脐橙表面缺陷的快速检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水果表面缺陷是决定水果价格最有力的因素之一,因为外部缺陷是对水果品质最直接的反映。国家标准对水果表面缺陷数量和面积大小有严格的规定。与水果的大小、颜色、形状等外部质量指标相比,水果表面缺陷的快速识别一直是水果分级中最难,耗时最多、研究人员最感兴趣的研究内容。多年来,研究人员做了大量的工作。
     本研究以脐橙为研究对象,利用RGB成像技术、可见近红外高光谱成像技术及荧光高光谱成像技术,详细地探讨了脐橙表面11类型常见缺陷(包括蓟马果、溃疡果、裂伤果、炭疽病果、日灼果、药伤果、风伤果、虫伤果、介壳虫果、异色条纹果和腐烂果)检测理论以及两种较为重要的缺陷溃疡病和腐烂果的识别理论。解决了目前脐橙表面缺陷检测的部分难题,所开发的脐橙表面缺陷检测算法对下一步自动、快速、在线脐橙缺陷分级装备研发奠定了重要的基础。主要研究内容和研究结论如下:
     (1)提出了掩模法去背景的背景分割理论。利用构建的二值化掩模模板对脐橙图像进行去背景,通过对静态图像和在线图像背景去除结果表明,背景去除率达到100%的同时,脐橙表面信息可以较好地保留。这为脐橙表面缺陷进一步有效提取奠定了基础。
     (2)提出了一种新颖的脐橙表面亮度不均变换的照度-反射模型及单阈值快速水果缺陷分割算法。基于此亮度变化模型,正常水果表面区域被提升为高亮区域,而水果表面的缺陷区域依然保持低灰度,这一变化克服了由于类球形水果表面亮度分布不均导致缺陷分割精度低的难题,这也为单阈值脐橙表面缺陷快速分割提供了可能。试验表明,与边缘亮度补偿算法相比,该理论可以对脐橙表面整体亮度进行变换,并且该亮度变换理论比B样条曲面拟合理论处理一幅图像速度超过30倍,基于此算法及单阈值分割理论对风伤果、蓟马果、介壳虫果、裂伤果、炭疽病果、日灼果、溃疡果、异色条纹果、虫伤果、正常果和药伤果等11类型共计6345个感兴趣区域进行分割,获得了93.8%分割精度。
     (3)通过对不同类型缺陷RGB图像不同灰度值统计后获得区分脐橙果梗与缺陷的算法。基于该公式和提出的大区域及长区域去除算法BER可以获得100%的果梗识别率且不会受到其它缺陷类型的影响。由于该算法仅仅涉及两次减法、一次乘法及一次除法,避免了复杂的模式识别理论,所以具有一定潜力应用于脐橙缺陷在线检测。
     (4)本研究开发了脐橙表面缺陷检测联立算法,此算法主要有四个模块构成,即背景分割模块、亮度不均变化模块、果梗识别模块和果脐识别模块。应用此算法针对11类1320幅样本图像识别结果表明,99.1%的缺陷果是被正确识别为缺陷果,98.3%的正常果被正确识别为正常果。另外,通过调节不同的阈值可以满足不同的用户需求。
     (5)研究发现可见近红外光谱区域的6个特征波长(630、691、769、786、810和875nm)或者3个特征波长(691、769和875nm)能被用于构建多光谱脐橙表面缺陷检测系统。针对9种带有不同表皮的橙子样本,利用研究中所开发的双波段比和主成分分析相结合的缺陷果检测算法,获得了最好93.7%的橙子正确识别率,并且假阳性率为0。与模式识别算法相比,双波段比图像R875/691能有效地区分果梗和缺陷区域,因为模式识别理论增加了算法的复杂度。
     (6)搭建了荧光高光谱成像系统,采用该系统对脐橙早期腐烂缺陷进行了研究。利用最佳指数OIF理论获得了识别腐烂果的最优波段,即498.6nm和591.4nm,该方法克服了高光谱图像数据量大和相邻波段之间的强相关性等不足,实现了高维数据的降维,快速确定了特征波长。基于特征波长比图像及双阈值分割算法,获得了整体100%的腐烂果识别率。同时,该双阈值理论较好地避免了梗伤缺陷的荧光效应对腐烂果检测的影响,从而降低了系统及算法成本。
     (7)搭建了可见近红外高光谱反射成像系统,采用该系统对脐橙溃疡果识别进行了研究。研究获得了用于溃疡识别的7个关键波段(630、687、765、788、815、833和883nm)。基于此7个波段的第三主成分图像和2个波段的波段比图像Q687/630开发了多光谱溃疡检测算法。带有11种类型共计275个独立样本用于检测算法的可行性,获得整体98.2%溃疡果识别率。本研究也发现,单独的双波比Q687/630理论对于区分溃疡果和除炭疽病及日灼伤外的其它类型果可以获得97.8%的识别率。
     以上的研究成果为我国研发基于机器视觉技术的脐橙表面缺陷在线、快速检测分级装备奠定了重要的基础。
The presence of surface defects is one of the most influential factors in the price of fruit, since most consumer associates quality with a good appearance and the total absence of external defects. Chinese national standard has a strict rule of number and area of fruit surface defect. Compare with other external quality indexes, such as size, color and shape, fast detecting defect on fruit always is a most difficult, time-consuming and interesting task for researcher. Researchers have done a lot of work for years.
     Navel oranges are used as samples in this study. Detection methods on eleven types of common surface defects (i.e., thrips scarring, canker spot, dehiscent fruit, anthracnose, copper burn, phytotoxicity, wind scarring, insect damage, scale infestation, heterochromatic stripe and rottenness) and identification methods on two very seriously diseases (canker spot and rottenness) were detailedly studied by using RGB imaging, Vis-NIR hyperspectral imaging and fluorescence imaging. Some problems in detecting navel orange surface defects detection were solved in this study. The developed detection algorithm offered help for developing an automatic, fast and on-line navel orange surface defect detection system. Main contents and results were listed as follows:
     (1) A method for removing fruit image background by using mask template was introduced. Binary mask template was firstly built. Then, the mask was used to perform background segmentation of static and on-line fruit images, respectively. The results showed that background segmentation rate was 100%, and the information on fruit surface can be kept perfectly. This laid the foundation for further effectively segmenting navel orange surface defects.
     (2) A novel illumination-reflectance model for correcting non-uniform light on navel oranges and segmentation algorithm based on single-threshold value for extracting defects was proposed. Using this light transform model, the intensities of normal areas on navel orange surface were changed into high values. However, defective areas were still kept low intensities. This light transform overcame low defects segmentation accuracy that was caused by non-uniform light distribution on spherical fruit surface. And, it was also useful for fast segmenting navel orange surface defects based on single-threshold value method. The study results showed that light transform model could correct the whole non-uniform light distribution on navel orange surface compared with edge light compensation algorithm, and its speed in processing an image was more than 30 times comparing with B spline curve fitting method. In order to evaluate performance of this algorithm,6345 regions of interest from 11 types of samples were firstly marked. Then, these marked regions were segmented using the developed algorithm. The results showed that 93.8% segmentation accuracy was achieved.
     (3) An algorithm to differentiate stem-end from different types of defects was proposed based on calculating intensities of different types of defects from R, G and B component images. The study results showed that 100% stem-end identification rate was obtained using proposed algorithm and developed a big area and elongated region removal algorithm (BER). The stem-end identification method is potential to be used in an on-line neval orange defect sorter since it only includes two subtraction operations, one multiplication operation and one division operation avoiding complex pattern recognition methods.
     (4) A combination algorithm for deftecting defects on neval orange surface was proposed in this study. The algorithm includes four modules such as background segmentation, light non-uniform transform, stem-end identification and navel identification. The results from 1320 sample images includes 11 types of defects showed 99.1% of fruit with defects and 98.3% of normal fruit were correctly identified. In addition, different requirements of users can be met by adjusting threshold values.
     (5) Study found that six characteristic wavelengths (630,691,769,786,810 and 875nm) and, alternatively, three wavelengths (691,769 and 875nm) in the visible and near-infrared spectral range could be potentially implemented in multispectral imaging systems for detecting orange peel defects. The defect detection algorithm combining two-band ratio with PCA achieved 93.7% identification rate for orange surface defects and no false positives. It should also be pointed out that simple two-band ratio (R875 691) algorithm could be more effective to identify stem-ends from skin defects compared to pattern recognition algorithms, which increased the computational complexity.
     (6) Fluorescence hyperspectral imaging system was developed to detect early rottenness on oranges. The optimal band (498.6nm and 591.4nm) for identifying rottenness defects was obtained by using Optimum Index Factor (OIF) method which can overcome some disadvantages caused by large data quantity and strong relativity between adjacent bands from hyperspectral images. Based on ratio images and a segmentation algorithm with double thresholds,100% fruit with rotten area was identified. In addition, the algorithm with double thresholds could also effectively avoid the influence from stem-end fluorescence effect. Therefore, the cost of system and algorithm was decreased.
     (7) Vis-NIR hyperspectral reflectance imaging system was developed to identify oranges with canker spots from those with other types of peel. Seven important wavelengths (630,687, 765,788,815,833 and 883nm) were obtained in this study. The third principal component image based on obtained seven bands and ratio image Q687/630 based on obtained two bands were used to develop multispectral canker identification algorithm.275 independent samples with 11 types of peel defects were used to estimate the feasibility of algorithm. An overall 98.2% canker identification rate was obtained. In addition, in this study, it should be also noticed that two-band ratio images give better recognition results (97.8%) of discriminating canker from normal and other diseased skin conditions aside from anthracnose and copper burn.
     The above work provided an important foundation for developing on-line and fast detection equipment of navel orange surface defects using machine vision technology in China.
引文
[1]张兴旺.为什么我国水果加工的用果量少.柑橘与亚热带果树信息,2004,20(5):14-15.
    [2]中国农业年鉴编辑委员会.中国统计年鉴,北京,中国农业出版社,2010.
    [3]http://www.cqagri.gov.cn/detail.asp?pubID=284058.
    [4]中华人民共和国卫生部.中华人民共和国国家标准.鲜柑橘GB/T12947-91.
    [5]中华人民共和国卫生部.中华人民共和国国家标准.鲜苹果GB/T10651-2008.
    [6]商业部济南果品所译.国际级国外果品标准汇编.中国标准出版,1990.
    [7]饶秀勤.基于机器视觉的水果品质实时检测与分级生产线的关键技术研究[博士学位论文].浙江大学,2007.
    [8]Baxes, G.A. Digital Image Processing Principles and Applications. Wiley, New York, USA,1994.
    [9]Brosnan, T., Sun, D.-W. Improving quality inspection of food products by computer vision—a review. Journal of Food Engineering,2004,61:3-16.
    [10]Brosnan, T., Sun, D.-W. Inspection and grading of agricultural and food products by computer vision systems—a review. Computers and Electronics in Agriculture,2002,36:193-213.
    [11]Sun, D.-W. Inspecting pizza topping percentage and distribution by a computer vision method. Journal of Food Engineering,2000,44:245-249.
    [12]Shearer, S.A., Payne, F.A. Color and defect sorting of hell peppers using machine vision. Trans of the ASAE,1990,33(6):2045-2050.
    [13]Rigney, M.P., Brusewitz, G.H, Kranzler, G.A. Asparagus defect inspection with machine vision. Trans of the ASAE,1992,35(6):1873-1878.
    [14]Pearson, T.C., Slaughter, D.C. Machine vision detection of early split pistachio nuts. Trans of the ASAE, 1996,39(3):1203-1207.
    [15]Ni, B., Paulsen, M.R., Liao, K. Design of an automated corn kernel inspection system for machine vision. Trans of the ASAE,1997,40(2):491-497.
    [16]Yang, Q. An approach to apple surface feature detection by machine vision. Computers and Electronics in Agriculture,1994,11:249-264.
    [17]Elster, R.T., Goodrum, J.W. Detection of cracks in eggs using machine vision. Trans of the ASAE,1991, 34(1):307-312.
    [18]Upchurch, B.L., Affeldt, H.A., Hruschka, W.R., Throop, J.A. Optical detection of bruises and early frost damage on apples. Transactions of the ASAE,1991,34(3):1004-1009.
    [19]Yang, Q. Classification of apple surface features using machine vision and neural networks. Computers and Electronics in Agriculture,1993,9:1-12.
    [20]Tao, Y. Wen, Z. An adaptive spherical image transform for high-speed fruit defect detection. Transactions of the ASAE,1999,42(1):241-246.
    [21]Tao, Y. Spherical transform of fruit images for on-line defect extraction of mass objects. Optical Engineering,1996,35(2):344-350.
    [22]Singh, N., Delwiche, M.J., Johnson, R.S. Image analysis methods for real-time color grading of stonefruit. Computers and Electronics in Agriculture,1993,9:71-84.
    [23]Hahn F. Multispectral prediction of unripe tomatoes. Biosystems Engineering,2002,81(2):14-155.
    [24]Paulus, I., Schrevens, E. Shape characterization of new apple cultivars by Fourier expansion of digitized images. Journal of Agriculture Engineering Research,1999,72(2):113-118.
    [25]Beyer, M., Hahn, R., Peschel, S., Harz, M., Knoche, M. Analysing fruit shape in sweet cherry. Scientia Horticurae,2002,96(12):139-150.
    [26]Gui, J.S., Ying, Y.B. Fruit shape detection based on multi-scale level set framework. In 2006 ASABE Annual International Meeting, Paper No.063088. Portland, Oregon, USA:ASABE.
    [27]Sarker, N., Wolfe, R.R. Feature extraction techniques for sorting tomatoes by computer vision. Transactions of the ASAE,1985,28(3):970-979.
    [28]Rao, X.Q., Ying, Y.B. A method of size inspection for fruit with machine vision. Proceedings of SPIE: Optical Sensors and Sensing for Natural Resources and Food Safety and Quality.2005,5996:1-8.
    [29]Aleixos, N., Blasco, J., Navarron, F., Molto, E. Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture,2002,33: 121-137.
    [30]Leemans, V., Destain, M.-F. A real-time grading method of apples based on features extracted from defects. Journal of Food Engineering,2004,61(1):83-89.
    [31]Steinmetz, V., Roger, J.M., Molto, E., Blasco, J. On-line fusion of colour camera and spectrophotometer for sugar content prediction of apples. Journal of Agricultural Engineering Research,1999,73:207-216.
    [32]Tao, Y., Heinemann, P.H., Varghese, Z., Morrow, C.T., Sommer Ⅲ, H.J. Machine vision for color inspection of potatoes and apples. Transactions of the ASAE,1995,38(5):1555-1561.
    [33]Molto, E., Ruiz, L.A., Aleixos, N., Vazquez, J., Juste, F. Machine vision for nondestructive evaluation of fruit quality. Proceedings of the Second International Symposium on Sensors in Horticulture. Acta Horticulturae,1995.421:85-90.
    [34]Heinemann, P.H., Varghese, Z.A., Morrow, C.T., Sommer Ⅲ, H.J., Crassweller, R.M. Machine vision inspection of Golden Delicious apples. Applied Engineering in Agriculture,1995,11(6):901-906.
    [35]Miller, W.M. Optical defect analysis of Florida citrus. Applied Engineering in Agriculture,1995.11(6): 855-860.
    [36]Leemans, V, Magein, H., Destain, M.-F. Defects segmentation on Golden Deliciousapples by using colour machine vision. Computers and Electronics in Agriculture,1998,20:117-130.
    [37]Leemans, V., Magein, H.. Destain, M.-F. Defect segmentation on 'Jonagold' apples using colour vision and a Bayesian classification method. Computers and Electronics in Agriculture,1999,23:43-53.
    [38]Nakano, K. Application of neural networks to the color grading of apples. Computers and Electronics in Agriculture,1997,18:105-116.
    [39]Diaz, R., Gil, L., Serrano, C., Blasco, M., Molto, E., Blasco, J. Comparison of three algorithms in the classification of table olives by means of computer vision. Journal of Food Engineering,2004,61: 101-107.
    [40]Mendoza, F., Aguilera, J. M. Application of image analysis for classification of ripening bananas. Journal of food science,2004,69(9):E471-E477.
    [41]Kim, D.G., Burks, T.F., Qin, J.W., Bulanonm, D.M. Classification of grapefruit peel diseases using colour texture feature analysis. Int. J. Agric.& Biol. Eng,2009,2:41-50.
    [42]Albiol, A., Torres, L., Delp, E.J. An unsupervised color image segmentation algorithm for face detection applications. In Proceedings of the 2001 international conference on image processing (pp.681-684). Thessaloniki, Greece.
    [43]Martinez-Uso, A., Pla, F., Garcia, P.A. quadtree-based unsupervised segmentation algorithm for fruit visual inspection. In first Iberian conference on pattern recognition and image analysis (pp.510-517). Mallorca, Spain,2003.
    [44]Blasco, J., Aleixos, N., Molto, E. Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm. Journal of Food Engineering,2007,81:384-393.
    [45]Lopez-Garcia, F., Andreu-Garcia, G., Blasco, J., Aleixos, N., Valiente, J. Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture,2010,71:189-197.
    [46]Gowen, A.A., O'Donnell, C.P., Cullen, P.J., Downey, G., Frias, J.M. Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology,2007,18:590-598.
    [47]Singh, N., Delwiche, M.J. Machine vision methods for defect sorting stonefruit. Transactions of the ASAE,1994,37(6):1989-1997.
    [48]Wen, Z., Tao, Y. Building a rule-based machine-vision system for defect inspection on apple sorting and packing lines. Expert Systems with Applications,1999,16:307-313.
    [49]Shahin, M.A., Tollner, E.W., McClendon, R.W., Arabnia, H.R. Apple classification based on surface bruises using image processing and neural networks. Transactions of the ASAE,2002,45(5):1619-1627.
    [50]Li, Q.Z., Wang, M.H. A fast identification method for fruit surface defect based on fractal characters. Journal of Chinese Image and Graphics,2000,5(2):441-446.
    [51]Kleynen, O., Leemans, V., Destain, M.-F. Development of a multi-spectral vision system for the detection of defects on apples. Journal of Food Engineering,2005,69:41-49.
    [52]Kleynen, O., Leemans, V., Destain, M.-F. Selection of the most efficient wavelength bands for'Jonagold' apple sorting. Postharvest Biology and Technology,2003,30:221-232.
    [53]Bennedsen, B.S., Peterson, D.L. Performance of a System for Apple Surface Defect Identification in Near-infrared Images. Biosystems Engineering,2005,90(4):419-431.
    [54]Unay, D., Gosselin, B. Stem and calyx recognition on'Jonagold'apples by pattern recognition. Journal of Food Engineering,2007,78:597-605.
    [55]李庆中,汪懋华.基于计算机视觉的苹果自动分级系统硬件开发.农业机械学报,2000,31(2):56-59.
    [56]Li, Q.Z., Wang, M.H., Gu, W.K. Computer vision based system for apple surface defect detection. Computers and Electronics in Agriculture,2002,36:215-223.
    [57]Wen, Z., Tao, Y. Dual-camera NIR/MIR imaging for stem-end/calyx identification in apple defect sorting. Transactions of ASAE,2000,43(2):449-452.
    [58]Cheng, X., Tao. Y., Chen, Y., Luo. Y. NIR/MIR dual-sensor machine vision system for on-line apple stem-end/calyx recognition. Transactions of ASAE,2003,46(2):551-558.
    [59]Blasco, J., Aleixos, N., Gomez, J., Molto, E. Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering.2007,83:384-393.
    [60]Blasco, J., Aleixos, N., Gomez-Sanchis, J., Molto, E. Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems engineering, 2009,103:137-145.
    [61]赵杰文,刘文彬,邹小波.基于三摄像系统的苹果缺陷快速判别.江苏大学学报(自然科学版),2006,27(4):287-290.
    [62]Zou, X.B., Zhao, J.W., Li, Y.X, Mel, H. In-line detection of apple defects using three color cameras system. Computers and Electronics in Agriculture,2010,70:129-134.
    [63]Sarker, N., Wolfe, R.R. Computer vision based system for quality separation of fresh market tomatoes. Transactions of the ASAE,1985,28(5):1714-1718.
    [64]Rehkugler, G.E., Throop, J.A. Apple sorting with machine vision. Transactions of the ASAE,1986,29(5): 1388-1397.
    [65]Molto, E., Blasco, J., Benlloch, J.V. Computer vision for automatic inspection of agricultural produces. Proceedings of SPIE:Symposium on Precision Agriculture and Biological Quality,1998,3543:91-100.
    [66]Throop, J.A., Aneshansley, D.J., Upchurch, B.L., Anger, B. Apple orientation on two conveyors: performance and predictability based on fruit shape characteristics. Transactions of the ASAE,2001, 44(1):99-109.
    [67]Throop, J.A., Aneshansley, D.J. Quality Evaluation of Apples Based on Surface Defects-An Inspection Station Design. In 2003 ASAE Annual International Meeting, Paper No.036161. Las Vegas, Nevada, USA:ASAE.
    [68]Throop, J.A., Aneshansley, D.J. Conveyor Design for Apple Orientation. In 2003 ASAE Annual International Meeting, Paper No.036123. Las Vegas, Nevada, USA:ASAE.
    [69]Blasco, J., Aleixos, N., Molto, E. Machine vision system for automatic quality grading of fruit. Biosystems Engineering,2003,85(4):415-423.
    [70]Bennedsen, B.S., Peterson, D.L., Tabb, A. Identifying defects in images of rotating apples. Computers and Electronics in Agriculture,2005,48:92-102.
    [71]Bennedsen, B.S., Peterson, D.L. Performance of a System for Apple Surface Defect Identification in Near-infrared Images. Biosystems Engineering,2005,90(4):419-431.
    [72]Yang, Q. Finding stem and calyx of apples using structured lighting. Computers and Electronics in Agriculture,1993,8:31-42.
    [73]Yang, Q. Classification of apple surface features using machine vision and neural networks. Computers and Electronics in Agriculture,1993,9:1-12.
    [74]Yang, Q.S. An approach to apple surface feature detection by machine vision. Computers and Electronics in Agriculture,1994,11:249-264.
    [75]Yang, Q., Marchant, J.A. Accurate blemish detection with active contour models. Computers and Electronics in Agriculture,1996,14:77-89.
    [76]Crowe, T.G., Delwiche, M.J. Real-time defect detection in fruit:Part Ⅱ:An algorithm and performance of a prototype system. Transaction of the ASAE,1996,39(6):2309-2317.
    [77]Crowe, T.G., Delwiche, M.J. Real-time defect detection in fruit:Part Ⅰ:Design concepts and development of prototype hardware. Transaction of the ASAE,1996,39(6):2299-2308.
    [78]Blit, S., Bartfeld, E., Pais, I., Eilam,Y, Vallach, E., Bezdin, H., Laron, I., Katzin, D., Reichart, A., Samekh. J. Apparatus & method for inspecting articles such as agricultural produce. U.S. Pat. No.5,526, 119.
    [79]Zhu, B., Jiang, L., Chen, X.M., Tao, Y.3D surface reconstruction of apples from 2D NIR images. Proceedings of SPIE:The International Society for Optical Engineering. Vol.6000 (pp.1-10), USA, 2005.
    [80]Zhu, B., Jiang, L., Tao, Y. Automated 3D Surface Reconstruction and Analysis of apple Near-Infrared data for the application of apple stem-end/calyx identification. In 2007 ASABE Annual International Meeting. Paper No.073074. Minneapolis, Minnesota, USA:ASABE.
    [81]Zhu, B., Jiang, L., Tao, Y. Three-dimensional shape enhanced transform for automatic apple stem-end/calyx identification. Optical Engineering,2007,46(1):1-9.
    [82]Unay, D., Gosselin, B., Kleynen, Olivier., Leemans, V., Destain, M.F., Debeir, O. Automatic grading of Bi-colored apples by multispectral machine vision. Computers and Electronics in Agriculture,2011, 75(1):204-212.
    [83]Chen, Y.R., Chao, K., Kim, M.S. Machine vision technology for agricultural applications. Computers and Electronics in Agriculture,2002,36:173-191.
    [84]马本学,饶秀勤,应义斌,沈飞,樊玉霞.基于红外漫反射光谱的香梨类别定性分析.光谱学与光谱分析,2009,29(12):3288-3290.
    [85]Liu, Y.D., Ying, Y.B. Use of FT-NIR spectrometry in non-invasive measurement of internal quality in Fuji apple. Journal of Postharvest Biology and Technology,2005,37:65-71.
    [86]Ying, Y., Liu, Y. Nondestructive measurement of internal quality in pear using genetic algorithms and FT-NIR spectroscopy. Journal of Food Engineering,2008,84:206-213.
    [87]Goetz, A.F.H., Vane, G., Solomon, T.E., Rock, B.N. Imaging spectrometry for earth remote sensing. Science,1985,228:1147-1153.
    [88]Sampson, P.H., Zarco-Tejada, P.J., Mohammed, G.H., Miller, J.R., Noland, T.L. Hyperspectral remote sensing of forest condition:Estimating chlorophyll content in tolerant hardwoods. Forest science,2003, 49(3):381-391.
    [89]Moran, M.S., Inoue, Y., Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment,1997,61(3):319-346.
    [90]Tumbo, S.D., Wagner, D.G., Heinemann, P.H. Hyperspectral characteristics of corn plants under different chlorophyll levels. Transactions of the ASAE,2002,45(3):815-823.
    [91]Lawrence, K.C., Park, B., Windham, W.R., Mao, C. Calibration of a pushbroom hyperspectral imaging system for agricultural inspection. Transactions of the ASAE,2003,46(2):513-521.
    [92]Anderson-Engels, S., Johansson, J., Svanberg, S. Medical diagnostic system based on simultaneous multispectral fluorescence imaging. Applied Optics,1994,33(34):8022-8029.
    [93]Ferris, D., Lawhead, R., Dickman, E., Holtzapple, N., Miller, J., Grogan, S. Multimodal hyperspectral imaging for thenoninvasive diagnosis of cervical neoplasia. Journal of Lower Genital Tract Disease, 2001,5(2):65-72.
    [94]Rafert, J.B., Sellar, R.G., Holbert, E., Blatt, J.H., Tyler, D.W., Durham, S.E., Newby, H.D. Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations. Proceedings of SPIE:The International Society for Optical Engineering.1994,2198:338-349.
    [95]Hege, E., O'Connell, D., Johnson, W., Basty, S., Dereniak, E. Hyperspectral imaging for astronomy and space surveillance. Proceedings of the SPIE:The International Society for Optical Engineering,2003, 5159:380-391.
    [96]Rajkumar, P., Wang, N., Elmasry, G., Raghavan, G.S.V., Gariepy, Y. Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering,2012,108:194-200.
    [97]Gowen, A.A., O'Donnell, C.P., Cullen, P.J., Downey. G., Frias, J.M. Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology,2007,18:590-598.
    [98]Qiao, J., Ngadi, M.O., Wang, N., Gunenc, C., Prasher, S.O. Pork quality classification using a hyperspectral imaging system and neural network. International Journal of Food Engineering,2007,3(1): 1-12.
    [99]Lleo, L., Roger, J.M., Herrero-Langreo, A., Diezma-Iglesias, B., Barreiro, P. Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening. Journal of Food Engineering,2011,104:612-620.
    [100]Liu, Y.L., Chen, Y.R., Wang, C.Y., Chan, D.E., Kim, M.S. Development of hyperspectral imaging technique for the detection of chilling injury in cucumbers; Spectral and image analysis. Applied engineering in agriculture,2006,22(1):101-111.
    [101]赵杰文,刘剑华,陈全胜,Saritporn Vittayapadung利用高光谱图像技术检测水果轻微损伤.农业机械学报,2008,39(1):106-109.
    [102]Lu, R. Detection of bruises on apples using near-infrared hyper-spectral imaging. Transactions of the ASAE,2003,46(2):523-530.
    [103]Xing, J., De Baerdemaeker, J. Bruise detection on 'Jonagold' apples using hyperspectral imaging. Postharvest Biology and Technology,2005,37:152-162.
    [104]Xing, J., bravo, C., Jancsok, P.T., Tamon, H., De Baerdemaeker, J. Detecting bruises on'Golden Delicious' apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering,2005, 90(1):27-36.
    [105]ElMasry, G., Wang, N., Vigneault, C., Qiao, J., ElSayed, A. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT,2008,41:337-345.
    [106]Liu, Y.L., Chen, Y.R., Wang, C.Y., Chan, D.E., Kim, M.S. Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. Applied spectroscopy,2005,59(1):78-85.
    [107]ElMasry, G., Wang, N., Vigneault, C. Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology,2009,52:1-8.
    [108]成家壮,韦小燕,范怀忠.广东柑橘疫霉研究.华南农业大学学报,2004,25(2):31-33.
    [109]Eckert, J.W., Eaks, I.L. Postharvest disorders and diseases of citrus. The Citrus Industry, vol.5. University California Press, Berkeley, CA, USA,1989.
    [110]Gomez-Sanchis, J., Molto, E., Gomez-Chova, L., Aleixos, N., Camps-Valls, G., Juste, F. Hyperspectral computer vision system for the detection of Penicillium digitatum in citrus packing lines. In 2004 CIGR International Conference, Beijing, China,11-14 October 2004.
    [111]Gomez-Sanchis, J., Gomez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Molto, E., Blasco, J. Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering,2008,89(1):80-86.
    [112]Qin, J.W., Burks, T.F., Ritenour, M.A. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering,2009,93:183-191.
    [113]Qin, J.W., Burks, T.F., Kim, M.S. Detection citrus canker by hyperspectral reflectance imaging and PCA-band image classification method. Proceedings of SPIE,2010:1-11.
    [114]李江波,饶秀勤,应义斌,王东亭.基于高光谱成像技术检测脐橙溃疡.农业工程学报,2010,26(8):222-228.
    [115]Li, J.B., Rao, X.Q., Ying, Y.B. Development of algorithms for detecting citrus canker based on hyperspectral reflectance imaging. Journal of the Science of Food and Agriculture,2012,92(1):125-134.
    [116]Mehl, P.M., Chen, Y.R., Kim, M.S., Chan, D.E. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering,2004,61:67-81.
    [117]Liu, Y.L., Chen, Y.R., Kim, M.S., Chan, D.E., Lefcourt, A.M. Development of simple algorithms for the detection of fecal contaminants on apples from visible/near infrared hyperspectral reflectance imaging. Journal of Food Engineering,2007,81(2):412-418.
    [118]FDA. Guide to minimize microbial food safety hazards for fresh fruits and vegetables [Guidance for Industry]..Accessed 10.10.06.
    [119]Kim, M.S., Lefcourt, A.M., Chao, K., Chen, Y.R., Kim, I., Chan, D.E. Multispectral detection of fecal contamination on apples based on hyperspectral imagery:Part Ⅰ. Application of visible and near-infrared reflectance imaging. Transaction of the ASAE,2002,45:2027-2037.
    [120]薛龙,黎静,刘木华.基于高光谱图像技术的水果表面农药残留检测试验研究.光学学报,2008,28(12):2277-2280.
    [12I]蔡健荣,王建黑,陈全胜,赵杰文.波段比算法结合高光谱图像技术检测柑橘果锈.农业工程学报,2009,25(1):127-131.
    [122]Xing, J., Ngadi, M., Baerdemaeker, J.D. Wavelength Selection for Surface Defects Detection on Tomatoes by Means of a Hyperspectral Imaging System. In 2006 ASABE meeting Paper No:063018.
    [123]Kim, M.S., Chen, Y.R., Mehl, P.M. Hyperspectralreflectance and fluorescence imaging system for food quality and safety. Transactions of the ASAE,2001,44(3):721-729.
    [124]Kim, M.S., Lefcourt, A.M, Chen, Y.R. Ns-scale Time-resolved Laser Induced Fluorescence Imaging for Detection of Fecal Contamination on Apples. Proceedings of SPIE,2004,5587:190-197.
    [125]Vargas, A.M., Kim, M.S., Tao, Y. Safety Inspection of Cantaloupes and Strawberries Using Multispectral Fluorescence Imaging Techniques. In 2004 ASABE meeting Paper Number:043056.
    [126]Vargas, A.M., Kim, M.S., Tao, Y. Detection of Fecal Contamination on Cantaloupes Using Hyperspectral Fluorescence Imagery. Journal of food science,2005,70(8):471-476.
    [127]Kim, M.S., Chen, Y.R., Cho, B.K., Chao, K., Yang, C.C., Lefcourt, A.M., Chan, D. Hyperspectral reflectance and fluorescence line-scan imaging for online defect and fecal contamination inspection of apples, Sens.& Instrumen. Food Qual.2007,1:151-159.
    [128]李江波,王福杰,应义斌,饶秀勤.高光谱荧光成像技术在识别早期腐烂脐橙中的应用研究,光谱学与光谱分析.(录用)
    [129]洪天胜,李震,吴春胤,刘敏娟,乔军,Wang Ning高光谱图像技术在水果品质无损检测中的应用.农业工程学报,2007,23(11):280-285.
    [130]www.specim.fi/productsimspector.html.
    [131]桂江生.二维水果形状检测与分类算法研究[博士学位论文].浙江大学,2007.
    [132]马本学.基于图像技术和光谱分析技术的水果品质快速无损检测方法研究[博士学位论文].浙江大学,2009.
    [133]徐惠荣,应义斌,盖玲.双锥式滚子水果输送翻转机构的研究.农业机械学报,2003,34(6):100-103.
    [134]庞江伟.基于计算机视觉的脐橙表面常见缺陷种类识别的研究[硕士学位论文].浙江大学,2006.
    [135]Gonzalez和Woods数字图像处理(第二版).北京:电子工业出版社,2010.
    [136]Balasundaram, D., Burks, T.F., Bulanon, D.M., Schubert, T., Lee, W.S. Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit. Postharvest Biology and Technology,2009,51 (2):220-226.
    [137]赵杰文,刘少鹏,邹小波.基于支持向量机的缺陷红枣机器视觉识别.农业机械学报,2008,39(3):113-115.
    [138]Malinowski, E. R., Howery, D.G. Factor analysis in chemistry, New York:J. Wiley & Sons,1980.
    [139]Hernandez-Andres, J., Romero, J., Nieves, J.L. Color and spectral analysis of daylight in southern Europe. Journal of the optical society of America a-opticals image science and vision,2001,18(6): 1325-1335.
    [140]Skoglund, A., Kessler, W., Kessler, R.W. On-line spectroscopic measurements of wood chips before a continuous digester. Chemometrics and Intelligent Laboratory Systems,2004,70 (2):129-135.
    [141]成家壮,韦小燕,范怀忠.广东柑橘疫霉研究.华南农业大学学报,2004,25(2):31-33.
    [142]Blasco, J., Ortiz, C., Sabater, M.D. Early Detection of Fungi Damage in Citrus Using NIR Spectroscopy. Proceedings of SPIE,2000,4203(47):47-54.
    [143]Xin, M., Peng, G., Sarah, S. Detection of yellow starthistle through band selection and feature extraction from hyperspectral imagery. Photogrammetric engineering & remote sensing.2007,7:1-11.
    [144]董广军,张永生,范永弘.PHI高光谱数据和高空间分辨率遥感图像融合技术研究.红外与毫米波学报,2006,25(6):123-126.
    [145]Shafri, H.Z.M., Anuar, M.I., Saripan, M.I. Modified vegetation indices for Ganoderma disease detection in oil palm from field spectroradiometer data. Journal of appled remote sensing,2009,3(033556):1-23.
    [146]Das, A.K. Citrus canker-A review. Journal of Applied Horticulture,2003,5 (1):52-60.
    [147]Schaad, N.W., Postnikova, E., Lacy, G., Scheler, A., Agarkova, I., Stromber, P.E., Vidaver, A.K. Emended classification of xonthomonad pathogens on citrus. Systematic and Applied Microbiology,2006,29: 590-695.
    [148]郭立.重庆启动中国首个柑桔非疫区建设[EB/OL]. http://news.sohu.com/20070720/n251171930. shtml.
    [149]Schubert, T.S., Rizvi, S.A., Sun, X. Meeting the challenge of eradicating citrus canker in Florida-Again. Plant Disease,2001,85(4):340-356.
    [150]USDA APHIS. Citrus canker:movement of fruit from quarantined areas. Federal Register:Rules and Regulations,2009,74 (203):54431-54445.
    [151]何秀玲,袁红旭.柑橘溃疡病发生与抗性研究进展.中国农学通报,2007,23(8):409-412.
    [152]Qin, J.W., Burks, T.F., Kim, M.S., Chao, K.G., Ritenour, M.A. Citrus Canker detection using hyperspectral reflectance imaging and PCA based image classification method. Sensing and instrumentation for Food Quality and Safety,2008,2:168-177.
    [153]Niphadkar, N.P., Qin, J.W., Burks, T.F., Ritenour, M.A. Estimation of Detection Limit for Size of Citrus Canker leasions based on Hyperspectral reflectance imaging. ASABE Paper No.096254. In 2009 ASABE Meeting, Reno, Nevada, USA.
    [154]Zhao, X.H., Burks, T.F., Qin, J.W., Ritenour, M.A. Effect of harvest time on citrus canker detection using hyperspectral reflectance imaging. Sensing and Instrumentation for Food Quality and Safety,2010,4: 126-135.
    [155]Yang, C.C., Kim, M.S., Kang, S., Cho, B.K., Lefcourt, A.M., Chan, D.E. Red to far-red multispectral fluorescence image fusion for detection of fecal contamination on apples. Journal of Food Engineering, 2012,108:312-319.
    [156]Qin, J., Chao, K., Kim, M.S. Kang, S., Cho, B.K., Jun, W. Detection of organic residues on poultry processing equipment surface by LED-induced fluorescence imaging. Applied Engineering in Agriculture,2011,27(1):153-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700