二化螟抗药性监测、对三唑磷和杀虫单抗性遗传分析及对氟虫腈抗性风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟[Chilo suppressalis(Walker)]是水稻的重要害虫之一,常年在长江流域发生较重。上世纪90年代以来,二化螟发生危害再次呈加重趋势,部分地区暴发危害难于防治,对水稻的高产稳产构成严重威胁。
     二化螟抗药性增强是其危害加重的重要原因之一。杀虫单、三唑磷、氟虫腈及阿维菌素等是我国近年来防治二化螟使用较多的四种代表性杀虫剂,它们作用机理各异,使用历史也不同。浙江、江苏、安徽、江西等是水稻二化螟发生危害较重的省份。本项研究针对这些地区二化螟代表种群对上述四种药剂的抗性,进行抗性检(监)测,弄清抗性现状;通过药剂筛选估计抗性现实遗传力,预测抗性发展速度;采用毒力回归线法分析三唑磷和杀虫单抗性的遗传方式;测定抗性种群对不同类型杀虫剂的交互抗性或敏感性;并对抗性与生化代谢机制的关系进行初步研究。
     以黑龙江二化螟种群(HLJ)为相对敏感品系,采用4龄幼虫点滴法测定了14种药剂的毒力基线,这些药剂对HLJ相对敏感种群的触杀毒力顺序为:阿维菌素>高效氯氟氰菊酯,氟虫腈>辛硫磷,三唑磷,毒死蜱,杀螟硫磷>虫酰肼>二嗪磷,灭多成,敌百虫>硫丹,杀虫单,乙酰甲胺磷。
     2001-2003年对浙、苏、皖、赣四省的二化螟不同种群进行了抗药性检(监)测,结果表明:(1)氟虫腈防治二化螟在很多地方至今还不超过5年,且因其价格高,每年的用量不大,但在二化螟发生危害严重的浙江省温州、台州地区使用较早,每年使用次数也较多;监测的大多数种群对氟虫腈保持敏感,与敏感基线相比的抗性倍数小于3倍;2002年首次发现浙江瑞安种群(ZJRA)对氟虫腈有8.7倍低水平抗性,2003年跟踪监测证实了该种群对氟虫腈有抗性,而且地理分布更南的两个邻近县(平阳和苍南)的二化螟(ZJPY、ZJCN)对氟虫腈也有抗性,三种群的抗性倍数分别为11.4、13.0和15.0倍,达中等水平抗性。(2)阿维菌素是一种具有杀虫杀螨作用的抗生素,主要以混剂形式用于防治二化螟,使用时间也不长:所有种群对其抗性倍数均小于3,未产生抗性。(3)三唑磷是对二化螟活性高的一种杂环有机磷杀虫剂,上世纪90年代初首先在浙江温台地区推广防治二化螟等水稻害虫,近1、2年逐渐取代杀虫单(双)而成为人面积防治二化螟的主导药刑;监测发现浙江瑞安(ZJRA)、平阳(ZJPY)和苍南(ZJCN)三种群为高抗~极高抗,浙江温州瓯海种群(ZJWZ)为中抗,江苏苏南的常熟(JSCS)、锡山(XS)、金坛(JSJT)、武进(WJ)等种群为低水平抗性,江苏苏北(JSLYG、JSXY、SY、CZ等)、江西宜半(JXYF)和安徽太湖(AHTH)种群为敏感。(4)杀虫单属沙蚕毒素类杀虫刑,是上世纪80年代后防治二化螟使用最多的药剂,监测的几乎所有种群对其均有不同程度抗性,其中瑞安(ZJRA)、平阳(ZJPY)、苍南(ZJCN)和宜丰(JXYF)四种群达高水平抗性(57.6~113.7倍),温州(ZJWZ)、金坛(JSJT)、常熟(JSCS)和太湖(AHTH)等4个种群为中等水平抗性(110-29.7倍),连云港(JSLYG)和新洋农场(JSXY)等苏北种群对杀虫单为低水平抗性(5.0~7.8倍),只有个别种群如江苏灌云处于敏感度下降阶段。
    
    ‘化螟抗药性监测、对三哇磷和杀虫单抗性遗传分析及对氟虫睛抗性风险评估
     2002和2003年重复监测浙江瑞安(ZJRA)和安徽太湖(AHTH〕两种群抗药
    性,结果显示,同一地点同一代次相邻年份测得的杭性水平变化不大,杭性倍数
    95%置信区间多数有重叠.
     在室内不接触药剂条件下,对浙江苍南种群(ZJCN)的杭药性稳定性进行了观
    察.结菜表明,对杀虫单、三哇磷和氛虫睛的抗性稳定性不同。对杀虫单抗性在前3
    代下降明显,之后直至F7代稳定在一定水平;而氟虫睛和三哇磷LDS。在F:一Fs下降
    缓慢、幅度小。
     以浙江平阳种群(ZJPY)为起始种群,用2.56一6.72,g/头三吐磷点滴4龄幼虫
    进行室内筛选。连续筛选6代后的品系(PY一t),对三吐磷杭性水平达1636.1倍,
    比筛选前增加了2.59倍;根据筛选结果佑算的杭性现实遗传力(矛)为0.4835.
     用氟虫睛对浙江苍南种群(ZJCN)进行了连续7代筛选,筛选剂量为0.0128-
    0.02陀/头。与敏感品系相比,筛选品系(CN一FR)对氛虫睛抗性水平从巧倍提高到
    23.3倍,抗性上升0.55倍,hZ为0.3388.
     以浙江温州种群(ZJWZ)为起始种群,室内累计饲养繁殖24代,期间用杀虫-
    单筛选19代,得杭性品系WZ一m,对杀虫单杭性达774.5倍,比筛选前上升25.0
    倍;根据前期(F3一F:)连续6代筛选估计的hZ(0.2303)显著低于后期(F,9-
    F23)连续筛选5代的hZ(1 .2055),而中间(F。一F::)20代中有4代未筛选,hZ也
    最小(0.0243).
     以三哇磷筛选后的RA一t和PY一t为抗性品系,分别与室内敏感品系进行正反杂
    交、回交及自交,分析二化螟对三吐磷杭性的遗传方式.实验显示,PY一t品系与敏
    感品系正反交F.代的三哇磷LDS。差异不显著、显性度(D)为0.62和0.68,合并计
    算的F:显性度为0.65,抗性属不完全显性、常染色体遗传;正反交F,分别与敏感亲
    本回交,回交后代的三吐磷LD一p曲线在机率值5附近有明显平坡,除两端外,与单
    个主基因假设的期望曲线基本吻合,且卡方(才)测验显示,在测定的11个剂量
    中,有6(BC)或7(BC)个与单个主基因控制的假设相符,但在两端、尤其是低
    剂量端,实际反应与单基因假设不?
Striped stem borer, Chilo suppressalis (Walker), is one of major insect pests of rice in China, especially in the valley of Changjiang River. In recent 10 years, population of this pest and its damage to rice increased dramatically, severely threatening the high and stable yields of rice. For a long time, populations of C. suppressalis are controlled mainly by the use of chemical insecticides. Insecticide resistance in C. suppressalis was one of the main factors for its infestation increase.Monosultap, triazophos, fipronil and abamectin are four major insecticides used to control C. suppressalis in recent years. They are different from each other in mode of action and with distinct application background in rice field. Zhejiang, Jiangsu, Anhui and Jiangxi are four provinces where infestation and damage of C. suppressalis are most serious. The aims of present study include: to investigate current situation of resistance in C. suppressalis to the above four insecticides in the four provinces; to estimate realized heritability of resistance against triazophos, monosultap and fipronil through selection so as to predict resistance development rate; to analyze mode of inheritance of triazophos and monosultap resistance by means of log dose-mortality probit line analysis; to determine cross resistance and susceptibility of selected resistant strains to various types of insecticides; and, to gain preliminary information on the possible underlying mechanism(s) of insecticide resistance in C. suppressalis.A field population (HLJ) was collected from Heilongjiang province, where little insecticide was used to control C. suppressalis before 1998, and used as reference susceptible strain for resistance determination. Baseline toxicities of 14 insecticides to 4th instar larvae of HLJ population were assayed using topical application method. The toxicity of these insecticides was in the order of abamectin > lambda-cyhalothrin, fipronil > phoxim,
    
    triazophos, chlorpyrifos, fenitrothion > tebufenozide > diazinon, methomyl, trichlorfon > endosulfan, monosultap, and acephate.During 2001-2003, insecticide resistance was determined with populations from four provinces-Zhejiang, Jiangsu, Anhui and Jiangxi. Results showed:(1) Fipronil. Fipronil is a more recently introduced insecticide for controlling of C. suppressalis and other rice pest insects in most places. But in Wenzhou and Taizhou area, southeast of Zhejiang province, it had been applied extensively to control heavy infestation of C. suppressalis since around 1997, two or three years earlier than other places and with more application times each year. Most populations examined remained susceptible (resistance ratios < 3-fold). However, in 2002, for the first time, a population (ZJRA) from Ruian, Zhejiang was found to have 8.7-fold resistance. The resistance was confirmed in the following year. In addition, populations from two adjacent counties --Pingyang (ZJPY) and Cangnan (ZJCN), to the south of Ruian, were also resistant to fipronil. Resistance ratios for these three populations in 2003 were 11.4- (ZJRA), 13.0- (ZJPY) and 15.0-fold (ZJCN).(2) Abamectin, an antibiotic with powerful insecticidal and miticidal action, had been used on rice to control C. suppressalis mainly in form of mixtures. Susceptibility to abamectin had not decreased significantly in any population detected (all resistance ratios < 3-fold).(3) Triazophos, an organophosphate, was first introduced to control monosultap-resistant C. suppressalis in early-1990s in Zhejiang. It has gradually replaced monosultap (and bisultap) becoming the preferred insecticide for controlling of C. suppressalis in large areas recent years. Resistance monitoring revealed that three populations ZJRA, ZJPY and ZJCN from Zhejiang had high or extremely high resistance; that ZJWZ population from Ouhai (a suburb district of Wenzhou, Zhejiang) had moderate resistance (18.2-fold); that four populations from Changshu (JSCS), Xishan (XS), Jintan (JSJT) and Wujin (WJ), all in south Jiangsu, had low level of resistance (6.0- to 9.7-f
引文
1 蔡之华,洪要文,曹炳宏等.2002.沿淮稻区二化螟重发原因与综防对策.安徽农学通报,2002,8(4):52,61
    2 曹喜玲,李松杰,王小惠.2003.二化螟的发生规律及防治对策.垦殖与稻作,2003年第1期:24-25
    3 陈长琨,李秀峰,韩召军等.2000.二化螟抗药性监测方法及相对敏感基线.南京农业大学学报,23(4):25-28
    4 陈辉珍,董香芝,黄样玉等.2001.年苍南县水稻二化螟大发生原因分析及治理对策.温州农业科枝,2002.1:12-14
    5 陈莲青.1989.稻螟种群历年消长情况及其原因浅析.昆虫知识,24(5):311
    6 陈日瞾,威连生,牟瑛等.2003.吉林省二化螟发生世代及药剂防治的初步研究.吉林农业大学学报,25(3):250~252,256
    7 陈之浩.1990.水稻二化螟抗药性研究初报.西南农业学报,3(2):100-102
    8 成其仓,李平良,李美娥等.1998.5%锐劲特悬浮剂防治二化螟试验.农药,37(5):28~29
    9 程罗根,李凤良,韩招久等.2001.小菜蛾对杀虫双和杀螟丹抗性的现实遗传力.昆虫学报,44(3):263-267
    10 褚柏,谭福杰.1990.六省(市)水稻二化螟对常用杀虫剂敏感度的调查.农药,29(6):6-8
    11 褚柏.1987.扬州地区水稻二化螟抗药性研究.南京农业大学学报,1987.4(增刊):56-64
    12 戴玉池,银海强,戴勇等.2002.植物性复配农药对稻纵卷叶螟和二化螟的防治效果.湖南师范大学自然科学学报,25(1):64-67
    13 刁春友,王茂涛,朱叶芹等.2001.苏南稻区二化螟上升原因及对策探讨.植保技术与推广,21(1):7~9
    14 丁新天,邓曹仁,陶丽萍.2001.特杀螟防治稻纵卷叶螟和二化螟的效果及技术探讨.昆虫知识,38(2):141-143
    15 董本春,李晓光,高德宇等.2001.螟黄赤眼蜂防治水稻二化螟的研究.植物保护,27(4)45-46
    16 杜正文.(主编) 1991.8 中国水稻病虫害综合防治策略与技术.北京:农业出版社
    17 范仰东,莫小平,陈经定.1999b.5%锐劲特防治水稻二化螟兼治稻纵卷螟和稻飞虱的效果.浙江农业科学,1999(2):93~95.
    18 范仰东,莫小平,陈经定.1999a.锐劲特防治水稻二化螟的效果及技术.昆虫知识,36(3):162~164
    19 范仰东,莫小平.2001.Bt与锐劲特混用防治水稻二化螟的效果评价.昆虫知识,38(4):273-275
    20 范仰东.1999.虫无影防治水稻二化螟效果及技术探讨.农药,38(11):41
    21 方继朝,杜正文,程遐年等.1998.水稻螟害上升态势与控害减灾对策分析.昆虫知识,35(4):193-197
    22 方勇军,林再卿.1994.三唑磷应用技术试验与推广.浙江农业科学,1994.4:178-179
    23 方勇军.王一风,夏万青等.1993.三唑磷对水稻二化螟的防治及其应用.农药,32(4):33-34, 27
    24
    
    24 冯希锦,谭家壮,邹文杰.2002.锐劲特及其混剂防治稻纵卷叶螟药效试验.广东农业科学,2002(6):32-33
    25 符明龙,王云仙.1998.浙江省苍南县二化螟重发原因及防治对策.浙江农业科学,1998(5):234-237
    26 龚林根,张念环,张景飞等.2001.抗性二化螟综合治理研究初报.南京农业大学学报,24(3):35~38
    27 龚林根,张念环,张景飞等.2001.水稻二化螟大发生原因分析及防治对策.上海农业科技,2001,(2):38-39
    28 郭春燕,张慧远,吕峰顺等.1999.锐劲特5%悬浮液剂防治水稻三化螟白穗试验.农药,38(6):31.
    29 郭慧芳,方继朝,刘成社等.2001.虫酰肼对水稻二化螟的拒食、致死作用及田间效果.农药学学报,3(4):41~47
    30 郭慧芳,方继朝,束兆林等.2001.氟虫腈对水稻害虫的作用特点及应用.植物保护学报,28(3):259-264
    31 郭平仲.(编著).群体遗传学导论.北京:农业出版社.1993.5
    32 韩启发,庄佩君,唐振华.1995a.二化螟对杀螟硫磷产生抗性的机理.昆虫学报,38(3):266-270
    33 韩启发,庄佩君,唐振华.1995b.抗杀螟硫磷二化螟的抗性遗传力研究.昆虫学报,38(4):402-405
    34 韩招久,韩召军,陈长琨等.2002.二化螟对杀虫单利甲胺磷抗性监测及田间抗性动态.植物保护学报,29(1):93~94
    35 韩招久,韩召军.2002.二化螟乙酰胆碱受体α亚基的基因克隆与序列分析.动物学研究(Zoological Research),23(1):7-13
    36 韩招久.2002.二化螟对杀虫单和甲胺磷的抗性机理及神经靶标乙酰胆碱受体的基因克隆.博士论文.南京农业大学
    37 华南农学院.1981.8 农业昆虫学(上册).北京:农业出版社pp.203-211
    38 蒋学辉,章强华,胡仕孟等.2001.浙江省水稻二化螟抗药性现状与治理对策.植保技术与推广,21(3):27-29
    39 蒋学辉,章强华.1997.浙江省二化螟种群回升原因浅析及治理对策.植保技术与推广,1997,17(6):15-17
    40 蒋耀培,郭玉人,王桂朵等.2002.上海地区水稻二化螟的发生与防治初探.上海农业科技,2002.3:43-44
    41 赖学连.1990.水稻螟虫综合防治层次分析.福建农学院学报,19(4):433—437
    42 李凤良,程罗根,韩招久等.1998.小菜蛾对杀虫双的抗性遗传研究.植物保护学报,25(4):345-350
    43 李国敬,胡鹏,易行荣.2002.2001年水稻二化螟、三化螟大发生原因分析及综防对策.湖北植保,2002(1):15-16
    44 李松岗,张宗炳,杨俭美.1990.昆虫抗药性的治理策略:一个数学模型的提出.昆虫学报,33(1):21-27
    
    45 李松岗,张宗炳.1990.杀虫剂混用方法——抗性治理的一种策略.昆虫学报,33(3):280-286
    46 李熙英,黄世臣,权成武等.2001.延边地区水稻二化螟发生危害及化学防治.植物保护,27(6):17-19
    47 李秀峰,韩召军,陈长琨等.2001.二化螟对杀虫单等4种杀虫剂的抗药性.南京农业大学学报,24(1):43-46
    48 李仲惺.2000.温州市第三代二化螟大发生原因分析.昆虫知识,37(5):260-262
    49 林贤青,朱德峰.2000.锐劲特对水稻生长和产量形成的影响.浙江农业学报,12(2):70~73
    50 林友伟,林美珍,沈晋良.灰飞虱的饲养及其对四种药剂的敏感性测定.农药,待刊
    51 刘光杰,沈君辉,钱兰华等.1999.防治水稻二化螟高效、低蚕毒药剂的筛选.植物保护,25(4):17~19
    52 刘光杰,黄和平,谢秀芳等.1998.早稻品种对二化螟的抗性及其生化基础研究.西南农业大学学报,20(5):512-515
    53 刘永杰.2002.甜菜夜蛾抗药性监测与抗性机理研究.博士论文.南京农业大学
    54 刘卓荣,梅胜芳,涂海龙等.2001.赣西北稻区二化螟发生特点及抗药性治理对策.江西植保,24(3):80-81,72
    55 陆玉荣,徐广和,苏建坤,等.2003.扬州地区二化螟抗药性监测.安徽农业科学,31(1):123-124
    56 吕旭健,夏万青,方勇军等.1999.0.3%锐劲特颗粒剂防治稻水象甲及兼治螟虫试验.农药,38(8):15~16
    57 毛伟强,黄海明,仇智灵等.2001.锐劲特与三唑磷混用防治稻纵卷叶螟和稻飞虱试验.浙江农业科学,2001(5):268-270
    58 孟香清,赵建周,魏岑.1999.研究害虫抗药性遗传力的几种方法.农药科学与管理,20(2):20-24
    59 南京农业大学等.1991.农业昆虫学.江苏科学技术出版社
    60 潘环斌,李建兵.2002.甲胺基阿维茵素苯甲酸盐防治二化螟、二化螟.湖北植保,2002年第3期:30-31
    61 潘兴葆.2000.浙北稻区二、二化螟1996-1997年大发生原因及综合治理对策.昆虫知识,37:134-136
    62 裴海英,于洪春,赵奎军等.2002.黑龙江二化螟发生规律调查.植物保护,28(5):27-28
    63 彭建新,何国民.2000.强无螟防治水稻二化螟效果试验.浙江农业科学,2000(2):76-77
    64 彭宇,陈长琨,韩召军等.2001a.江苏省水稻二化螟的抗药性测定及对甲胺磷的抗性机制.植物保护学报,28(2):173-177
    65 彭宇,陈长琨,韩召军等.2001b.二化螟对3种杀虫剂的抗性测定及增效作用研究.湖北大学学报.(自然科学版),23(3):265~268
    66 彭宇,陈长琨.韩召军等.2002.二化螟体内乙酰胆碱酯酶的分布及纯化方法.昆虫学报,45(2):209-214
    67 钱冬兰1999.稻螟发生演变及防治对策探讨.植保技术与推广,1999,19(5):12-14
    68 任贵平,徐蕾,朱锦磊等.2003.生物杀虫剂锐星防治水稻二化螟的研究.安徽农业科学,31(3):479
    69 茹李军,芮昌辉,范贤林等.1998.菜缢管蚜、棉铃虫对杀虫混剂及其单剂的抗性遗传力分析.昆虫学报.41(3):243-249
    
    70 单正军,王连生,蔡道基等.2002.新型杀虫剂锐劲特农药对甲壳类水生生物影响研究.中国农业科学,35(8):949-952
    71 尚稚珍,王银淑,邹永华.1979.二化螟饲养方法的研究.昆虫学报,22(2):164~168
    72 沈晋良,吴益东(主编).1995.棉铃虫抗约性及其治理.北京:中国农业出版社pp.259~280
    73 盛承发,王红托,盛世余.2003.我国稻螟灾害的现状及损失估计.昆虫知识,40(4):289-294
    74 盛承发,王文铎,焦晓国等.2002b.应用性信息素诱杀水稻二化螟效果的初步研究.吉林农业大学学报 24(5):58-61,65
    75 盛承发,宣维健,焦晓国.2002a.我国稻螟暴发成灾的原因、趋势及对策.自然灾害学报,11(3):103-108
    76 束兆林,汪智渊,潘以楼等.2000.锐劲特对稻田主要蜘蛛的安全性研究.江苏农业科学,2000年(5):31-33
    77 束兆林,方继朝,盛生兰等.水稻品种(系)对二化螟抗性的初步研究.华东昆虫学报,12(1):14-18
    78 宋会鸣,冯克强,钱元谦等.2001.锐劲特对水稻主要害虫总体防治策略和应用技术.浙江农业科学,2001.3:145~147
    79 苏建坤,刘怀阿,徐健等.1996.江苏里下河地区水稻二化螟抗药性监测.南京农业大学学报,19(增刊):28-33
    80 苏建伟,宣维健,王红托等.1999.应用二化螟性诱剂大面积诱捕越冬代雄蛾.植物保护,25(2):1-3
    81 谭福杰.1987.农业害虫抗药性测定方法.南京农业大学学报,1987,4(增刊):107-122
    82 谭建国,沈晋良,王荫长等.1992.二化螟三龄幼虫抗药性监测方法研究.PP.135~138见:江苏省首届青年学术年会论文集(农科分册),北京:中国科学技术山版社
    83 谭荫初,邹剑明,林美嫦.1983.杂交水稻中二化螟的发生情况.昆虫学报,26(1):114-116
    84 谭荫初.1988.稻螟种群消长与稻田耕作制度关系及其发展趋势.昆虫知识,25(4):198-201
    85 唐小平,桂南方.2002.东安县二化螟为害加重的原因及其防治措施.湖南农业科学,2002(3):41~42
    86 唐振华,吴世雄.2000.昆虫抗药性的遗传与进化.上海:上海科学技术文献出版社,
    87 田春晖,孙富余,王疏.1998.辽宁省水稻二化螟发生为害新格局.辽宁农业科学,1998.(1):51-52
    88 田学志,高保宗,石家胜等.1991.安庆地区水稻二化螟抗药性研究,安徽农业科学,1991.1:61-66
    89 汪恩国.1999.二化螟种群数量变动规律研究.植物保护.25(1):14-17
    90 王传全,王翔.1997.贵池市水稻二化螟发生动态分析.安徽农业大学学报,24(4):336-339
    91 王藕芳,包生士,贾华凑等.2002.晚稻不同收割方式对二化螟越冬虫量的影响.上海农业科技,2002,5:41
    92 王强.1987.二化螟对六类杀虫剂的耐药性及增效剂的增效研究.南京农业大学学报,1987.4(增刊):44-55
    93 王强.1984.沙蚕毒素及巴丹类杀虫剂的毒杀机制.农药译丛,6(5):40-46
    94 王清文,张建平,邓志勇等.1999.锐劲特防治稻蝗试验.陕西农业科学.1999(3):20.
    95 王秋芽,廖标龙.2000.耒阳市水稻二化螟发生、演变及其防治措施.湖南农业科学,2000(3): 36-38
    96
    
    96 王秀坤,Nielson.2001.GABA_A受体药理学研究进展.国外医学药学分册,28(1):29-34
    97 王哲.2001.哈尔滨地区二化螟生物学特性及防治技术的研究.硕士论文.东北农业大学
    98 王忠华,舒庆尧,崔海瑞等.2000.Bt转基因水稻“克螟稻”杂交后代二化螟抗性研究初报.作物学报,26(3):310-314
    99 韦永保,王新翠,黄正请.2002.皖南单季稻区近年二化螟回升原因分析及治理对策.安徽农学通报,8(2):48-50
    100 吴世雄.1994.一种防治地下与叶面害虫的新型广谱杀虫剂fipronil.农药,33(2):35-36
    101 吴世雄.2000.我国的农药市场与靶标防治.农药,39(1):7-10
    102 夏声广,李平良,胡志平.2001.晚稻机割对二化螟越冬虫量的影响及其对策.植保技术与推广,21(8):10,15
    103 夏声广,李平良,胡志平.2002.种植结构调整与水稻二化螟为害变化.浙江农业科学,2002.5:246-248
    104 夏声广,杨一峰,李本良等.2000.永康市近年二化螟加重发生原因及防治.中国稻米,2000.2:29-30
    105 谢宝玉,汪恩国.2000.水稻二化螟再猖獗发生原因及综合治理.植物保护,26(6):45~47
    106 谢天健,阮芸玮,刘胜祥等.2003.生物化学复合杀虫剂.CN:1402991A
    107 谢应强,周梅香,竺锡武等.2001.锐劲特及其组配防治两系法杂交稻稻纵卷叶螟的效果.湖南农业科学,2001(3):55-56
    108 徐心植,邓小强.1992.江西省二化螟抗药性及其防治对策.江西农业学报,4(1):42-50
    109 姚全甫.1998.锐劲特对家蚕毒性的测定.昆虫知识.35(6):343-345
    110 俞晓平,徐红星,吕仲贤等.2002.水稻田和茬白田二化螟的比较研究.生态学报,22(3):341-345
    111 张夕林,张谷丰,张建明等.1999.应用锐劲特防治水稻中后期害虫.植物保护,25(2):49.
    112 章士美,陈东.1993.江西二化螟阶段性消长过程及其原因分析.江西农业大学学报,15(1):33-35
    113 赵学平,王强,吴长兴等.1999.锐劲特防治稻纵卷叶螟与二化螟试验.植物保护,25(1):37~38.
    114 赵学平,王强,吴长兴等.2000.二化螟对杀虫剂的敏感性及抗药性研究.浙江农业学报,12(6):382~386
    115 周圻.1988.水稻品种和稻螟种群消长的关系.昆虫知识.25(4):201-203
    116 周圻.1990.防治稻螟四十年.昆虫知识,27(3):178-181
    117 周社文.肖一龙.2000.二化螟种群突增机制及控制对策研究.植保技术与推广,20(3):5-7
    118 朱国念,吴金涛,刘乾开等.2000.氟虫腈在模拟稻田生态系中降解途径的研究.农约学学报,2(2):52-56
    119 朱文达,万中义,郭嗣斌.2002.氟虫腈(锐劲特)对水稻害虫防治效果及增产效应.植物保护学报,29(3):265-271
    120 祝春祥,罗道宏,熊延文等.1999.5%锐劲特悬浮剂对水稻苗期生长刺激作用的试验.农药,38(4):30.
    121 祝智辉,黄文坤,李忠彩.1999.汉寿县二化螟大发生原因及防治对策探讨.湖南农业科学, 1999.6:42-43
    
    122庄永林,沈晋良,陈峥.1999.二唑磷对不同翅型褐稻飞虱繁殖力的影响.南京农业人学学报,22(3):21-24
    123 Andow, D.A. and D.N. Alstad. 1998. F2 screen for rare resistance alleles. J Econ Entomol, 91(3): 572-578
    124 Anon. (1987) POLO-PC - a user's guide to Probit or Logit analysis. California, LeOra Software, California.
    125 Bloomquist, J. R. 1994. Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides. Arch. Insect Biochem. Physiol., 26(l):69-79
    126 Bourguet, D., A. Genissel AND M. Raymond. 2000. Insecticide Resistance and Dominance Levels. J. Econ. Entomol., 93(6): 1588-1595
    127 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248~252
    128 Cao,M. (曹明章),ShenJ. (沈晋良), Liu X. (刘晓宇) et al. 2001. The insecticide resistance in striped stem borer, Chilo suppressalis (Walker). CRRN (中国水稻研究通报), 9(1): 6-7
    129 Cole, L. M., R. A. Nicholson and J. E. Casida. 1993. Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestc. Biochem. Physiol., 46: 47-54
    130 Colliot, R, Kukorowski K. A., Hawkins D. W., et al. 1992. Fipronil: a new soil and foliar broad-spectrum insecticide. pp29~34 In: Proc Brighton Crop Prot Conf-Pests and Diseases, BCPC, Farnham, Surrey, UK
    131 Deng] Y., C. J. Palmer and J. E. Casida. 1993. House fly head GABA-gated chloride channel: four putative insecticide binding sites differentiated by [3H]EBOB and [35S]TBPS. Pestc. Biochem. Physiol., 47: 98-112
    132 Dennehy. T. J.. J. Grannett and T. F. Leigh. 1983. Relevance of slide dip and residual bioassay comparisons to detection of resistance in spider mites. J. Econ. Entomol, 76: 1225-1230
    133 Dhadialla, T. S., G. R. Carlson, Dat P Le. 1998. New insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology, 43: 545-69
    134 Durham, E. W., M. E. Scharf and B. D. Siegfried. 2001. Toxicity and neurophysiological effects of fipronil and its oxidative sulfone metabolite on European corn borer larvae (Lepidoptera: Crambidae). Pestc. Biochem. Physiol, 71: 97-106
    135 FAO. Method for larvae of the rice stem borer (Chilo suppressalisWalker) -FAO Method No.3. pp.25-28. In: Pest Resistance to Pesticides and Crop Loss Assessment-2. 1980, FAO, Rome
    136 ffrench-Constant, R H, N Anthony, K Aronstein, et al. 2000. Cyclodiene insecticide resistance: from molecular to population genetics. Annu. Rev. Entomol, 48: 449-466
    137 ffrench-Constant, R. H. and R. T. Roush. 1990. Resistance detection and documentation: the relative roles of pesticidal and biochemical assays. pp.4~38 In R.T. Roush and B.E. Tabashnik (eds.). Pesticide Resistance in Arthropods. New York & London: Chapman and Hall
    138 ffrench-Constant, R.H., Steichen, J., Rocheleau, et al. 1993. A single-amino acid substitution in a Y -aminobutyric acid subtype A receptor locus associated with cyclodiene insecticide resistance in Drosophila populations. Proc. Natl. Acad. Sci. USA 90: 1957-1961.
    
    139 Firko, M. J., Hayes J. L. 1990. Quantitative genetic tools for insecticide resistance risk assessment: estimating the heritability of resistance. J. Econ. Entomol, 83(3): 647~654
    140 Georghiou, G. P. 1969. Genetics of resistance to insecticides in house flies and mosquitoes. Exp Parasitol, 26: 224-255
    141 Georghiou, G. P. 1983. Management of resistance in arthropods, pp.769-792 In G. P. Georghiou & T. Saito (eds.). Pest Resistance to Pesticides. Plenum Press, New York
    142 Georghiou, G. P. and C. E. Taylor. 1977a. Genetic and biological influences in the evolution of insecticide resistance. J. Econ. Entomol, 70 (3): 319-323
    143 Georghiou, G. P. and C. E. Taylor. 1977b. Operational influences in the evolution of insecticide resistance. J. Econ. Entomol, 70 (5): 653-658
    144 Georghiou, G. P., and M. J. Garber. 1965. Studies on the inheritance of carbamate-resistance in the housefly (Musca domestica L). Bull. WHO, 32: 181-196
    145 Groeters, F. R. and B. E. Tabashnik. 2000. Roles of Selection Intensity, Major Genes, and Minor Genes in Evolution of Insecticide Resistance. J. Econ. Entomol. 93(6): 1580-1587
    146 Hainzl, D and J. E. Casida. 1996. Fipronil insecticide: Novel photochemical desulfinylation with retention of neurotoxicity. Proc. Natl. Acad. Sci. USA, 93: 12764 - 12767
    147 Heimbach U, G. Krai and P. Niemann. 2002. EU regulatory aspects of resistance risk assessment. PestManag. Sci., 58: 935-938
    148 Holbrook, G. L., J. Roebuck, C. B. Moore, et al. 2003. Origin and extent of resistance to fipronil in the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae). J. Econ. Entomol. 96(5): 1548-1558
    149 Ikeda, T., X. Zhao, Y. Kono, et al. 2003. Fipronil Modulation of GIutamate-Induced Chloride Currents in Cockroach Thoracic Ganglion Neurons. NeuroToxicology, 24: 807-815
    150 Jutsum A. R., S. P. Heaney, B. M. Perrin & P. J. Wege. 1998. Pesticide resistance: assessment of risk and the development and implementation of effective management strategies. Pestic. Sci., 54: 435-446
    151 Keiding, J. 1986. Prediction of resistance risk assessment, pp. 279-297. in Pesticide resistance: strategies and tactics for management. National Research Council, National Academy of Science, Washington, DC
    152 Kolaczinski, J. and C. Curtis. 2001. Laboratory evaluation of fipronil, a phenylpyrazole insecticide, against adult Anopheles (Diptera: Culicidae) and investigation of its possible cross-resistance with dieldrin in Anopheles stephensi. Pest Manag. Sei., 57:41~45
    153 Konno, Y. & F. Tanaka. 1996. Aliesterase Isozymes and Insecticide Susceptibility in Rice-Feeding and Water-Oat-Feed ing Strains of the Rice Stem Borer, Chilo Suppressalis Walker (Lepidoptera: Pyralidae) Appl.Enlomol, Zool, 31(2): 326-329.
    154 Konno, Y. & T. Shishido. 1987. Metabolism of fenitrothion in the organophosphorus-resistant and -susceptible strains of Rice Stem Borers, Chilo suppressalis. J. Pesticide Sci., 12:469-476
    155 Konno, Y. & T. Shishido. 1989. Binding protein,a factor of fenitroxon detoxification in OP-resistant rice stem borers. J. Pesticide Sci., 14:359-362
    
    156 Konno, Y. & T. Shishido. 1985. Resistance mechamism of the Rice Stem Borer to Organophosphrus insecticides. J. Pesticide Sci., 10: 285-287
    157 Konno, Y. 1989. Studies on resistance mechanism and synergism in the OP-resistant rice stem borer, Chilo suppressalis Walker. J. Pesticide Sci., 14:373-381
    158 Konno, Y. 1996. Carboxylesterase of the Rice Stem Borer, Chlio suppressalis WALKER (Lepidoptera: Pyralidae), Responsible for Fenitrothion Resistance as a Sequestering Protein. J. Pestic. Sci. 21(4): 425-429.
    159 Konno, Y. and T. Shishido. 1991. Inheritance of resistance to fenitrothion and pirimiphos-methyl in rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). Appl Ent Zool, 26(4): 535-541
    160 Konno, Y, T. Shishido, F. Tanaka. 1986. Structure-resistance Relationship in the Organophosphrus-resistant Rice Stem Borer, Chilo suppressalis. J. Pesticide Sci., 11: 393-399
    161 Le Novere, N. and J.-P Changeux. 2001. LGICdb: the ligand-gated ion channel database. Nucleic Acids Research 29: 294-295
    162 Liu, Z., Wu M., Deng Z., et al. 1999. Action mode, persistence and control value of fipronil for rice grasshoppers Oxya (Orthoptera: Cantantopidae). Entomologia Sinica, 6( 1): 62-70
    163 Mattioda H. and C. Jousseaume. 1999. Proceedings of the Fifth International Conference on Pests in Agriculture, Part3, Montpellier, France, pp. 827~834
    164 Mohan M. and G.T. Gujar. 2003. Local variation in susceptibility of the diamondback moth. Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Protection 22: 495-504
    165 Mulrooney. J. E.. and D. Goli. 1999. Efficacy and degradation of fipronil applied to cotton for control of Anthonomus grandis grandis (Coleoptera: Curculionidae). J. Econ. Entomol. , 92(6): 1364-1368
    166 Priesler, H. K., M. A. Hoy, and J. L. Robertson. 1990. Statistical analysis of modes of inheritance for pesticide resistance. J. Econ. Entomol. 83: 1649-1655.
    167 Qu Mingjing, Han Zhaojun, Xu Xinjun, et al. 2003. Triazophos resistance mechanisms in the rice stem borer. Pesticide Biochemistry and Physiology, 11: 99-105
    168 Robertson, J. L. and H. K. Priesler. 1992. Pesticide bioassays with arthropods. CRC Press, Boca Raton. FL
    169 Roush, R. T. and G.L. Miller. 1986. Considerations for design of insecticide resistance monitoring programs. J. Econ. Entomol, 79: 293-298
    170 Roush, R. T., and J. A. McKenzie. 1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32: 361-380.
    171 Roush. R.T. and Daly J.C. 1990. The role of population genetics in resistance research and management, pp. 97-152 In: R.T. Roush and B.E. Tabashnik (eds.). Pesticide Resistance in Arthropods. New York & London: Chapman and Hall
    172 Schaub, L., S. Sardy and G. Capkun. 2002. Natural variation in baseline data: when do we call a new sample 'resistant'? Pest Manag. Sci., 58: 959-963
    173 Scott, J. G., Z.Wen. 1997. Toxicity of fipronil to susceptible and resistant strains of German cockroaches (Dictyoptera: Blattellidae) and house flies (Diptera:Muscidae). J. Econ. Entomol. ,90(5): 1152-1156
    
    174 Scott, J.G. 1990. Investigating mechanisms of insecticide resistance: methods, strategies and pitfalls. pp.39-57 In R.T. Roush and B.E. Tabashnik (eds.). Pesticide Resistance in Arthropods. New York & London: Chapman and Hall
    175 Sharf, M. E., B. D. Siegfried, L. J. Meinke and L. D. Chandler. 2000. Fipronil metabolism, oxidative sulfone formation and toxicity among organophosphate- and carbamate-resistant and susceptible western corn rootworm populations. Pest Manag. Sci., 56: 757-766
    176 Stone, B. F. 1968. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull WHO, 38(2): 325-326
    177 Tabashnik, B. E. 1989. Managing resistance with multiple pesticide tactic: theory, evidence, and recommendations./ Econ. Entomol, 82(5): 1263-1269
    178 Tabashnik, B. E. 1990. Modeling and evaluation of resistance management tactics, pp. 153-182 In R.T. Roush and B.E. Tabashnik (eds.). Pesticide Resistance in Arthropods. New York & London: Chapman and Hall
    179 Tabashnik. B. E. 1992. Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado patato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol., 1992, 85(5):1551-1559
    180 Tabashnik, B. E. and W. H. McGaughey. 1994. Resistance risk assessment for single and multiple insecticides: responses of indianmeal moth (Lepidoptera: Pyralidae) to Bacillus thuringiensis. J. Econ. Entomol., 1994, 87(4):834-841
    181 Tan Jianguo and Zhou Baohua. 1993. Monitoring of Insecticide Resistance of Rice Stem Borer, Chilo suppressalis (Walker) and Studies on the Monitoring Method. Resistant Pest Management, 5(1): 11-13
    182 Tan Jianguo, Wang Yinchang, Tan Fujie, et al. 1994. The changes of insecticide resistance of rice stem borer, Chilo suppressalis (Walker). Resistant Pest Management, 6(2): 9-11
    183 Tanaka, Y. & V. Noppun. 1989. Heritability estimates of phenthoate resistance in the diamondback moth. Entomol. Exp. Appl. 52: 39-47
    184 Tsukamoto M. 1963. The log dosage-probit mortality curve in genetic researches of insect resistant to insecticides. Botyu-kagaku. 28: 91-98
    185 Valles, S. M., P. G. Koehler and R. J. Brenner. 1997. Antagonism of fipronil toxicity by piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol, 1992, 90(5): 1254-1258
    186 Van asperen, K. 1962. A Sdudy of housefly esterase by means of a sensitive colorimetric method. J. Insect Physiol., 8: 401 ~410
    187 Welling, W., and G. D. Paterson. 1985. Toxicodynamics of insecticides, pp.603-645. In G.A. Kerkut and L.I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12, Pergamon, Oxford.
    188 Wen, Z. and J. G. Scott. 1999. Genetic and biochemical mechanisms limiting fipronil toxicity in the LPR strain of house fly, Musca domestica. Peslc. Sci., 55: 988-992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700