含摩擦环节伺服系统的分析及控制补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伺服系统中由摩擦环节引起的爬行、振荡、跟踪误差等现象已成为阻碍系统
    性能提高的严重障碍。为了克服这一障碍,本文深入地研究了伺服系统中出现的
    爬行现象、分析了由摩擦导致的混沌振荡并提出了三种基于智能控制思想的摩擦
    补偿方法。
     本文首先综述了国内外在摩擦建模、系统分析以及摩擦补偿方面的研究现
    状,总结了已有研究的不足之处,进而指出了这一领域发展趋势。
     本文提出了两种分析含摩擦环节伺服系统爬行现象的方法,一种是基于非线
    性传递函数理论的方法,另一种是以Newton-Raphson算法为基础的数值方法。
    前者不但是一种完全解析化的方法,而且不要求系统具有好的低通滤波特性,同
    时这种方法容易推广至高阶系统,因此克服了描述函数法和相平面法的缺陷;而
    后者克服了模型复杂化给近似解析分析带来的困难和直接积分耗时、难以判断暂
    态过程是否结束等传统数值方法的缺陷。因此采用这两种方法可以大大提高系统
    分析的有效性和准确性。在这两种方法的基础上,本文还系统地研究了PD控制
    的伺服系统中出现的爬行现象及其消除方法,找出了爬行现象与系统参数的关
    系。
     本文首次较为深入地研究了伺服系统中由摩擦导致的混沌现象,分析了系统
    参数对系统动力学行为的影响及其通向混沌的道路,从而为系统的设计和综合提
    供了依据。本文提出了一种系统地分析分段连续系统动力学行为的方法。在此基
    础上,首次采用较完善的摩擦模型研究了强迫振动下,摩擦振子的混沌振荡行
    为。分析了系统参数和摩擦模型对系统混沌行为的影响;发现了摩擦模型的选取
    对系统动力学行为分析的重要性;揭示出在一定条件下,系统参数、环境条件或
    润滑条件的改变都有可能使系统进入无序的混沌运动状态。
     本文提出了三种基于智能控制思想的摩擦补偿方法,即基于自调整量化因子
    模糊控制器的摩擦补偿方法、基于CMAC神经网络的摩擦补偿方法和将CMAC
    网络与滑模控制器相结合的摩擦补偿方法。这三种方法都具备在线自调节能力或
    自学习能力,从而大大减小了系统中出现的不确定性摩擦对系统性能的不利影
    响。这些方法不仅克服了固定补偿和已有的基于模糊控制或神经网络的补偿方法
    
    的缺陷,而且同一般自适应补偿方法相比,又具有实现简单、算法效率高、鲁棒
    性强的优点,因此非常适合于工程应用。大量的仿真计算表明,这三种方法达到
    了很好的补偿效果。
Friction presented in servo systems has become an impediment to improve their performance. To overcome this impediment, not only are stick-slip and chaos oscillation induced by friction analyzed, but also three friction compensation methods which is based on intelligent cybernetics are put forwarded in this thesis.
    
     The literature relevant to friction modeling, system analyzing and friction compensation methods are outlined. The shortcomings of these studies are presented and future trends in this field are also described.
    
     Two methods for analyzing stick-slip, which is presented in servo systems with friction, are put forwarded. One of these two methods is based on nonlinear transfer fi.inction; the other is a numerical method based on Newton-Raphson algorithm. The first method is an analytic method, by which the assumption that investigation of the first harmonic provides a reasonable approximation to the behavior to the true system is not necessary. It is also applicable for analyzing the high-order systems. So the shortcomings of describing function and phase plane analysis are overcome and the effectiveness and accuracy of the analysis is improved greatly. The other method can be used to analyze the system without any difficulty, which is raised by more and more complex models, this method also overcomes the shortcomings of brute-force approach, which is time consuming and difficult to tell when the steady sate has been achieved. Based on these methods, stick-slip presented in the servo systems governed by PD controller i
    s analyzed systematically and the relationship between stick-slip and the parameters of these systems is revealed.
    
     Chaos presented in servo systems induced by friction is studied by the first time. The impact of system parameters on the dynamics of the system and the route to chaos are analyzed. So this study provides a basis for system designing and synthesis. A method to analyze the dynamics of piecewise continuous system is presented, based on it, the chaotic oscillation of a harmonically forced spring-mass system with friction is studied. The impact of friction and other parameters on the chaotic oscillation of this system is analyzed. So the following conclusion is to be come to: First, the friction model is of great importance for the analyzing the dynamics of the servo systems with friction; Second, under some circumstances, chaos might be appeared as system parameters, circumstances and lubrication condition changing.
    
    
    
     Three friction compensation methods based on intelligent cybernetics are put forwarded. One of these methods is based on self-tuned scaling factors fuzzy controller the others are based on CMAC. The controllers designed by all these methods have the ability of on-line auto tuning or self-learning, so the under-determined friction could be compensated. Not only do these three methods overcome the shortcomings of fixed compensation and the methods existed which is based on fuzzy logic and artificial neural networks, but also have the advantages of easy implementation, small computation load and robustness compared with traditional adaptive friction compensation methods: So these methods are applicable for engineering uses. Great effectiveness of these methods is demonstrated by a series of simulation.
引文
[1] Brian Armstrong-Helouvry et al. A Survey of Models Analysis Tools and Compensation Mehods for the Control of Machines with frictions. Automatica, 1994, 30(7) : 1083-1138
    [2] Brian Armstrong-Helouvry. Stick Slip and Control in Low-Speed Motion. IEEE Trans.on AC,1993,38(10) : 1483-1496
    [3] Brian Armstrong-Helouvry. Control of Machines with Friction. Boston: Kluwer Academic Press, 1991
    [4] Brian Armstrong. Control of Machines with Non-linear,Low-velocity Friction: A Dimensional Analysis. Proc.lst International Symp. Experimental Robotics. Montreal, 1989:180-195
    [5] Brian Armstrong-Helouvry. Stick-Slip from Stribeck Friction. Proc.1990 International Conf. Robotics Automation. Cincinnati,1990:1377-1382
    [6] C.Canudas et al. A New Model for Control of Systems with Friction. IEEE Trans.on AC, 1995,40(3) :419-425
    [7] Check et al. Modeling and Identification of A Class of Servomechanism Systems with Stick-slip Friction. Journal of Daynamics, Systems, Measurement and Control. 1988,110(3) : 324-238
    [8] C.Canudas et al. Dynamic Friction Models and Control Design. Proc. ACC. SanFrancisco. 1993:1920-1926
    [9] C.D. Walrath. Adaptive Bearing Friction Compensation Based on Recent Knowledge of Dynamic Friction . Automatica, 1984,20(6) 717-727
    [10] C.J.Radcliffe. A Property of Stick-Slip Friction Models which Promotes Limit Cycle Generation. Proc. 1990 ACC. San. 1990. 1198-1203
    [11] D.A Haessig and B.Friedland, On the Modeling and Simulation of Friction. Journal of Dynamic, System,Measurement and Control. 1991,113(9) : 354-362
    [12] J.R.Rice. Stability of Steady Frictional Sliping. Journal of Applied Mechanics. 1983,50:343-349 [13] P.E.Dupont. The Effect of Friction on the Forward Dynamics Problem. Int.J. of Robotics Research. 1993,12(2) : 164-179
    [14] P.E.Dupont et al. Friction Modeling and Control in Boundry Lubrication. Proc. ACC. San Francisco, 1993. 1910-1914
    [15] P.Dupont. Avoiding Stick-Slip through PD Control. IEEE Trans, on AC, 1994, 39:1094-1097
    
    
    [16]William T.Townsend. The Effect of COULOMB Friction and Stiction on Force Control. IEEE Trans.on AC, 1987,883~889
    [17]Kato et al. Some Consideration of Characteristics of Static Friction of Machine Tool Slidway. Journal of Lubrication Technology, 1972, 94(3):234~247
    [18]Hess and Soom. Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities. Journal of Tribology, 1990,112(1): 147~152
    [19]Rabinowiez. The Intrinsic Variables Affecting the Stick-slip Process. Proc. Physical Society of London. 1958,71(4):668~675
    [20]Francis J.Doyle et al. Nonlinear Model-based Control Using Second-order Volterra Models. Automatica, 1995, 31(5):697~713
    [21]Joseph Bentsman. Vibrational Control of Nonlinear Time Lag Systems: Vibration Stabilization and Transient Behavior. Automatica, 1991, 27(3): 491~500
    [22]S.C.Sinha et al. Lyapunov-Floquet Transformation: Computation and Application Periodic Systems. Journal of Vibration and Acoustics, 1996, 118(209~217)
    [23]丘水生编.非线性网络与系统.成都:电子科技大学出版社,1990
    [24]焦李成著.非线性传递函数的理论与应用.西安:西安电子科技大学出版社,1992
    [25]王联、王慕秋编著.非线性常微分方程定性分析.哈尔滨:哈尔滨工业大学出版社,1987
    [26]陈花玲.用Volterra函数级数理论分析迟滞非线性系统的传递函数.西安交通大学学报,1992年增刊
    [27]黄进,叶尚辉.含有摩擦环节伺服系统的Volterra泛函级数分析.西安电子科技大学学报.1998,25(4):64~69
    [28]M.A.Heckl et al. Active Control of Frictional-Driven Oscillation. Journal of Sound and Vibration. 1996,193 (1):417~426
    [29]黄蓉.精密传动链振动控制研究.西安交通大学博士论文,1996年5月
    [30]Thomas J.Aprille et al.. A Computer Algorithm to Determine the Steady-State Response of Nonlinear Oscillators. IEEE Trans. on CAS, 1972,19 (4): 354~360
    [31]T.S.Parker and L.O.Chua. Practical Numerical Algorithms for Chaotic Systems. New York,NY: Springer-Verlag, 1989
    [32]E.Kreuzer著,凌复华译.非线性动力学系统的数值研究.上海:上海交通大学出版社,1988
    [33]黄进,叶尚辉.含摩擦环节的伺服系统的低速爬行研究.机械设计(已录用)
    [34]S.W.Shaw. On the Dynamic Response of a System with Dry Friction. Journal of Sound and Vibration, 1986,108:305~325
    
    
    [35]M.Schetzen. Theory of pth-order Inverse of Nonlinear systems, IEEE Trans.on CAS. 1976,23
    [36]Brian Feeny. A Nonsmooth Coulomb Friction Oscillator. PHYSICAD, 1992, (59):25~38
    [37]B.Feeny. Chaos in a Dry-friction Oscillator: Experiment and Numerical Modeling. Journal of Sound and Vibration, 1994,170(3):303~323
    [38]B.Feeny et al. Bifurcation Sequences of a Coulomb Friction Oscillator. Nonlinear Dynamics, 1993,4:25~37
    [39]Carlson et al. Mechanical Model of an Earthquake Fault. Physical Review A, 1989, 40(11): 6470~6484
    [40]Grabec. Chaos Generated by the Cutting Process. Physics Letters A, 1986, 117(8): 384~386
    [41]Joaqin Alvarez. Chaotic Dydamics in a PD-Controlled Pendalum. Proc. 1994 ACC: 553~557
    [42]黄进,叶尚辉.含摩擦环节的伺服系统的混沌振荡研究.西安电子科技大学学报.(已录用)
    [43]黄进,叶尚辉.摩擦振子的混沌振荡研究.机械科学与技术.(已录用,拟刊于1999,2)
    [44]Chai Wah Wu et al. Studying Chaos via 1-D Maps. IEEE Trans. on CAS, 1993, 40(10):707~721
    [45]L.Duchesne. Using Characteristic Multiplier Loci to Predict Bifurcation Phenomena and Chaos—A Tutorial. IEEE Trans. on CAS, 1993, 40(10): 683~688
    [46]M.P.Kennedy. Three Steps to Chaos Part Ⅰ: Evolution & Part Ⅱ: A Chua's Circuit Primer. IEEE Trans. on CAS, 1993, 40(10):640~674
    [47]陈予恕.非线性振动系统的分叉和混沌.北京:高等教育出版社,1993,7
    [48]李继彬.混沌运动的Melnikov方法.重庆:重庆大学出版社,1989,8
    [49]伍言真、丘水生.非线性系统理论及混沌研究的动态和评述.电路与系统学报.1997,2(3):62~65
    [50]郑会永、刘华强.非线性动力系统中的分形、混沌及其应用.非线性动力学学报.1996,3(2):182~189
    [51]R.S.Chancellor et al. Detecting Parameter Changes Using Experimental Nonlinear Dynamics and Chaos. Journal of Vibration and Acoustics. 1996, 118: 375~383
    [52]Amos El-Roy. Precision Single-Axis Motion Control System with Friction
    
     Compensation. Proc.ACC, 1995:3299-3302
    [53] Akihiro Suzuki. Design and Implementation of Digital Servo Controller for High Speed Machine Tools. Proc. 1994 ACC: 1246-1251
    [54] Anthony Tzes et al. Neural Network Control for DC Motor Micromaneuvering. IEEE Trans.on Industrial Electronics,1995,42(5) :516-523
    [55] A.Yazdizadeh. Adaptive Friction Compensation Using a Lyapunov-Based Design Secheme. Proc.35st Conference.on Decision and Control. 1996: 2830-3831
    [56] Bernard Friedland and Young Jin Park. On Adaptive Friction Compensation. IEEE Trans. on AC. 1992,37(10) : 1690-1612
    [57] B.Friedland and S.Mentzelopoulou. On Adaptive Friction Compensation without Velocity Measurement. Proc. 1 st IEEE Conf. on Control Application, Dnyton, 1992:1076-1081
    [58] B.Bona and M.Indri. Friction Compensation and Robust Hybrid Control. Proc. 1993 IEEE Int. Conf. on Robotics and Automation,1993,2:81-86
    [59] B.Bona and M.Indri. On the Stability of Force/Position Controlled Manipulators in Presence of Friction and Stiction. Proc. IF AC 12th World Congress, 1993,7: 441-416
    [60] C.Canudas. Adaptive Friction Compensation in DC-Motor Drives. IEEE Journal of Robotics and Automation, 1987,RA-3(6) :681-685
    [61] C.Canudas de Wit, P.Noel et al. Adaptive Friction Compensation in Robot Manipulators: Low-velocities. Int. J.Robotics Research. 1991,10(3) . 189-199.
    [62] C.Canudas de Wit and V.Seront. Robust Adaptive Friction Compensation. Proc. Int. Conf. Robotics Automation,Cincinnati,May 1990,1383-1389
    [63] Chih-Junf Huang. Stability of PDF Controller with Stick-Slip Friction Device. Proc. ACC, 1996:3289-3293
    [64] Guillaume Morel et al. The Precise Control of Manipulators with Joint Friction: A Base Force/Torque Sensor Method. Proc.IEEE Int. Conf. on Robotics and Automation. 1996:360-365
    [65] K.Kiguchi and T.Fukuda. Fuzzy Neural Friction Compensation Method of Robot Manipulation During Position/Force Control. Proc.IEEE International Conference on Robotics and Automation. 1996:372-377
    [66] K.Kiguchi and T.Fukuda. Intelligent Position/Force Control for Industrial Robot Manipulators-Application of Fuzzy Neural Networks. IEEE Trans. On Industrial Electronics, 1997,44(6) : 761
    [67] Kuc et al. An Iterative Learning Control of Robot Manippulators. IEEE Trans.
    
     on Robotics and Automation, 1991,7(6) :835-842
    [68] Kuldip and B.Chia. Rule-based Fuzzy Control of a Single-Link Flexible Manipulator in the Presence of Joint Friction and Load Changes. Proc. ACC. 1995:2749-2750
    [69] R.Aimar et al. Experiments on Rubust Friction Compensation: the Inverted Pendulum Case. Proc.ACC,1995:3303-3305
    [70] S.Mentzelopoulou et al. Experimental Evalution of Friction Estimation and Compensation Techniques. Proc. 1994 ACC.3132-3136
    [71] S.Mittal. Robust Compensation Techniques for Servomechanisms Subject to Stiction and Parametric Uncertainties Using Sliding Mode Estimation. Proc. ACC. 1995:3306-3310
    [72] M.R.Popovic et al. Novel Controller Using Fuzzy Logic Interpolation for Accurate Positioning under Conditions of Nonlinear Low-velocity Friction. Proc. 34 IEEE Conference on Decision & Control. 1995:267-272
    [73] Masahiro et al. High-Precision Control of AC Servo Motor Positioning Systems by Friction Compensation. JSME International Journal, Series C. 1996, 39(3) : 477-483
    [74] Naomi Ehrich et al. Adaptive Friction Compensation for Bi-dircetional Lowspeed Position Tracking. Proc.31st Conference.on Decision and Control. 1992:267-273
    [75] S.C.Southward and C.J.Radcliffe. Robust Nonlinear Stick-Slip Friction Compensation. ASME J.Dyn.Sys.Meas.,and Contr.,1991,113:639-645
    [76] Seon-Woo Lee et al. Robust Adaptive Stick-Slip Friction Compensation. IEEE Trans. on Industrial Electronics, 1995,42(5) :474-479
    [77] Sungchal Jee. A Self-organizing Fuzzy Logic Control for Friction Compensation in Feed Drives. Proc. of ACC,Washington, 1995:205-209
    [78] S.Tafazoli. Friction Estimation in a Planar Electrohydraulic Manipulator. Proc. ACC ,1996:3294-3298
    [79] S.Yang and M.Tomizuka. Adaptive Pules Width Control for Precise Positioning under the Influence of Stiction and Coulomb Friction. Journal of Dynamic Systems, Measurement and Control. 1988,110:221-227
    [80] Tung. Low Velocity Friction Compensationfor Machine Tool Feed Drives. Proc. 1993 ACC SanFrancisco, 1932-1203
    [81] Ying-Chihlin. The Application of Fuzzy Logic Control to Speed Control of a DC Servo Motor System. Proc. of 1994 ACC, 1994:590-594
    [82] 冯国楠等.一种神经元控制模型参考自适应伺服系统.控制与决策.
    
    12(4):312~316
    [83]谭群华等.一种控制机械手的自调节模糊控制逻辑控制器.自动化学报,1997,23(1):85~89
    [84]李运华.近代电液伺服系统中某些非线性控制问题的研究.西安交通大学博士论文
    [85]徐立新等.用神经网络实现精密伺服系统中扰动力矩的动态补偿.自动化学报.1998,21(1):108~112
    [86]黄进,叶尚辉.基于CMAC网络的摩擦补偿研究.中国机械工程(已录用).
    [87]B.S.Zhang and M.Edmunds. Self-Organising Fuzzy Logic Controller. IEE Proceedings-D, 1992,139(5):460~464
    [88]C.L.Karr et al. Improved Fuzzy Process Control of Spacecraft Autonomous Rende Using A Genetic Algorithm. Intelligent Control and Adaptive Systems, SPIE, 1989(1196): 274~288
    [89]H.Kiendl et al. Stability Analysis of Fuzzy Control Systems Using Facet Functions. Fuzzy Sets and Systems. 1995,70:275~285
    [90]S.Isaka et al. An Optimization Approach for Fuzzy Controller Design. Proc.of 1990 ACC: 1485~1490
    [91]W.C.Kim Stability Analysis and Stabilization of Fuzzy State Space Models. Fuzzy Sets and Systems. 1995,71:131~142
    [92]Zhen Yu Zhai and Masayoshi Tomizuka. A Fuzzy Tuner for Fuzzy Logic Controllers. Proc of 1992 ACC: 2268~2272
    [93]李士勇编著.模糊控制神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1996年10月
    [94]赵振宇等著.模糊理论和神经网络的基础与应用.北京:清华大学出版社.1996年6月
    [95]B.Widrow and S.D.Stearns. Adaptive Signal Processing. Englewood Cliffs, NJ: Pretice-Hall, 1985
    [96]韩曾晋编著.自适应控制.北京:清华大学出版社.1995年6月
    [97]汪得澎、黄明瑞编著.非线性控制系统引论.成都:成都电讯工程学院出版社,1988
    [98]绪方胜彦著,刘君华等译.离散时间控制系统.西安:西安交通大学出版社,1990年5月
    [99]S.Commuri and F.L.lewis. CMAC Neural Networks for Control of Nonlinear Dynamical Systems:Structure, Stability and Passivity. Automatica, 1997, 33(4): 635~641
    [100]Stephen et al. Theory and Development of Higher-Order CMAC Neural Networks. IEEE Control Systems, 1992(4):23~29
    
    
    [101]Sjagannathan and S.Commuri. Feedback Linearization Using CMAC Neural Networks. Proc.35st Conference. on Decision and Control. 1996:3304~3309
    [102]W.Thomas Miller et al. CMAC:An Associative Neural Network Alternative to Backpropagation. Procings of the IEEE, 1990,78(10): 1561~1567
    [103]W.Thomas Miller and Robert P.Hewes. Real-Time Dynamic Control of an Industrial Manipulator Using a Neural-Network-Based Learning Controller. IEEE Trans. on Robotics and Automation. 1990,6(1): 1~9
    [104]J.S.Albus. A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller(CMAC). Trans. of the ASME, 1975.9:220~227
    [105]J.S.Albus et al. Data Storage in the Cerebellar Model Articulation Controller (CMAC). Trans. of the ASME, 1975.9:228~233
    [106]J. Slotine. Sliding Control Design for Nonlinear Systems. International Journal of Control. 1984,40(2):421~434
    [107]Wolf et al. Determining Lyapunov Exponents from A Time Series. Physica 16D, 1985:285~317
    [108]胡守仁.神经网络应用技术.长沙:国防科技大学出版社,1993年12月
    [109]李卓.基于神经网络的模糊自适应PID控制方法.控制与决策.1996,11(3):340~345
    [110]M. Saigo et al. Self-excited Vibration Caused by Internal Friction in Universal Joints and its Stabilization method. Journal of Vibration and Acoustics, 1997, 119:221~229
    [111]候卫兵、冯冠平.自适应神经元控制系统的研究.控制与决策,1997,12(3):269~273
    [112]高为炳.运动稳定性基础.北京:高等教育出版社.1987
    [113]黄进,叶尚辉.基于自调整量化因子模糊控制器的摩擦补偿研究.机械设计与研究(已录用,拟刊于1999,1)
    [114]刘强等.结构因素对伺服系统稳定性的影响.自动化学报,1987,13(5):371~374
    [115]胡佑得、曾乐生编.伺服系统原理与设计.北京:北京理工大学出版社.1992
    [116]施伯乐等.数据结构.上海:复旦大学出版社.1988
    [117]D.C. Alessandro et al. Dynamic Friction Compensation in Servodrives. Proc. 3rd IEEE Conference on Control Applications. 1994:193~198
    [118]丛爽、D.C.Alessandro.两种补偿动态摩擦的先进控制策略.自动化学报,1998,24(2):236~240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700