler Thromb Vase Biol,2004,24 (1):41-53.
    [315]Hanschmann EM G.J., Berndt C, Hudemann C, Lillig CH. Thioredoxins, Glutaredoxins, and Peroxiredoxins-Molecular Mechanisms and Health Significance: from Cofactors to Antioxidants to Redox Signaling. [J]. Antioxid Redox Signal,2013, Mar 28. [Epub ahead of print] (
    [316]Cao Y. Engieering of various types of tissue in immuocompetent animals and its potential for clinical application[J]. Med J Malaysia.,2004,59 Suppl B (2.
    [317]范金财.组织扩张术研究:Ⅰ、组织扩张在组织形态学、血液动力学、生物力学、扩张方式和三维图像计算机模拟方面的动物实验.Ⅱ、组织扩张术的临床应用研究[M].博士毕业论文,中国协和医科大学,北京,1991.
    [318]Fan J., Yang P. Aesthetic reconstruction of burn alopecia by using expanded hair-bearing scalp flaps[J]. Aesthetic Plast Surg,1997,21 (6):440-444.
    [319]Fan J., Liu Y, Liu L., et al. Aesthetic pubic reconstruction after electrical burn using a portion of hair-bearing expanded free-forehead flap[J]. Aesthetic Plast Surg,2009, 33 (4):643-646.
    [320]Fan J. Anew technique of scarless expanded forehead flap for reconstructive surgery[J]. Plast Reconstr Surg,2000,106 (4):777-785.
    [321]Kryger Z., Zhang F., Dogan T., et al. The effects of VEGF on survival of a random flap in the rat:examination of various routes of administration[J]. Br J Plast Surg,2000, 53 (3):234-239.
    [322]Khan A., Ashrafpour H., Huang N., et al. Acute local subcutaneous VEGF165 injection for augmentation of skin flap viability:efficacy and mechanism[J]. Am J Physiol Regul Integr Comp Physiol,2004,287(5):R1219-1229.
    [323]Lantieri L.A., Martin-Garcia N., Wechsler J., et al. Vascular endothelial growth factor expression in expanded tissue:a possible mechanism of angiogenesis in tissue expansion[J]. Plast Reconstr Surg,1998,101 (2):392-398.
    [324]黄晨昱,沈祖尧.血管内皮细胞生长因子和碱性成纤维细胞生长因子加速预购扩张皮瓣成熟的研究[J].中国修复重建外科杂志,2003,17(4):293-297.
    [325]Powell H.M., McFarland K.L., Butler D.L., et al. Uniaxial strain regulates morphogenesis, gene expression, and tissue strength in engineered skin[J]. Tissue Eng Part A,2010,16 (3):1083-1092.
    [326]Moore E.C., Reichard P., Thelander L. Enzymatic Synthesis of Deoxyribonucleotides.V. Purification and Properties of Thioredoxin Reductase from Escherichia Coli B[J]. J Biol Chem,1964,239(3445-3452.
    [327]Nakamura H. Extracellular functions of thioredoxin[J]. Novartis Found Symp, 2008,291 (184-192; discussion 192-185,221-184.
    [328]Watson W.H., Yang X., Choi Y.E., et al. Thioredoxin and its role in toxicology[J]. Toxicol Sci,2004,78 (1):3-14.
    [329]Kippenberger S., Bernd A, Loitsch S., et al. Signaling of mechanical stretch in human keratinocytes via MAP kinases[J]. J Invest Dermatol,2000,114 (3):408-412.
    [330]Malek A.M., Izumo S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress[J]. J Cell Sci,1996,109 (Pt 4) (713-726.
    [331]Zschauer T.C., Kunze K., Jakob S., et al. Oxidative stress-induced degradation of thioredoxin-1 and apoptosis is inhibited by thioredoxin-1-actin interaction in endothelial cells[J]. Arterioscler Thromb Vase Biol,2011,31 (3):650-656.
    [332]Wang X., Ling S., Zhao D., et al. Redox regulation of actin by thioredoxin-1 is mediated by the interaction of the proteins via cysteine 62[J]. Antioxid Redox Signal, 2010,13 (5):565-573.
    [333]Hashimoto S., Matsumoto K., Gon Y, et al. Thioredoxin negatively regulates p38 MAP kinase activation and IL-6 production by tumor necrosis factor-alpha[J]. Biochem Biophys Res Commun,1999,258 (2):443-447.
    [334]Nasca M.R., Shih A.T., West D.P., et al. Intermittent pressure decreases human keratinocyte proliferation in vitro [J]. Skin Pharmacol Physiol,2007,20 (6):305-312.
    [335]Barthel D., Matthe B., Potten C.S., et al. Proliferation in murine epidermis after minor mechanical stimulation. Part 2. Alterations in keratinocyte cell cycle fluxes[J]. Cell Profit 2000,33 (4):247-259.
    [336]Yamamoto H., Teramoto H., Uetani K., et al. Stretch induces a growth factor in alveolar cells via protein kinase[J]. Respir Physiol,2001,127 (2-3):105-111.
    [337]舒茂国郭.,张琳西,等.培养细胞牵拉模型的建立与牵拉后细胞生长曲线的相关研究[J].中国美容医学杂志,2002,11(1):14-17.
    [338]Sadoshima J., Jahn L., Takahashi T., et al. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy [J]. J Biol Chem,1992,267(15):10551-10560.
    [339]Vandenburgh H., Kaufman S. In vitro model for stretch-induced hypertrophy of skeletal muscle[J]. Science,1979,203 (4377):265-268.
    [340]Bhadal N., Wall I.B., Porter S.R., et al. The effect of mechanical strain on protease production by keratinocytes[J]. Br J Dermatol,2008,158(2):396-398.
    [341]Eastwood M., Mudera V.C., McGrouther D.A., et al. Effect of precise mechanical loading on fibroblast populated collagen lattices:morphological changes[J]. Cell Motil Cytoskeleton,1998,40(1):13-21.
    [342]Collinsworth A.M., Torgan C.E., Nagda S.N., et al. Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch[J]. Cell Tissue Res, 2000,302 (2):243-251.
    [343]Hayakawa K., Sato N., Obinata T. Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching[J]. Exp Cell Res,2001,268 (1):104-114.
    [344]Yost M.J., Simpson D., Wrona K., et al. Design and construction of a uniaxial cell stretcher[J]. Am J Physiol Heart Circ Physiol,2000,279 (6):H3124-3130.
    [345]Niediek V, Born S.,Hampe N., et al. Cyclic stretch induces reorientation of cells in a Src iamily kinase-and p130Cas-dependent manner[J]. Eur J Cell Biol,2012,91 (2): 118-128.
    [346]Neidlinger-Wilke C., Grood E.S., Wang J.-C.,et al. Cell alignment is induced by cyclic changes in cell length:studies of cells grown in cyclically stretched substrates[J]. J Orthop Res,2001,19 (2):286-293.
    [347]Neidlinger-Wilke C., Grood E., Claes L., et al. Fibroblast orientation to stretch begins within three hours[J]. J Orthop Res,2002,20 (5):953-956.
    [348]Kurita M., Okazaki M., Fujino T, et al. Cyclic stretch induces upregulation of endothelin-1 with keratinocytes in vitro:possible role in mechanical stress-induced hyperpigrnentation[J]. Biochem Biophys Res Commun,2011,409(1):103-107.
    [349]Cheng G.C., Briggs W.H., Gerson D.S., et al. Mechanical strain tightly controls fibroblast growth factor-2 release from cultured human vascular smooth muscle cells[J]. Circ Res,1997,80(1):28-36.
    [350]Siegert R, Weerda H., Hoffmann S., et al. Clinical and experimental evaluation of intermittent intraoperative short-term expansion[J]. Plast Reconstr Surg,1993,92 (2): 248-254.
    [351]Goddio A. Oxygen derived free radicals in plastic surgery-Therapeutic interest of fighting free radicals:the superoxide dismutases[J]. Eur J Plast Surg,1989,12 (3): 111-116.
    [352]陈小平,郭光昭,李梧春,等.氧自由基清除剂对硅胶假体纤维囊厚度的影响[J].实用美容整形外科杂志,1994,5(3):152-154.
    [353]Obarzanek-Fojt M., Favre B., Huber M., et al. Induction of p38, tumour necrosis iactor-alpha and RANTES by mechanical stretching of keratinocytes expressing mutant keratin 10R156H[J]. Br J DermatoL.2011,164 (1):125-134.
    [354]Breen E.C. Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro[J]. J Appl Physiol, 2000,88 (1):203-209.
    [355]Kain H.L., Reuter U. Release of lysosomal protease from retinal pigment epithelium and fibroblasts during mechanical stresses[J]. Graefes Arch Clin Exp Ophthalmol,1995,233 (4):236-243.
    [356]Liu W.,Nakamura H., Shioji K., et al. Thioredoxin-1 ameliorates myosin-induced autoimmune myocarditis by suppressing chemokine expressions and leukocyte chemotaxis in mice [J]. Circulation,2004,110(10):1276-1283.
    [357]Matsui M., Oshima M., Oshima H., et al. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene[J]. Dev Biol,1996,178(1):179-185.
    [358]Pekkari K., Gurunath R., Arner E.S., et al. Truncated thioredoxin is a mitogenic cytokine for resting human peripheral blood mononuclear cells and is present in human plasma[J]. J Biol Chem,2000,275 (48):37474-37480.
    [359]Hoshino T., Nakamura H., Okamoto M., et al. Redox-active protein thioredoxin prevents proinflammatory cytokine-or bleomycin-induced lung injury[J]. Am J Respir Crit Care Med,2003,168 (9):1075-1083.
    [360]Sahaf B., Rosen A. Secretion of 10-kDa and 12-kDa thioredoxin species from blood monocytes and transformed leukocytes[J]. Antioxid Redox Signal,2000,2 (4): 717-726.
    [361]Phillips P.G., Birnby L.M., Narendran A. Hypoxia induces capillary network formation in cultured bovine pulmonary microvessel endothelial cells[J]. Am J Physiol, 1995,268 (5 Pt 1):L789-800.
    [362]Danet G.H., Pan Y., Luongo J.L., et al. Expansion of human SCID-repopulating cells under hypoxic conditions[J]. J Clin Invest,2003,112(1):126-135.
    [363]Samuel S.M., Thirunavukkarasu M., Penumathsa S.V., et al. Thioredoxin-1 gene therapy enhances angiogenic signaling and reduces ventricular remodeling in infarcted myocardium of diabetic rats[J]. Circulation,2010,121 (10):1244-1255.
    [364]Lyle A.N., Griendling K.K. Modulation of vascular smooth muscle signaling by reactive oxygen species[J]. Physiology (Bethesda),2006,21 (269-280.
    [365]Ahsan M.K.,Lekli I., Ray D., et al. Redox regulation of cell survival by the thioredoxin super-family:an implication of redox gene therapy in the heart[J]. Antioxid Redox Signal 2009,11 (11):2741-2758.
    [366]Smith J.G., Walzem R.L., German J.B. Liposomes as agents of DNA transfer[J]. Biochim Biophys Acta,1993,1154 (3-4):327-340.
    [367]Schlenk F., Grund S., Fischer D. Recent developments and perspectives on gene therapy using synthetic vectors[J]. Ther Deliv,2013,4(1):95-113.
    [368]Hettich E., Janz A., Zeidler R., et al. Genetic design of an optimized packaging cell line for gene vectors transducing human B cells[J]. Gene Ther,2006,13 (10):844-856.
    [369]Xu G., Zhang N. Nanoparticles for gene delivery:a brief patent review[J]. Recent Pat Drug Deliv Formul 2009,3 (2):125-136.
    [370]Xu H.G., Chen X.H., Ding G.Z., et al. Effect of pcDNA3.1-vascular endothelial growth factor 165 recombined vector on vascular buds in rabbit vertebral cartilage endplate[J]. Chin Med J (Engl),2012,125 (22):4055-4060.
    [371]Si H.P., Lu Z.H., Lin Y.L., et al. Transfect bone marrow stromal cells with pcDNA3.1-VEGF to construct tissue engineered bone in defect repair[J]. Chin Med J (Engl),,2012,125 (5):906-911.
    [372]Takagi Y., Mitsui A., Nishiyama A., et aL Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage[J]. Proc Natl Acad Sci U S A, 1999,96 (7):4131-4136.
    [373]Perez V.I., Cortez L.A., Lew C.M., et al. Thioredoxin 1 overexpression extends mainly the earlier part of life span in mice[J]. J Gerontol A Biol Sci Med Sci,2011,66 (12):1286-1299.
    [374]石岩岩,丁世刚,鲁凤民,等.硫氧还蛋白1对胃癌细胞系BCG823生长的影响[J].中国微创外科杂志,2011,11(11):1030-1033.
    [375]Baker A., Payne C.M., Briehl M.M., et aL Thioredoxin, a gene found overexpressed in human cancer, inhibits apoptosis in vitro and in vivo[J]. Cancer Res, 1997.57 (22):5162-5167.
    [376]Shan R, Chang L., Li W., et al. Effects of hyperoxia on cytoplasmic thioredoxin system in alveolar type epithelial cells of premature rats[J]. J Huazhong Univ Sci Technolog Med Sci,2011,31 (2):258-263.
    [377]Sreekumar P.G., Ding Y, Ryan S.J., et al. Regulation of thioredoxin by ceramide in retinal pigment epithelial cells[J]. Exp Eye Res,2009,88 (3):410-417.
    [378]Gan L., Yang X.L., Liu Q., et al. Inhibitory effects of thioredoxin reductase antisense RNA on the growth of human hepatocellular carcinoma cells[J]. J Cell Biochem,2005,96 (3):653-664.
    [379]Young J.J., Patel A., Rai P. Suppression of thioredoxin-1 induces premature senescence in normal human fibroblasts[J]. Biochem Biophys Res Commun,2010,392 (3):363-368.
    [380]Masaki H. Role of antioxidants in the skin:anti-aging effects[J]. J Dermatol Sci, 2010.58 (2):85-90.
    [381]Schallreuter K.U., Wood J.M. Thioredoxin reductase-its role in epidermal redox status[J]. J Photochem Photobiol B,2001,64 (2-3):179-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700