高产生物表面活性剂菌株的筛选、生产条件优化及其在石油烃降解中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油类污染因具有较高的生物毒性、在环境中持留时间长等原因,而成为环境污染修复的研究热点。环境污染的生物修复具有成本低、可原位处理、能够最大限度地降低污染物浓度和环境负面影响小等多重优势,因而非常适合我国目前的污染修复。生物表面活性剂因具有化学合成表面活性剂所无法比拟的环境兼容性而日益受到国内外的关注,同时生物表面活性剂还能促进微生物对石油烃等难溶有机污染物的利用和降解。因此,筛选高效生物表面活性剂产生菌及其用于石油烃污染的生物修复研究具有广泛的生物学和经济意义。
     本论文从油污染土壤中筛选高产生物表面活性剂的菌株,对其产生物表面活性剂发酵工艺进行优化,并考察其对柴油污染土壤的生物修复能力,得到如下实验结果:
     ⑴从油污染环境中,经富集培养、血平板分离、摇瓶培养和排油活性测定等方法筛选到高产生物表面活性剂菌株72,依据其生长形态及理化性质特征初步鉴定为假单胞菌属,命名为Pseudomonas sp. 72。并以此为出发菌株(排油直径为8.62cm),对其进行紫外诱变,筛选到一株排油直径达11.82cm,排油直径提高了37.1%的Y72-8。
     ⑵Y72-8的对数生长期为产生物表面活性剂的高峰期,产生物表面活性剂机理为生长相关型,所合成的生物表面活性剂为糖脂类物质。Y72-8同时具有较好的耐酸性、耐盐性和耐温性,因而也具有了较广的应用范围。
     ⑶通过对Y72-8产生物表面活性剂工艺的优化,结果显示在蔗糖20g/L、硫酸铵1.6g/L、酵母膏6.4g/L、磷酸二氢钾1g/L、微量元素液2mL/L、种子液菌龄16h、接种量5%、培养温度30℃、pH7.5的条件下产生物表面活性剂最佳,产量为2.5397g/L,与优化前的1.5415g/L相比,提高了64.8%,且整个发酵周期缩短至24h。
     ⑷Y72-8产生物表面活性剂与其对柴油的降解能力密切相关,对柴油的摄取机制是三种模式的组合,即“单一扩散-溶解”模式、“与大油滴的直接接触”模式和“与细微油滴接触”模式。
     ⑸Y72-8对土壤油污环境中有良好的适应性和降解能力。在200g柴油/Kg土壤污染浓度下,接种Y72-8的新鲜土壤中,培养30d,其柴油降解率可达81.07%,接种Y72-8的灭菌土壤中柴油降解率为62.71%,混合菌群的降解效果明显高于单株培养菌。可以推测Y72-8与土著微生物间可以形成一种稳定的微生物群落结构,这一结构对土壤中柴油的生物降解具显著的优势,为进一步研究柴油降解菌群的构建提供了基础。
Because petroleum hydrocarbon contaminant has relatively high biological toxicity and withholding in environment is relatively permanent, remediation of petroleum hydrocarbon contaminated environment is becoming a research hotspot. Bioremediation of petroleum hydrocarbon contaminated environment, which exploits the ability of organisms to degrade and/or detoxify contamination, has been established as an efficient, economic, versatile, and environmentally sound treatment. Decontamination of polluted sites in our country with bioremediation has received increasing interest recently.
     Compared with chemical surfactant, biosurfactant has obtained international attention because of its environment friendly and broad application potential. Meanwhile, biosurfactant had the potential for enhancing the bioavailability and biodegradation of insoluble hydrocarbons. Therefore, the works of screening of strains with high-producing biosurfactant and its application to the degradation of petroleum hydrocarbon contaminant have extensive biological and economic significance.
     In this study, a strain which could highly produce biosurfactant was screened, optimized condition of biosurfactant production and investigated for their capability in bioremediation of diesel fuel contaminated soil. Finally, we obtain the following results:
     (1)A strain capable of high-producing biosurfactants was isolated from petroleum hydrocarbon contaminated environment by a series of steps including hydrocarbon enrichment culture, hemolytic activity assay on blood agar plates and oil displacement activity assay etc. Identified as Pseudomonas sp. based on its morphological and physiological characteristics,named as Pseudomonas sp.72. Breeding of high-yielding strains by UV mutagenesis were based on this. A high-yield strain Y72-8 was obtained, the oil-discharge diameter of which is 11.82cm, almost 37.1% higher than that of the original strain.
     (2)The strain Y72-8 released biosurfactant in its logarithmic growth period. Hence, the model of growth-correlativity of the strain Y72-8 releasing biosurfactant was proposed. The biosurfactant produced by Y72-8 was glycolipid type. Meanwhile, Y72-8 showed great stability against temperature, pH and mineralization, therefore, has a wide field of application and a good developmental prospect.
     (3)The optimal medium components and growth conditions for biosurfactant production by Y72-8 were studied. The results showed that the optimal medium for biosurfactant production by this strain was 20g/L sucrose, 1.6g/L(NH4)2SO4, 6.4g/L yeast extract, 1g/L KH2PO4, 2mL/L trace element solution, culture temperature 30℃, pH 7.5, seed age 16hrs, inoculation volume 5% and 120 r/min. Under such conditions, the yield of biosurfactant was as high as 2.5397g/L within 24h, almost 64.8% higher than before which is 1.5415g/L, decreased the fermentation period conspicuously.
     (4) Y72-8 releasing biosurfactant is closely related to their capability in degradation of diesel oil. Degradation of diesel oil by Pseudomonas sp.Y72-8 is combination of three models. First,single solution-diffusion model. Second, direct contact with large oil-drop model. Third, contact with tiny oil-drop model.
     (5)Using Y72-8 to treat petroleum hydrocarbon contaminated soil, the results showed that Y72-8 can better adapt to environment, in 200g diesel oil/Kg soil concentration, the degradation effect was obviously, more than 81.07% of the diesel oil was degradation after 30 days in inoculated fresh soil, which the degradation rate was 62.71% in inoculated sterile soil. Mixed bacteria is more beneficial to the biodegradation of diesel oil than single strain, we can make some conclusions that: the inoculated strains coexisted possibly with indigenous microorganism, and became high effective complex microbial community. This microbial community structures has obvious advantage on the bioremediation of diesel oil contaminated soil, and to provide a basis for further study on the construction of diesel degradable flora.
引文
[1]夏北成.环境污染物生物降解[M].北京:化学工业出版社,2002:176-186
    [2] S. Paria. Surfactant-enhanced remediation of organic contaminated soil and water[J]. Adv. Colloid Interface Sci., 2008, 138: 24–58
    [3]沈德中.污染环境的生物修复[M].化学工业出版社,2001
    [4]庄毅,马梦瑞.生物技术与生物表面活性剂[J].山东化工,1994,1(1): 20-26
    [5]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003:395-408
    [6]马歌丽,彭新榜,马翠卿等.生物表面活性剂及其应用[J].中国生物工程杂志,2003,23(5):42-45
    [7]李敬龙,刘晔,潘爱珍.生物表面活性剂及其应用[J].山东轻工业学院学报(自然科学版),2004,18(2):41-46
    [8]方云,夏咏梅编译.生物表面活性剂[M].北京:中国轻工业出版社,1992
    [9]Desai J.D., Banat I M.. Microbial production of surfactants and their commercial potential[J].Microbiology and Molecular Biology Review,1997,61(1):47-64
    [10]Rosenberg E., Ron. E. Z.. High-and low-molecular-mass microbial Surfactants[J]. Appl. Microbiol. Biotechnol, 1999,52(1):154-162
    [11]丁立孝,何国庆,孔青等.微生物产生的生物表面活性剂及其应用研究[J].生物技术,2003,10(13):52-54
    [12]彭立凤.脂肪酶促糖酯合成研究进展[J].粮油食品科技,1995,7:15-17
    [13]T.T. Nguyen, N.H. Youssef, M.J. McInerney, D.A. Sabatinic.. Rhamnolipid biosurfactant mixtures for environmental remediation[J]. Water Res., 2008, 42: 1735–1743
    [14] Sang-Cheol Lee, Seung-Jin Lee, Sun-Hee Kim, et al. Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil[J] .Bioresource Technology, 2008,99(7):2288- 2292
    [15]李祖义,陈倩.酶法合成表面活性剂.工业微生物[J],2001,31(2):42-48
    [16]潘冰峰,徐国梁,施邑屏,李江云,李祖义.生物表面活性剂产生菌的筛选[J].微生物学报,1999,39(3):264-267
    [17]徐志伟,尤勤,孙炳寅.生物表面活性剂的工业应用[J].生物技术,1995,5(3):6
    [18]Wagner F., Back H., Kretschmer A.. Microbiol Enhanced Oil Recovery[M]. America, Pennwell Publishing, 1983, 55-66
    [19]陆丽君,黄翔峰,刘佳等.一株高效生物表面活性剂产生菌的筛选鉴定及其性能研究[J].工业微生物,2008,38(5):34-39
    [20]张秋卓,蔡伟民.生物表而活性剂产生菌的筛选及产剂性能研究[J].环境科学与技术,2008,31(11):38-44
    [21]彭新榜,马歌丽,卫军等.微生物生产生物表面活性剂发酵条件的研究[J].食品技术,2004,10: 8-12
    [22]I. M. Banat. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review[J]. Bioresource Technology, 1995, 51:1-12
    [23]朱文昌,陈坚,张志军等.甘露糖赤藓糖醇脂分离纯化条件的研究[J].日用化学工业,1997,3:39-42
    [24]李祖义,李江云,徐国梁等.微生物发酵制备鼠李糖最佳条件的研究[J].生物工程学报,1999,15(1):118-121
    [25]Ochsner U.A., J. Reiser, A. Fiechter, B. Witholt. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts[J]. Appl Environ Microbiol, 1995,61:3503-3506
    [26]Stachelhaus T., Marahiel M.A.. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis[J]. FEMS Microbiology Letters, 1995, 125(1):3-14
    [27]Marahiel M.A.. Protein templates for the biosynthesis of peptide antibiotics[J].Chem. Biol.1997,4:561-567
    [28]Galli G., Rodriguez F., Cosmina P., et al. Characterization of the suffactin synthetase multi-enzyme complex[J]. Biochim Biophys Acta., 1994,1205:19-28
    [29]Sandra L. Fox, Greg A. Bala.. Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates [M].Bioresource Technology, 2000,75:235-240
    [30]M. Benincasaa, J. Contieroa, M.A. Manresab, et al. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source[J]. Journal of Food Engineering. 2002, 54: 283-288
    [31]Vipulanandan C., Ren X.P.. Enhanced solubility and biodegradation of naphthalene with biosurfactant[J].Journal of Environmental Engineering, 2000,126: 629-634
    [32]Daniel P.C., Andrew J.H.. Microorganism selection and biosurfactant production in acontinuously and periodically operated bioslurry reactor[J].Journal of Hazardous Materials,2001,84(2-3):253-264
    [33]李祖义,施邑屏,李江云等.生物表面活性剂发酵液的组成及表面活性[J].工业微生物,2002,32(2):1-4
    [34]薛燕芬,王修垣.石蜡酪杆菌B126产生的糖脂的适宜条件[J].微生物学报,1995, 35(6):465—469
    [35]薛燕芬,王修垣.石蜡酪杆菌B126产生的糖脂的理化性质[J].微生物学报,1996, 36(2):121-125
    [36]华兆哲,陈坚,朱文昌等.假丝酵母(Candida Antarctic WSH ll2)生产生物表面活性剂及降解正构烷烃的研究[J].南京大学学报(自然科学版),1998,34(2):149-154
    [37]张翠竹,梁凤来,张心平等.一种脂肽类生物表面活性剂的理化性质及其对原油的作用[J].油田化学,2000,17(2):172-176
    [38]张彦庆,黄梅,李立众.小井距生物表面活性剂三元复合驱矿场试验[J].大庆石油地质与开发,2001,20(2):114-116
    [39]杨林,李茜秋,李华斌等.鼠李糖脂生物表面活性剂、其制备方法及其在三次采油中的应用.专利号:99107581.1
    [40]时进钢,袁兴中,曾光明等.鼠李糖脂生物表面活性剂及其在生活垃圾堆肥化中的应用.中国专利:03118042.6
    [41]梅建凤,闵航.生物表面活性剂及其应用[J].工业微生物,2001,31(1):54-57
    [42]R. Thavasi, S. Jayalakshmi, T. Balasubramanian, I.M. Banat.. Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J. Microbiol. Biotechnol., 2008, 24: 917–925
    [43]周少奇.环境生物技术[M].北京:科学出版社,2003:317-325
    [44]李祖义,杨勤萍.生物表面活性剂的合成(一)[J].精细与专用化学品,2002,15(1):6-8
    [45]胡浩,沈红.一株产生物表面活性剂细菌的筛选[J].山东食品发酵,2001,4:5-7
    [46]Wong J.W.C., Fang M., Zhao Z., Xing B.. Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions[J].Journal of Environmental Quality. 2004. 33(6):2015-2025
    [47]Anand S. Nayak, M.H. Vijaykumar, T.B. Karegoudar. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation[J].International Biodeterioration & Biodegradation, 2009, 63(1): 73-79
    [48]Burd G., Ward O. P.. Bacterial degradation of polycyclic aromatic hydrocarbons on agar plates: the role of biosurfactants[J]. Biotechnology Techniques, 1996, 10, 371-374
    [49]Rahman K.S., Rahman T.J., Kourkoutoas Y., et al. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients[J]. Bioresource Technology, 2003, 90, 159-168
    [50]Van Dyke M.I., Couture I.P., Brauer M., et al. Pseudominas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil[J].Can J. Mcrobio.l,1993,39:1071-1078
    [51]Olivera N.L., Commendatore M.G., Moran A.C., Esteves J.L.. Biosurfactant-enhanced degradation of residual hydrocarbons from ship bilge wastes[J]. Journal of Industrial Microbiology and Biotechnology, 2000. 25, 70-73
    [52]M. Czaplicka, A. Chmielarz. Application of biosurfactants and non-ionic surfactants for removal of organic matter from metallurgical lead-bearing slime[J]. Journal of Hazardous Materials, 2009, 163:645–649
    [53]I.M. Banat,汪开治编译.微生物表面活性剂在工业、农业、医药卫生和环境保护中的应用[J].生物技术通报,2002,3(1):45-49
    [54]王啸波,唐玉秋,王金华等.环境样品中DNA的分离纯化和文库构建[J].微生物学报,2001,41(2):133-139
    [55]徐成勇,鲁时瑛,周莲,周东阳.发酵法生产生物表面活性剂[J].微生物学通报,2003,30(3):85-90
    [56]Pimienta A.L., Diaz M.P., M., Carvajal F. G. S., et al. Production of biosurfactants (rhamnolipids) by Pseudomonas aeruginosa isolated from colombian sludges[J]. Ciencia, Tecnologia & Futuro, 1997, 1(3): 95-108
    [57]MacDonald C.R., Cooper D.G., Zajic J. E.. Surface-active lipids from Nocardia erythropolis grown on hydrocarbons[J]. Appl. Environ. Microbiol., 1981, 41(1): 117-123
    [58]Siegmund I., Wagner F.. New Method for Detecting Rhamnolipids Excreted by Pseudomonas Species during Growth on Mineral agar[M]. Biotechnol. tech., 1991(5): 265-268
    [59]Adria A.B., Raina M.. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms[J]. Journal ofMicrobiological Methods, 1998, 32(3):273-280.
    [60]Abaios A., Maximo F., Manresa M.A., et al. Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10 [M]. J. Chem. Technol. Biotechnol, 2002, 77: 777-787
    [61]Gartshore J., Lim Y.C., Cooper D.G.. Quantitative analysis of biosurfactants using Fourier Transform Infrared (FT-IR) spectroscopy[J]. Biotechnol. Lett., 2000, 22: 169-172
    [62]时进钢,袁兴中,曾光明等.生物表面活性剂的合成与提取研究进展[J].微生物学通报,2003,30(1):68-72
    [63]Bodour A.A., Maier R.M.. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms[J]. J. Microbiol. Methods, 1998, 32: 273-280
    [64]Noha H. Y., Kathleen E., et al. Comparison of methods to detect biosurfactant production by diverse microorganisms[J]. Journal of Microbiological Methods, 2004, 56(3): 339-347
    [65]Zhang Y., Miller R.M.. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane[J]. Appl. Environ. Microbiol, 1994, 60: 2101-2106
    [66]宁长发.产生物表面活性剂菌种的一种快速筛选模型[J].微生物通报, 2004, 31(3):55-58
    [67]傅海燕,曾光明,黄国和等.堆肥过程中产生生物表面活性剂的细菌的筛选[J].环境科学学报,2004,25(5):936-938
    [68]张仲鸣,赵学范.微生物学实验教程[M].北京:北京工业大学出版社,2005: 113-139
    [69]Arino S., Marchal R., Vandecasteele J. P.. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species[J]. Appl. Microbiol. Biotechnol. , 1996, 45:162-168。
    [70]谢亚杰,王卫,刘深.表面活性剂制备技术与分析测试[M].北京:化学工业出版社,2006,374-377
    [71]冷凯良,楚晓眠,张辉珍等.微生物对石油烃降解代谢产物的分析方法研究[J].海洋水产研究,2001, 22 (2):57-61
    [72]董晓燕.生物化学实验(工科类专业适用)[M].化学工业出版社,2003, 1:32-33, 46-47
    [73]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].科学出版社,2001,2
    [74]刘小兰,刘剑潇,汤琳等.诱变技术及其在获取生物表面活性剂高产菌中的应用[J].微生物学杂志,2008,28(3):54-58
    [75]Mata-Sandoval J.C., Kams J., Torrents A.. Effect of nutritional and environmental conditionson the production and composition of rhamnolipids by P. aeruginosa UG2[J]. Microbiological Research, 2001, 155: 249-256
    [76]Turkovskaya O. V., Dmitrieva T. V., Muratova A. U.. A biosurfactant-producing Pseudomonas aeruginosa strain[J]. Applied Biochemistry and Microbiology, 2001, 37(1): 71-75
    [77]贺小贤.生物工艺原理[M].北京:化学工业出版社,2003:49-51
    [78]微生物研究法讨论会[日]编,程光胜,李玲阁,张启先等译.微生物学实验法[M].北京:科学出版社,1983: 196-200
    [79]夏咏梅,方云.生物表面活性剂的开发和应用[J].日用化学工业,1999, 1: 227-231
    [80] M. Abouseoud, R. Maachi, A. Amrane, S. Boudergua, A. Nabi. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination, 2008, 223:143–151
    [81]Ijah U.J.J., Antai S.P.. Removal of nigerian light crude oil in soilover a 12-month period[J] .International Biodeterioration & Biodegradation, 2003, 51:93-99
    [82]陈燕,李寅,堵国成等.石油污染水体的生物修复[J].水处理技术,2003,29(5): 249-252
    [83]Barkay T., Navon-Venezia S., Ron E.Z., Rosenberg E.. Enhancement of solubilization and biodegradation of polyaromatic aromatic hydrocarbons by the bioemulsifier Alasan[J].Appl. Environ. Microbiol., 1999, 65: 2697-2702
    [84] Ron E. Z., Rosenberg E.. Biosurfactants and oil bioremediation[J]. Current Opinion in Biotechnology, 2002, 13: 249-252
    [85] Zhang Y., Mater W. J. , Miller R. M.. Effect of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene[J]. Environmental Science and Technololgy, 1997, 31: 2211-2217
    [86]Sekelsky A.M., Shreve G.S.. Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa[J]. Biotechnology and Bioengineering, 1999, 63(4): 401-409.
    [87]陈延君,王红旗,王然,云影.鼠李糖脂对微生物降解正十六烷以及细胞表面性质的影响[J].环境科学,2007,28(9)
    [88]Anna Zita, Malte Hermansson. Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ[J]. FEMS Microbiol. Lett., 1997, 152: 299-306
    [89]Rosenberg M.. Basic and applied aspects of microbial adhesion at the hydrocarhon: waterinterface[J]. Crit. Rev. Microbiol., 1991, 18(2):159
    [90]赵晴,张甲耀,陈兰洲等.疏水性石油烃降解菌细胞表面疏水性及降解特性[J].环境科学,2005(5):134-138
    [91]孙成.环境监测实验[M].北京:科学出版社,2003,73-76
    [92]Koronelli T.V., Komarova T.I.. Principles and methods for raising efficiency of biological degradation of hydrocarbons in the environment: a review[J]. Appl. Biochem. Microbiol., 1997, 32: 579-585
    [93]钱欣平,阳永荣,孟琴.生物表面活性剂对微生物生长和代谢的影响[J].微生物学通报,2002,29(3): 75-78
    [94]盛下放,何琳燕,龚建勋.二株假单胞菌的疏水性及对其对菲的降解能力[J].环境科学学报,2004, 24(5): 190-192
    [95]陆泗进.土壤柴油污染物微生物降解强化技术研究.博士学位论文.北京师范大学,2007,83-96
    [96]Kim S. J., Choi D.H., Sim D.S., et al. Evaluation of bioremediation effectiveness on crude oil-contaminated sand[J].Chemosphere, 2005, 59(6): 845-852
    [97]张丽芳,姜承志,李东辉.表面活性剂对不同石油降解菌除油影响的研究[J].沈阳理工大学学报(自然科学)2001,20(4): 79-83
    [98]Sugiura K., Ishihara M., Schimauchi T.. Physicochemical properties and biodegradability of crude oil[J]. Environmental Science and Technology, 1997, 31: 45-51
    [99]管亚军,梁凤来,张心平等.混合菌群对原油的降解作用[J].南开大学学报(自然科学),2001,34(4): 82-85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700