电化学传感器用于堆肥中简青霉产漆酶检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆肥一直被视为是处置工业和农业固体废物的一种非常有效的处理方式,在这个过程中的生物发挥着重要作用。电化学传感器是基于生物化学反应进行信号传导的电化学装置,具有方便、省时、精度高等优点,已成为环境监测领域的一种新型的检测技术。电化学生物传感器因为具有高效性和专一性的特点,成为电化学传感器的研究热点,其构建的关键技术在于基于多壁碳纳米管(CNTs)修饰的工作电极,创造了漆酶的电信号放大的微环境中。本研究致力于提高堆肥中分离的简青霉Penicillium simplicissimum的漆酶的产量,对于漆酶的电化学反应、表征及其在CNTs修饰后的放大效果进行了研究。主要完成了以下工作:
     对简青霉Penicillium simplicissimum产漆酶的液态发酵条件进行了研究,结果表明摇瓶培养产漆酶的最佳培养基组成为:麦芽糖2 g/L,蛋白胨1.2 g/L,大量元素体积分数为100 mL/L,微量元素体积分数为25 mL/L,VB1质量为100μg,吐温80浓度为0.05%,将含有107个分生孢子/mL的此培养液恒温30℃振荡(150r/min)培养8d,产漆酶量达12.44 U/L。培养液初始pH 3.5最有利于漆酶的产生,一定浓度的Cu2+有利于酶活提高,最适合浓度为60μmol/L。
     本实验研制成的一种电化学传感器检测分离于堆肥简青霉Penicillium simplicissimum所产生的漆酶的活性。该传感器是基于多壁碳纳米管(CNTs)修饰的玻碳电极。采用碳纳米管加入这一检测系统可以大大提高电化学分析法的信号,因此比常规的分光光度测定法具有更高的敏感度,选择性和速度。经研究发现,电解系统的最佳pH值为5.6。结果表明:电流和分光光度检测法测量出的漆酶酶活的浓度之间具有一个良好的线性关系,通过电流计时法检测出的电流的斜率所显示的相关系数为0.9835。因此,这个电化学传感器可用于快速检测堆肥中简青霉Penicillium simplicissimum所产生的漆酶的酶活。此外,它还在通过根据漆酶的酶活与生物量之间的相关性来来对Penicillium simplicissimum进行快速的定量分析方面具有潜在的可能性。
Composting is considered as a useful process for the disposal of municipal and agricultural solid waste, in which enzymes play an important role. Electrochemical sensors are electrochemical devices that are based on the signal transmission of biochemical reactions. In comparison with the conventional chemical and biochemical analytical methods, the electrochemical sensors have the advantages of convenience, time-saving as well as high precision. Moreover, they are convenient for computers to collect and process data, and the sample won't be damaged or polluted. Electrochemical sensor as a new kind of analytical tool is widely applicable in monitoring and controlling of composting.The sensors have been one of most concerned areas because of their specificity and high-efficiency. In the design and fabrication of electrochemical sensors, the key technology is to modify the working electrode with the multi-wall carbon nanotubes (CNTs) which can enhance the electrochemical signal of the laccase in the microenvironment. In this paper, the research was aimed to develop the production of the laccase from Penicillium simplicissimum isolated from the composting, and characterize the electrochemical activity of the laccase as well as the enhanced signal from the introduction of the CNTs. The detailed research contents are summarized as follows:
     The optimal fermentation conditions for laccase production by Penicillium simplicissimum in shake- flask cultivation were studied. The composition of fermentation medium was maltose 2g/L, peptone 1.2 g/L,100 mL/L Massive elements solution,25 mL/L Trace elements solution,100μg/L VB1,0.05% Tween 80. Shaking culture of the liquid containing 107conidia/mL for 8 day at the regime of 30℃and 150 r/min resulted in the enzyme activity of 12.44 U/L. The optimum pH of production Laccase was 4.0, the optimal concentration of Cu2+ was 60 u mol/L. An electrochemical sensor for detection of the activity of laccase from Penicillium simplicissimum isolated from the composting has been developed. The sensor is based on glassy carbon electrode modified with multi-wall carbon nanotubes (CNTs). The introduction of CNTs into this system can greatly enhance the electrochemical signal in this assay more sensitively, selectively and rapidly than that in conventional spectrophotometric assays. It was found that the optimal pH value of the electrolyte was 5.6. The results showed a good linear correlation between the current and the concentration of laccase activities measured by spectrophotometry, where the current slope was measured by chronoamperometry with a coefficient of 0.9835. Therefore, this electrochemical sensor can be used for rapid detection of laccase activity from Penicillium simplicissimum. Furthermore, it may be potentially used for rapid quantification of Penicillium simplicissimum according to the relationship between the laccase activities and the biomass.
引文
[1]夏晓刚,吴星五.城市污水污泥堆肥腐熟度的评价.给水排水.2003,29(11):7-10.
    [2]Butler T A., Sikora L J., Steinhilber P M., et al. Compost age and sample storage effects on maturity indicators of biosolids compost. Journal of Environmental Quality.2001, 30(6):2141-2149.
    [3]Miller F C. Matric water potential as an ecological determinant incompost, a substrate dense system. Microbial Ecology,1993,18:59-71.
    [4]Eghball B, Lesoing G W. Viability of seeds following manure windrow composting. Compost Science & utilization,2008,8(1):46-53.
    [5]Bertoldi M, Ballini G and Pera A. The Biology of Composting:a Review. Waste Management & Research,1983(1):157-176.
    [6]Leton T G and Stetiford E I. Control of Aeration in Static pile composting. Waste Management & Research,1990,8:299-306.
    [7]Wat P. The principal of composting and utilization in practice. Control Tech,1975. 47(4):741
    [8]Bjorn V, Anders B, Hankan J. Thermal composting of faecal matter as treatment and possible disinfection methed. Bioresource Technology,2003:47-54
    [9]Jimenez E I and Garcia V P. Composting of domestic refuse and sewage sludge, I evolution of temperature, pH, C/N ratio and cation-exchange capacity. Resources, Consevation and Recvcling.1991,6:45-60.
    [10]Aveela M, Martusccelli E, Raio M, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composts:thermal, mechanical properties and biodegradation behavior. Journal of Materials Science.2000,35(4):829-836.
    [11]Finstein M S, and Morris M L. Microbiology of municipal solid waste composting. Advances in Applied Microbiology,1975,19:113-151.
    [12]Golueke C G, and Diaz L F. Low tech composting for small communities. Biocycle, 1990,November:62-64
    [13]Finstein M S, Cirello J, Macgregor S T, et al. Discussion of Haug, R T "Engineering principles of sludge composting". Journal of the Water Pollution Control Federation, 1980,52:2037-2042.
    [14]Augenstein D, Wise D L, Dat N X, et al. Composting of municipal solid waste and sewage sludge; Potential for fuel gas production in a developing country. Resources, Conservation and Recycling,1996,16:265-279.
    [15]黄国锋,吴启堂,黄焕忠,有机固体废弃物好氧高温堆肥化处理技术。中国生态农业学报。2003,11(1):159-161
    [16]李承强,魏源送,樊耀波,王敏健.堆肥腐熟度的研究进展.环境科学进展.1999,7(6):1-2.
    [17]Woods End Research. Guide to sovita testing for compost maturity index. Compost New Manual,2002,11:1-8.
    [18]李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    [19]焦仲阳,吴星五.污泥堆肥腐熟度的检测与评价.中国给水排水.2004,20(7):28-30.
    [20]Brinton W F, Evans J E, Droffner M L, et al. A Standardized Dewar Test for Evaluation of Compost Self-Heating[M]. USA:Woods End Research Laboratory,1999.
    [21]郭萌.电化学传感器的研究[D].天津:天津大学,2005.
    [22]国家环境保护局.水和废水检测分析方法(第3版)[Z]北京:中国环境科学出版社,1989
    [23]赵长文.电化学传感器及其临床应用的进展.国外医学:药学分册.1993,20(1):11-15.
    [24]Campanella L, Tomassetti M, P.Sammartino M. Enzyme sensor for the determination of choline-containing phospholipids in some biological fluids. Analyst.1988,113(1):77-80
    [25]Tan T C, Wu C H. BOD sensors using multispecies living or the rmally killed cells of a BODSEED microbial culture. Sensors and Actuators B:Chemical,1999, 54(3):252-260.
    [26]王化正.电化学传感器.计测技术.1990,(2):26-29,36.
    [27]易惠中.离子传感器用敏感材料.仪表材料.1990,21(2):111-117.
    [28]刘静.离子选择性电极研究概述.陕西师范大学继续教育学报.2002,19(4):107-108.
    [29]Riegel J, Neumann H, Wiedenmann H M. Exhaust gas sensors for automotive emission control. Solid State Ionics,2002:152-153.
    [30]杨邦朝,张益康.气体传感器研究动向.传感器世界.1997,3(9):1-8.
    [31]江头诚.半导体气体传感器的原理和应用.化学传感器.1991,11(1):16-18.
    [32]吴雄,张诚.半导体气敏材料研究的催化问题.化学传感器.1990,10(3):42-48.
    [33]刘威.气体传感器的研究与发展.化工时刊.2000,14(9):1-5.
    [34]刘崇进,郑大方,陈明光等.气体传感器的发展概况和发展方向.计算机自动测量与控制.1999,7(2):54-56.
    [35]刘亚珍.几种气体传感器的特性及其应用.仪器仪表与分析监测.1998,(1):16-20.
    [36]马丽杰.日本气体传感器产业化发展现状.云南大学学报:自科版.1997,19(2):211-216.
    [37]陈家林,万吉高,王丹军等.氧传感器用ZrO2—Y2O3固体电解质电导性能的研究.贵 金属.2001,22(1):21-24.
    [38]张益康,杨博.新型氧化锆固体电解质氧传感器.传感器世界.1996,2(9):38-40.
    [39]杨邦朝,简家文,张益康.氧传感器与现代生活.世界产品与技术.2001,(1):37-41.
    [40]宋国庆,刘红宇,李恒一等.新型氧传感器及应用.黑龙江电子技术.1999,(3):47-49.
    [41]孙鱿鹏,杨明,白守礼等.全固态一氧化碳电化学传感器响应研究.北京化工大学学报,2002,29(4):59-61,71.
    [42]周仲柏,周亚民,电流型二氧化碳气体传感器件全固态电化学体系的研究.武汉大学学报:自科版.1999,45(2):135-139.
    [43]于玉忠,严河清,陆君涛等.二氧化碳电化学传感器的研究现状和发展前景.武汉大学学报:自科版.1998,44(2):179-182.
    [44]全宝富,张爽,刘晓宁等.C02传感器的制作及特性.传感器技术.2002,21(10):11-14.
    [45]邵晶,刘传桂.全固态SO2气体传感器的研制.甘肃工业大学学报.2002,28(1):125-128.
    [46]于春波,王玉江,杨辉等.改性Nafion膜在全固态二氧化硫气体传感器中的应用.分析化学.2002,30(4):397-400.
    [47]何星月,刘之景.生物传感器的研究现状及应用.传感器世界.2002,8(10):1-6.
    [48]Weetall H H. Biosensor Technology What? Where? When? and Why? Biosensors and Bioelectronics.1996, 11(1-2):1-5.
    [49]何星月,刘之景.生物传感器的应用.物理.2003,32(4):249-252.
    [50]耿敬章,仇农学.生物传感器及其在食品农药残留检测中的应用.粮油食品科技.2005,13(1):42-43.
    [51]谢平舍,刘鹰,刘禹,李占胜.微生物传感器.传感器技术.2001,20(6):4-7.
    [52]赵景联.微生物传感器的原理、制备及应用.高技术通讯.1994,4(10):38-42.
    [53]Larsen L H, Kjar T, Revsbech N P. A microscale NO3- biosensor for environment applications. Anal Chem,1997,69(1):3527-3531.
    [54]Pandard P, Rawson D M. An amperometric algal biosensor for herbicide detection employing a carbon cathode oxygen electrode. Environmental Toxicology and Water Quality,1993,8(3):323-333.
    [55]Karube I, Matsunaga T, Suzuki S, et al. Microbial electrode BOD sensors. Biotechnol. Bioeng,1977,19(10):1535-1547.
    [56]Riedel K, Lehmann M, Tag K, et al. Arxula adenini_orans based sensor for the estimation of BOD [J]. Analytical Letters,1998,31:1-12.
    [57]周雯婧,曾光明,龚继来,晏铭.生物传感器在堆肥过程控制与动态监测中的研究进展.化学传感器.2007,27(2):1-6.
    [58]Shaojun D., Xu C. Some new aspects in biosensors. Reviews in Molecular Biotechnology.2002,82(4):303-323.
    [59]莫健伟,周性尧.生物电化学传感器研制及应用的进展.汕头大学学报:自科版.1993,8(1):80-91.
    [60]袁启明,孙幼娟.生物传感器的发展方向及市场特点.现代医学仪器与应用.1995,7(1):11-13.
    [61]钱军民,奚西峰,黄海燕等.我国酶传感器研究新进展.石化技术与应用.2002,20(5):333-337.
    [62]Taylor R. Protein immobilization fundamentals and applications. New York NY. MarceDekker,1991:1-9
    [63]Zeng G M, Tang L, Shen G., et al. Determination of trace chromium(VI) by an inhibition-based enzyme biosensor incorporating an electropolymerized aniline membrane and ferrocene as electron transfer mediator. International Journal of Environmental & Analytical Chemistry,2004,84(10):761-774.
    [64]Alexander P W, Rechiz G A. Enzyme Inhibition Assays with an Amperometric Glucose Biosensor Based on a Thiolate self-Assembled Monolayer. Electroanalysis, 2000,12(5):343-350.
    [65]汤琳,曾光明,沈国励,等.基于抑制作用的新型葡萄糖氧化酶传感器测定环境污染物汞离子的研究.分析科学报,2005,21(2):123-126.
    [66]汤琳,曾光明,沈国励,等.辣根过氧化物酶多层膜生物传感器检测苯肼的研究.长沙第24届中国化学年会,2004,10-94.
    [67]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制[M].北京:科学出版社,2006:323-353.
    [68]Niu C G, Gui X Q, Zeng G M, et al. Fluorescence ratiometric pH sensor prepared from covalently immobilized porphyrin and benzothioxanthene. Analytical and Bioanalytical Chemistry,38(2):349-357.
    [69]Niu C G, Gui X Q, Zeng G M, et al. A ratiometric fluorescence sensor with broad dynamic range based on two pH-sensitive fluorophores. Analyst,2005,130(10): 1551-1556.
    [70]Tang L, Zeng G M, Wang H, et al. Amperometric detection of lignin-degrading peroxidase activities from Phanerochaete chrysosporium. Enzyme and Microbial Technology,2005.36(7):960-966.
    [71]Tang L, Zeng G M. Shen G L, et al. Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Analytica Chimica Acta,2006,579:109-116,
    [72]吴健民.临床化学自动化免疫分析[M].北京:科学出版社2000.120-149
    [73]Lqbal S S, Mayo M W, Bruno J G. e t al.A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelecrton.2000,15 (11-12):549-578
    [74]Leonard P,Hearty S, Brennan J, et al.Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology,2003,32 (1):3-13.
    [75]Susmel S, Guilbault G G, O'Sullivan C K. Demonstration of labeless detection of food pathogensusing electrochemical redox probe and screenprinted gold electrodes. Biosens. Bioelectron.,2003,18(7):881-889.
    [76]Sandberg R G, Houten L J V, Schwartz J L. A Conductive polymer based immunosensor for the analysis of pesticide residues. Am.Chem.Soc.Symp.Ser,1992, 511(1):81-88
    [77]王松华.免疫传感器.中华医学检验杂志.1992,15(3):181-182.
    [78]钟桐生,刘国东,沈国励等.电化学免疫传感器研究进展.化学传感器.2002,22(1):7-14.
    [79]霍群.电化学免疫传感器.临床检验杂志.2003,21(3):181-182.
    [80]章毅,曾光明,汤琳.免疫传感器用于堆肥复杂系统监测的研究进展.中国生物工程杂志.2006,26(8):115-122.
    [81]温志立,汪世平,沈国励等.免疫传感器的发展与制作.免疫学杂志.2001,17(2):146-149.
    [82]温志立.免疫传感器的发展概述.生物医学工程学杂志.2001,18(4):642-646.
    [83]Tomas K, Petr S. A disposable amperometric immunosensor for 2,4-dichlorophenoxyacctic acid. Analytic Chimica Acta,1995,304(3):361-368.
    [84]Keay R W., McNeil C J. Separation free electrochemical immunosensor for rapid determination of atrazine. Biosensors & Bioelectronics,1998,13(9):963-970.
    [85]Anthony J K., Laura M. Amperometric separation-free immunosensor for real-time environmental monitoring. Analytical Chimica Acta,2001,427(2):173-180.
    [86]Rodney W C.,Michael J D. Biosensor for on-line measurement of bovine progesterone during milking. Biosensors & Bioelectronics,1998,13(11):1173-1180.
    [87]Mark P K, Milosolav P, Ciara K,et al. Novel electrochemical immunosensor for seafood toxin analysis. Toxicon,2002,40(9):1267-1274.
    [88]Niu C G, Guan A L, Zeng G M, et al. Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica chimica acta,2006,557:264-270.
    [89]Zhao C Q, Anis N A, Rogers K R, et al. Fiber optic immunsensor for polychlorinated biphenyls. Journal of Agricultural and food Chemistry,1995,43(8):2308-2315.
    [90]Dankwardt A. Immunochemical assays in pesticide analysis. Encyclopedia of Analytical Chemistry,2000:1-27.
    [91]陈新黔.DNA传感器研究进展及应用前景.中华肝脏病杂志,2004,12(9):576-578.
    [92]仵博万.DNA生物传感器研究进展.化学世界,2004,12:659-667.
    [93]国家环境保护局,水和废水检测分析方法(第3版).北京:中国环境科学出版社,1989
    [94]Chee G J., Nomura Y., Karuve. Biosensor for the estimation of low biochemical oxygen demand,1999,379(1-2):185-191.
    [95]张悦,王建龙,李花子等.生物传感器快速测定BOD在海洋监测中的应用.海洋环境科学,2001,20(1):51-54
    [96]王建龙。张悦,施汉昌等,生物传感器在环境污染监测中的应用研究,生物技术通报,2000,3:13-24
    [97]Cosnier S., Innocent L., Jouanneau Y et al. Amperometric detection of nitrate via a nitrate reductase immobilized and electrically wired at the electrode surface. Anal Chem,1994,66(19):3198-3201.
    [98]Ramsay G, Wolpert S W. Utility of wiring nitrate reductase by alkylprrolleviologen-based redox polymer for electrochemical biosensor and bioreactor applications. Anal Chem,1999,71(2):504-506.
    [99]Ugo P., Moretto L M., Batlarin B. Nitriate detection at nafion-modified electrodes incorporating yetterbium and uranyl electrocatalysts. Elecrtoanalysis,1995,7(2): 129-131.
    [100]Moretto L M, Ugo P, Zanata M et al. Nirtate biosensor based on the ulrtathin-film composite membrane concept. Anal Chem.,1998,70(10):2163-2166
    [101]Garnham G W. Biosensors for detecting nitrate or nitrite ions. US:5776715,1998
    [102]Abass K.,Hart J P., Cowell D C., et al.Development of an amperometric assay for NH4+ based on a chemically modified screen-printed NADH sensor. Anal Chim. Acta,1998, 373:1-8.
    [103]Sasaki S, Karube L, Hirota N, et al. Application of nitrite reductase from Alcaligens faecalis S-6 for NH4+ based on a chemically modified screen-printed NADH sensor. Biosen Bioelerton,1998,13 (1):1-5.
    [104]Wu Q, Storrier G D, Parient F, et al. A nitrite biosensor based on a maltose binding protein nitrite reductase fusion immobilized on an eletropoly merized film of a pyrrol-erived bipyridinium. Anal Chem,1997,69 (23):4856-4863
    [105]Su Y S, Mascini M. AP-GOD biosensor based on a modified poly(phenol)film electrode and its application in the determination of low levels of phosphate. Analytical letters,1995,28(8):1359-1378.
    [106]Schuert F, Fenneberg R, Scheuer F W et al. Plant tissue hybrid electrode for determination of phosphate and fluoride. Anal Chem,1998,56(9):1677-1682.
    [107]Matsunaga T, Zuzhuki T, Tomoda R, et al. Photomicrobial sensors for selective determination of phosphate. Enzyme and microbial Technology,1984,6(8):355-358.
    [108]Fernando J C, Rogers K R,Anis N A, et al. Rapid detection of anticholinesterase insectides by a reusable light addressable potentionmetric biosensor. Journal of Agricultural and Food Chemistry,1993,41(3):511-516
    [109]Abad A, Moreno M J, Montoya Angel. Development of monoclonal antibody-based immunoassays to the N-methylcarbamatepesfcidecarbofuran. J. Agric. FoodChem., 1999,47 (6):2475-2485
    [110]Fahnrich K A, Pravda M, Guilbault G G. Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes. Biosens. Bioelectron.,2003,18(1):73-82.
    [111]Shan G, Stoutamire D W, Wengatz I, et al. Development of an immunoassay for the pyrethroid insecticide esfenvalerate. J. Agric. Food Chem.,1999,47(5):2145-2155.
    [112]Blake D A, Jones R M, Blakeii R C, et al. Antibody-Based Sensors for Heavy Metal Ions. Biosens.Bioelectron.,2001,16(9-12):799-809
    [113]Sakai T, Yamaguchi M, Ishikawa H, et al. Folw injection Analysis of Amitrode by Chemiluminescent Immunosensor using Alkaline Phosphatase and Adamantyl Methoxy Phosphoryloxy Phenyl Dioxetane. Anal..Sci.,2001,17(supplement):1407-1410.
    [114]Szekacs A, Trummer N, AdAanyi N et al. Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide light mode spectroscopic detection. Anal. Chim. Acta,2003,487(1):31-42.
    [115]Tuariainen S, Karp M, Chang W, et al. Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron,1998,13(9):931-938.
    [116]Tiquia S M. Evolution of extracellular enzyme activities during manure composting. J. Appl. Microbiol.2002,92,764-765.
    [117]Chefetz B, Kerem Z, Chen Y, Hadar Y. Isolation and partial characterization of laccase from a thermophilic composted municipal solid waste,1998.30,1091-1098.
    [118]彭红,罗开昆,高中洪,等.产漆酶真菌的筛选、培养及对苯酚的降解.华中科技大学学报,2005,33(7):111-114.
    [119]康从宝,刘巧,李清心,等.白腐菌产漆酶的纯化及部分酶学性质.中国生物化学与分子生物学报,2002,18(5):638-642.
    [120]Jian-Xiao Liu, Wen-Jing Zhou, Ji-Lai Gong, et al. An electrochemical sensor for detection of laccase activities from Penicillium simplicissimum in compost based on carbon nanotubes modified glassy carbon electrode. Bioresource Technology.2008.99: 8748-8751.
    [121]Zeng G M. Yu, H Y, Huang H L, Huang D L, Chen,Y N, Huang G H, Li J B. Laccase activities of a soil fungus Penicillium simplicissimum in relation to lignin degradation. 2006.22,317-324.
    [122]Gianfreda L, Xu F, Bollag J M. Laccases:a useful group of oxidoreductive enzymes. Bioremediation.1999.3,1-25.
    [123]Dekker R F H, Barbosa A M, The effect of aeration and veratryl alcoholon the production of two laccases by the ascomycete Botryosphaeriasp. Enzyme Microb. Technol.2001.28,81-88.
    [124]Tanaka T, Yamada K, Tonosaki T, et al. Enzymatic degradation of alkylphenols, bisphenol-A, syntheticestrogen and phthalic ester. Water. Sci. Technol.2000,42,89-95.
    [125]肖海燕,黄俊,刘诚.原子吸收光谱法测定漆酶的含量.2006,化学与生物工程.23(6):53-55
    [126]郁红艳,曾光明,黄国和等.简青霉Penicillium simplicissimum木质素降解能力.环境科学,2005,26(2):167-171.
    [127]Yu H Y, Zeng G M, Huang G H, et al.Screening of Lignin-degrading fungi and their enzyme production. Chin. J. Appl. Environ Biol.2004.10,639-642.
    [128]Zeng G M, Shi J G,Yuan X Z, et al. Effects of Tween 80 and rhamnolipid on the extracellular enzymes Penicillium simplicissimum isolated from compost. Enzyme and Microbial Technology.2006.39,1451-1456.
    [129]张朝晖,夏黎明,林建平.黄孢原毛平革菌培养合成木素过氧化物酶研究.浙江大学学报,1999,33(2):132-135.
    [130]Eggert C, Temp U, Eriksson K L. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus Purification and characterization of the laccase. Appl. Environ. Microbiol.1996.62,1151-1158.
    [131]Klis M, Rogalski J, Bilewicz R. Voltammetric determination of catalytic reaction parameters of laccasebased on electrooxidation of hydroquinone and ABTS.2006.71, 263-268.
    [132]Zhang Y, Zeng G M, Tang L, et al. A hydroquinone biosensor using modified core-shell magneticnanoparticles supported on carbon paste electrode. Biosensors and Bioelectronics.2007.22,2121-2126.
    [133]Caruso F.Nanoengineering of Particle Surface. Adv. Matec,2001,13(1):11-21.
    [134]Willner I, Willner B. Functional nanoparticle architectures for sensoric optoecletronic. Pure Appl. Chem.,2002,74 (9):1773-1783
    [135]Liu S Q, Ju H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized colloidal gold modified carbon paste elecrtode. Biosens.Bioelecrton.2003,19(3):177-183
    [136]Liu S Q,Ju H X. Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and colloidal gold. The Analyst,2003,128(12):1420-1424.
    [137]唐芳琼,沈继锋,张金芳等.超细Ag颗粒对葡萄糖氧化酶生物传感器响应灵敏度的增强效应.高等学校化学学报,1999,20(4):634-636.
    [138]Lei C X, Hu S Q, Shen G L. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta,2003,59(5):981-988.
    [139]Lei C X, Wang H,,Shen G L, et al.Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose, Electroanalysis.2004,16(9):736-740.
    [140]Lei C X,Yang Y,Wang H et al. Amperometric immunosensor for probing complement III(C3) based on immobilizing C3 antibody to a nano-Au monolayer supported by sol-gel-derived carbon ceramic electrode. Analytica Chimica Acta,2004,513(2): 379-384.
    [141]Baughman R H, Zakhidov A, Heer W A. Carbon nanotubes-the route toward applications. Science.,2002,297,787-792.
    [142]Shieh Y T,Yang Y F. Significant improvements in mechanical property and waterstability of chitosan by carbon nanotubes. European Polymer Journal.2006,42, 3162-3170.
    [143]Fan S S, Liang W J, Dang H Y, et al. Carbon nanotube arrays on silicon substrates and their possible application. Physica E.2000.8,179-183.
    [144]Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis.2002,14,1609-1613.
    [145]Deo R P, Wang J, Block I, et al. Determination of organophosphate pesticides at a carbonnanotube/organophosphorus hydrolase electrochemical biosensor. Analytica Chimica Acta.2005.530,185-189.
    [146]Wang Z H, Liu J, Liang Q L, et al. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst.2002,127: 653-658.
    [147]Wang J, Musameh M. Carbon nanotube/Teflon composite electrochemical sensors and biosensors. Anal. Chem.2003.75:2075-2079.
    [148]Wang J, Li M, Shi Z, et al. Electrocatalytic Oxidation of Norepinephrine at a Glassy Carbon Electrode Modified with Single Wall Carbon Nanotubes. Electroanalysis.,2002. 14:225-230.
    [149]Musameh M, Wang J, Merkoci A, et al. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun.,2002.4: 743-746.
    [150]Zhao Y, Zheng W D, Chen H, et al. Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection. Talanta.,2002.58:529-534.
    [151]Liu Y X, Du Z J, Li Y, et al. Covalent functionalization of multiwalled carbon nanotubes with poly (acrylic acid).2006. Chinese J Chem.24:563-568.
    [152]Kong H, Gao C, Yan D. Controlled functionalization of multiwalledcarbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc.2004.126:412-413.
    [153]Wu Z, Feng W, Feng Y, Liu, et al. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon.2007.45: 1212-1218.
    [154]Yang M, Yang Y, Yang H, et al. Layer-by-layerself-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials.2006.27:246-255.
    [155]Jiang L, Wang R, Li X, et al. Electrochemicaloxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem Commun.2005.7:597-601.
    [156]Zeng Y, Zhu Z, Wang R, et al. Electrochemical determination of bromide at a multiwall carbon nanotubes-chitosan modified electrode. Electrochim Acta.2005.51:649-54.
    [157]Mayer A M, Staples R. C. Laccase:new function for an old enzyme,Phytochemical. 2002.60:551-565.
    [158]Yaropolov A I, Skorobogatko O S, Vartanov S D. Varfolomeyev. Laccase-properties, catalytic mechanism, applicability. Appl. Biochem.Biotechnol.1994,49:257-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700