二化螟对三唑磷的抗性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟Chilo suppressalis Walker是水稻的重要害虫之一,常年在长江流域发生较重。上世纪90年代以来,二化螟的发生危害再次呈加重趋势,部分地区暴发危害,对水稻的高产稳产造成很大的威胁,而二化螟抗药性增强是其危害加重的重要原因之一。
     三唑磷是近年来防治二化螟的主要替代药剂。本文对高抗地区-浙江省苍南县的二化螟进行了连续三年的监测(2002~2004),并通过筛选抗性品系,对其抗药性机理、抗药性现实遗传力、抗三唑磷二化螟品系的适合度、抗性稳定性和交互抗性进行了研究,试图为抗性治理提供科学依据。现将研究结果总结如下:
     1 二化螟田间抗药性监测
     对浙江省苍南县稻田一代二化螟的抗药性进行了连续三年(2002~2004年)的监测,结果表明:2002年苍南田间种群已经对多种杀虫剂产生抗性,对三唑磷、氟虫腈、水胺硫磷、甲胺磷的抗性倍数分别为:203.3、19.0、3.7、26.6倍。三年后田间二化螟对三唑磷和阿维菌素的抗药性上升迅速,抗性倍数达2367.3和30.0倍;对水胺硫磷和甲胺磷的抗性略有上升,而对氟虫腈的抗性有所下降。至2004年,这3种药剂的抗性倍数分别为8.8、34.8和7.4倍。该研究结果揭示了二化螟抗药性变化与田间用药量和用药种类变化的密切关系。
     2 二化螟对三唑磷的室内抗性选育
     在室内用三唑磷对采自浙江省苍南县的二化螟进行连续14代筛选,抗性由203.3倍上升到3272.6倍;其中在筛选的前12代抗性上升较慢,在后几代抗性上升很快。利用14代的选育结果,计算得到室内三唑磷筛选抗性的现实遗传力h~2为0.3105,说明二化螟对三唑磷的抗性风险较大。敏感性回复实验表明,高抗二化螟(RR 1523.7)在停止筛选后,经过5代抗性水平下降到327.1倍,随后保持相对稳定,当再次恢复筛选时,抗性水平又迅速上升。结论认为,二化螟对三唑磷极易产生高水平抗性,且一旦产生高抗后,停止用药虽然可以使其敏感性明显下降,但不可能回复原来的敏感性水平。因此,二化螟对三唑磷的抗性应采取早期治理,避免产生高水平抗性,一旦产生高水平抗性后,便不宜再用于二化螟的田间防治。
     3 二化螟抗三唑磷品系的交互抗性
Rice stem borer, Chilo suppressalis Walker, one of the most important rice pests in China, always damages rice production heavily in the Yangzi River. Since the 90s of last century, it breaks out continuously and become even difficult to be controlled because of its high resistance to different insecticides, which menace the stability of rice production seriously.
    Triazophos is one of the major pesticides used to control rice stem borer in the field. In order to make good use of this insecticide and practice efficient resistance management, the resistance of the field rice stem borer collected from high resistant area was surveyed. Furthermore, the resistant strain was selected, and the resistance reality heredity(h~2), fitness cost, stability, cross-resistance and resistance mechanism were all tested, and the gene for target enzyme, acetylcholinesterase (AChE) was also cloned for searching its insensitive mutations. The results were summarized as follows:
    1 Resistance monitoring with field rice stem borer
    The rice stem borer collected from Cangnan County, Zhejiang Province was tested for its resistance to some conventional pesticides from 2002 to 2004. The results indicated that in 2002 the field population of rice stem borer had developed resistance to several kinds of pesticides. The resistance ratio for triazophos, fipronil, isocarbophos and methamidophos was 203.3, 18.9, 3.7 and 26.6 fold, respectively. Three years later, its resistance to triazophos and abamectin increased and reached to 2367.3 and 30. But at the same time, its resistance to isocarbophos increased only slightly to 8.4, while to fipronil decreased to 7.4. Further analysis revealed that the resistance of rice stem borer varied with the quantity and the kinds of insecticides used in the field.
引文
1.蔡之华,洪要文,,曹炳宏.沿淮稻区二化螟重发原因与综防对策.安徽农学通报.2002,8(4):52-61
    2.曹明章,沈晋良,张金振等.二化螟抗药性监测和对三唑磷抗性的遗传分析.中国水稻科学,2004,1 8(1):73-79
    3.曹明章,沈晋良,张绍明等.2002年江苏省二化螟抗药性检测及治理.植物保护,2003,29(5):34-37
    4.陈长琨,李秀峰,韩召军.二化螟抗药性监测方法及相对敏感基线.2000,23(4):25-28.
    5.陈茂华.两种麦蚜乙酰胆碱酯酶的分子生物学研究:[学位论文].南京:南京农业大学,2005
    6.陈松.棉铃虫抗药性生化机理及生化检测技术:[学位论文].南京:南京农业大学,2001
    7.陈之浩,裴华,刘小涛,李凤良.对水稻二化螟抗药性研究初报.西南农业学报,1992,3(2):100-103
    8.程罗根,李凤良.小菜蛾对杀螟丹抗药性的生化遗传研究.南京农业大学学报,1998,21(3):36~40
    9.褚柏,苏建坤,朱锦清等.扬州地区水稻二化螟抗药性监测.南京农业大学学报,1987:4(增刊):56-63
    10.褚柏.六省市二化螟对常用杀虫剂敏感度的调查.农药,1990,29(6):6-8
    11.刁春友,王茂涛,朱叶芹等.苏南稻区二化螟上升原因及对策探讨.植保技术与推广,2001:21(1):7-9
    12.方继朝,杜正文,程遐年等.水稻螟害上升态势与控害减灾对策分析.昆虫知识,1998(4):193-197
    13.符明龙,王云仙.浙汀省苍南县二化螟重发原因及防治对策.浙江农业科学,1998(5):234-238
    14.龚林根,张念环,张景飞等.水稻二化螟大发生源头分析及防治对策.上海农业科技,2001(2):38-39
    15.顾保根,陈桂华,朱彩华等.金山区二化螟危害加重原因和防治对策.上海农业科技2002(2):45
    16.韩启发,庄佩君,唐振华.抗杀螟硫磷二化螟的抗性遗传力研究.昆虫学报,1995b,38(4):402-405
    17.韩启发.二化螟对杀螟硫磷抗药性机制的机理.昆虫学报,1995,38(3):266-272
    18.韩招久,韩召军,王荫长等.二化螟对杀虫单和甲胺磷抗性监测及田间抗性动态.植物保护学报,2002,29(1):93-94
    19.蒋学辉,章强华,胡仕孟等.浙江省水稻二化螟抗药性现状与治理对策.植保技术与推广,2001,21(3):27-29
    20.冷欣夫,唐振华,王荫长主编.杀虫剂分子毒理学及昆虫抗药性.北京:中国农业出版社,1996.52-53.
    21.李国敬,胡鹏,易行云等.2001 年水稻二化螟、三化螟大发生原因分析及综防对策.湖北植保,2002,(1):15-16
    22.李腾武,高希武,郑炳宗.阿维菌素对小菜蛾的抗性选育.植物保护 21 世纪展望.中国科学出版社,1999,758-760
    23.李腾武,小菜蛾对阿维菌素的抗性遗传方式和相对适合度研究.昆虫学报,2000,43(3):255-263
    24.李熙英,黄世臣,权成武等.延边地区水稻二化螟发生危害及化学防治.植物保护,2001,27(6):17-19
    25.李秀峰,韩召军,陈长琨等.二化螟对杀虫单抗性及其机理初探.南京农业大学学报,??2001,24(1):43-46
    26.刘达修,王文哲,王玉沙等.台中地区二化螟虫多发生地区猖獗因子研究.中华昆虫,1991(11):300-308
    27.李阿根.小菜蛾对氟虫腈的抗性机理研究:[学位论文].南京:南京农业大学,2004
    28.刘水杰,沈晋良,赵旭东等.多功能氧化酶系与甜菜夜蛾对氯氟氰菊酯抗药性的关系,农药学学报,2005,7(1):19-23
    29.刘永杰,沈晋良.甜菜夜蛾对氯氟氰菊酯抗性的表皮穿透机理.昆虫学报2003,46(3):288-291.
    30.刘泽文 褐飞虱对吡虫啉的抗性机理研究[学位论文].南京:南京农业大学,2004
    31.刘卓荣,梅胜芳,涂海龙等.赣西北稻区二化螟发生特点及抗药性治理对策.江西植保,2001,24(3):80-81
    32.陆玉荣,徐广和,苏建坤等.扬州地区二化螟抗药性监测.安徽农业科学,2003,31(1):123-124
    33.孟香清,赵建周,魏岑.研究害虫抗药性遗传力的几种方法.农药科学与管理,1999,20(2:)20-24
    34.裴海英,于洪春,赵奎军等.黑龙江二化螟发生规律调查.植物保护,2002,28(5):27-28
    35.彭宇,,陈长琨,韩召军等.二化螟对3种杀虫剂的抗性测定及增效作用研究.湖北大学学报(自然科学版),2001,23(3):265-268
    36.彭宇,陈长琨,韩召军等.江苏省水稻二化螟的抗药性测定及甲胺磷的抗性机制.植物保护学报,2001a,28(2):173-177
    37.钱冬兰.稻螟发生演化及防治对策探讨.植保技术与推广,1999,19(5):12-14
    38.尚稚珍,王银淑,邹永华.二化螟饲养方法的研究.昆虫学报,1979,22(2):164-168
    39.沈晋良,吴益东编著.棉铃虫抗药性及其治理,中国农业出版社,1995
    40.盛承发,王红托,盛世余等.我国稻螟灾害的现状及损失估计.昆虫知识,2003,40(4):289-294
    41.盛承发,宜维健,焦晓国等.我国稻螟暴发成火的原因、趋势及对策.自然灾害学报,.2002a,11(3):103-108
    42.苏建坤,刘怀阿,徐健等.江苏里下河地区水稻二化螟抗药性监测.南京农业大学学报,1996,19(增):28-32
    43.谭荫初,邹剑明,林美嫦等.杂交水稻二化螟的发生情况.昆虫学报,1983,26(1):114-116
    44.唐振华编著.昆虫抗药性及其治理.北京:农业出版社,1993
    45.田学志,高保宗,石家胜等.安庆地区水稻二化螟抗药性研究.安徽农业科学,1991(1):61-66
    46.王传全,王翔.贵池市水稻二化螟发生动态分析.安徽农业大学学报,1997,24(4):336-339
    47.王建军,韩召军,王荫长.几种杀虫剂对抗性小菜蛾的联合作用研究.南京农业大学学报,2001,44-46
    48.王沫,谭福杰,尤子平等.棉铃虫对氰戊菊酯的抗性机理研究.华中农业大学学报,1996,15(4):344-349
    49.王强,谭福杰,尤子平.二化螟对六类杀虫剂的赖药性及增效剂的增效作用研究.南京农业大??学学报,1987,No.4(增):44-55
    50.王秋芽,廖标龙.耒阳市水稻二化螟发生、演变及其防治措施.湖南农业科学,2000(3):36-38
    51.韦永保,王新翠,黄正清.皖南单季稻区近年二化螟回升原因分析及治理对策.安徽农学通报,2002,8(2):48-50
    52.尾鳍幸三郎,,葛西成雄,木谷安雄等.香川县有机剂对低抗)发达.香川县农验报告,1971,12:12-21
    53.吴孔明,刘片轩.棉蚜抗杀灭菊酯品系的某些生物学特性.昆虫学报,1994,37(2):137-144
    54.吴坤君,陈玉平,李明辉.温度对棉铃虫实验种群生长的影响.昆虫学报,1980,23(4):358-367
    55.吴青君,张文吉,张友军等.表皮穿透和GABAA受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报,2002,45(3):336-340.
    56.吴益东,沈晋良,谭福杰等.棉铃虫对氰戊菊酯抗药性品系和敏感品系的相对适合度.昆虫学报,1996,39(3):233-236
    57.吴益东,沈晋良,尤予平.棉铃虫对氰戊菊酯的抗性机理研究.南京农业大学学报,1995b,18(2):63-68
    58.谢宝玉,汪恩国.水稻二化螟再猖獗发生原因及综合治理.植物保护,2000,26(6):45-47
    59.熊件妹,朱杏芬,程丽霞.南昌地区二化螟抗药性现状与治理对策.江西植保,2004(27):1
    60.徐心植.江西二化螟抗药性及其防治对策.江西农业科技,1992,4(1):42-50
    61.许雄山,韩召军,王荫长.羧酸酯酶与棉铃虫对有机磷杀虫剂抗性的关系.南京农业大学学报,1999,22(4):41-44
    62.永田辙,林晃史.杀虫剂抵抗性历史现状对策.见永田辙林晃史著.药剂抵抗性.1983.9-52
    63.张文吉.棉铃虫不同龄期幼虫羧酸酯酶、谷胱甘肽转移酶、乙酰胆碱酯酶研究.植物保护学报,1996,23(2):157-162.
    64.张雪燕,何婕.小菜蛾对阿维菌素B1抗药性选育及交互抗性.植物保护学报,2001(28):163-168
    65.周社文,肖一龙.二化螟种群突增机制及控制对策研究.植保技术与推广,2000,20(3):5-7
    66.祝智辉,黄文坤,李忠彩.汉寿县二化螟发生原因及防治对策探讨.湖南农业科学,1999(6):42-43
    67. Abro G H, Dybas R A, Green A S J et al. Toxicity of avermectin B1 against a susceptible laboratory and an insecticide-resistant strain of Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entoraol. 1988(81): 1575-1580
    68. Adriana E. Flores, W, Albeldano-V, ildefonso F, et al. α-esterase levels associated with permethrin tolerance in Aedes aegypti from Baja California,. Mexico.Pesticide Biochemistry and Physiology, 2005(82),66-78
    69.Ahmad M, McCaffery A R. Elucidation of detoxication mechanisms involved in resistance to insecticides in the third instar larvae of a field-selected strain of Helicoverpa armigera with the use of??synergists. Pestic Biochem Physiol, 1991,41: 41-52
    
    70. Ahmad M, McCaffery A R. Resistance to insecticides in a Thailand strain of Heliothis armigera (Hubner) (Lepidoptera: Noctuidae). J. Econ. Entomol., 1988, 81 (1): 45-48
    
    71. Aldridge W.N. Serum esterase :two types of esterase (A and B)hydrolyzing p-nitrophenyl acetate.propionate butyrate,and a method for their determination. Biochemical J 1953 (53):110-117
    
    72. Argentine J A, Clark J M. Selection for abamectin resistance in Colorado potato beetle (Coleoptera: Chrysomelidae). Pestic. Sci, 1990(28): 17-24
    
    73. Andrews M.C.,.Callaghan A,.Field L.M. Identification of mutation conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover.Insect Molecualr Biology, 2004, 13(5):555-561
    
    74. Augustinsson K.B. Enzymatic hydrolysis of organophosphorus compounds. Acta.Chem Scard. 1959(13):571-578
    
    75. Banks C J, Needham P H. Comparison of the biology of Myzus persicac (Sulz.) resistant and susceptible to dimethoate, Ann Appl Biol, 1970(66):465-468
    
    76. Baxter G D, Barker S C. Acetylcholinesterase cDNA of the cattle tick ,Boophilus micrplus:characterization and role in organophosphate resistance. Insect Biochem. Molec. Biol., 1998(28):581-589
    
    77. Baxter, G D.,Barker, S. C. Analysis of the sequence and expression of a second putative acetylcholinesterase cDNA from organophosphate-susceptible and organophosphate-resistant cattle ticks. Insect Biochem Mol Biol. 2002,32(7):815-820
    
    78. Bonning B C, Hemingway J, Romi R and Majori G Interaction of insecticide resistance genes in field populations of Culex pipiens (Diptera:Culicidae)from Italy in response to changing insecticide selection pressure. Bull Entomol Res, 1991(81):5-10
    
    79. Bourguet D, Raymond M, Fournier D. Existence of two acetylcholinesterase in the mosquito Culex pipiens(Diptera:tulicidae). J. Neurochem., 1996(67):2115-2123
    
    80. Bradford M M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976(72):248-254
    
    81. Breitler J.C, marfa V.,.Royer M. Expression of a Bacillus thuringiensis Cry I B. Synthetic gene protects Mediterranean rice against the striped stem borer. Plant Cell Reports,2000,19:1195-1202
    
    82. Brown T M, Bryson P K. Selective inhibitors of methyl parathion-resistant acetylcholinesterase from Heliothis virescens. Pestic. Biochem. Physiol., 1992(44): 155-164
    
    83. Bull D. L.,C. J. Whitten. Factors influencing organophosphorus insecticide resistance in tabocco budworms. J. Agric. Food Chem. 1972,20, 561
    
    84. Byrne F J, Divonshire A L. Insensitive acetylcholinesterase and esterase polymorphism in susceptible
    and resistant populations of the tobacco whitefly Bemisia tabac(Gem). Pestic Biochem Physiol, 1993(45):34-42
    
    85. Campbell P. M., Newcomb R. D. Two different amino acid substitutions in the ali-esterase, E3, cofer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochem. Mol. Biol,1998(28):139-150
    
    86. Campos F,Dybas R A.Susceptibilty of two spotted spider mites (Acari:Tetranychidae) populations in california.J Econ Entomol,1995,88(2):225-231
    
    87. Claudianos C, Russell R. J. The same amino acid substitution in orthologous esterase confers organophosphate resistance on the house fly and a blowfly. Insect Biochem. Mol. Biol., 1999(29): 675-686
    
    88. Cuany A, Handani J, Berge J .Action of esterase Bl on chlorpyrifos in organophosphate-resistance Culex mosguitoes.Pestic.Biochern.Physiol., 1993(45):6208
    
    89. Chen Zhenzhong, Richard Newcomb, Emma Forbes.The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly,Lucilia cuprina Insect Biochemistry and Molecualr Biology,2001,31:805-846
    
    90. Daly J C .Resistance frequencies in overwintering pupae and the first spring generation of Helicoverpa armigera: Selective mortality and immigration. J. Econ. Entomol., 1990, 83:1682-1688
    
    91. Danxia W .Michael E,Scharf J,Mechanisms of Fenvalerate Resistance in the German Cockroach, Blattella germanica(L.) .Pesticide Biochemistry and Physiology 1998, 61,53-62
    
    92. Datta K.., Vasquez A.., Tu J. Constitutive and tissue-specific.differential expression of the CRY I A(b) gene in transgenic rice plants conferring resistance to rice insect pest. Theor.AppI.Gnenet, 1998,97:20-30
    
    93. Devonshire A L, Moores G D. Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica). Pestic Biochem Physiol, 1984a(21):336-340
    
    94. Devonshire A L. Studies of acetylcholinesterase from houseflies (Musca domestica.) resistant and susceptible to organophosphorus insecticides. Biochem. J, 1975 (149):463-469
    
    95. Devonshire A. L. The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz), and its role in conferring insecticide resistance. Biochem. J. 1977(167):675-683
    
    96. Devonshire A. L., Moore G. D. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethrinoid resistance in peach-potato aphid,(Myzus persicae) Pestic. Biochem. Physio!.1982(18):235-246
    
    97. El-Abidin Salam A Z, Pinsker W. Effects of selection for resistance to organophosphorus insecticides on two esterase loci in Drosophila melanogaster. Genetica, 1981(55):11-14
    
    98. Eldefrawi A T. Acetylcholinesterases and anticholinesterase. In Comprehensive Insect Physiology.Biochemistry and Pharmacology. Pergamon Press, New York ,1985(12):115-130
    99. Guerrero F D. Cloning of a horn fly cDNA,Hli α E7,encoding an esterase whose transcript concentration iselevated in diazinon-resistant flies.Insect Biochem.Mol.Biology,2000, 30: 1107-1115
    
    100. Feyereisen,R.,J.F.Koener,D.E.Farnsworth et al. Isolation and sequenc e of cDNA encoding a cytochrome P450 from an insecticide-resistant stain of the house fly.Musca domestica.Proc.Natl.Acad.Sci. 1989.86(5): 1465-1469.
    
    101. Field L.M., Devonshire A.L.,ffrench-Constant R.H.,Forde B.G Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzua persicae(Sulz).FEBS letters, 1989:24:323-327
    
    102. Field L.M. Williamson M.S., Moores GD.Cloning and analysis of esterase genes conferring insecticides resistance in the peach-potato aphid.Myzus persicae(Sulzer). Biochem.J,1993 (294):569-574
    
    103. Forrester,N.W.,M.Cahill, J.K.Layland Management of pyrethroid and andosulfan resistance in Helicoverpa armigera(Lepidoptera:Noctuidae) in Australia. Bull. Entomol. Res. Sup, 1993.No.l
    
    104. Fournier D, Bride J M, Hoffmann F. Acetylcholinesterase, two types of modifications confer resistance to insecticide. J. Biol. Chem., 1992(267): 14270-14274
    
    105. Fournier D, Mutero A. Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp. Biochem. Physiol, 1994,108C(1):19-31
    
    106. Gangey A L, Forte M, Rosenberry T L. Isolation and characterization of acetylcholinesterase from Drosophila. J Biol. Chem., 1987(262): 13290-13298
    
    107. Gao, J. R., Kambhampati S., Zhu K. Y. Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage. Insect Biochem Mol Biol,2002,32(7):765-775
    
    108. Georghiou G P, Taylor C E. Genetic and biological influences in the evolution of insecticide resistance J. Econ. Entomol,1977(70):319-323
    
    109. Georghiou G P. The stability of resistance to carbamate insecticides in the hoursefly after cessation of selection pressure. Bull. WHO 1964(30):85-90
    
    110. Georghiou GP, Pasteur N., Hawley M.K. Linkage relationship between organophosphate resistance and a highly active esterase-B in Culex quinquefasciatus from California. J.Econ.Entomol, 1980(73):301-305
    
    111. Georghious G. P. Management of resisitance in arthropods. In G.P. Georghious&T.Saito(eds.), Pest Resistance to pesticides.Plenum Press, New York, 1983:769-792
    
    112. Gerschenfeld H M. Chemical transmission in invertebrate central nervous system and neuromuscular junctions. Physiol. Rev., 1973(53):1-119
    
    113. Groeters,F.R., B.E..Tabashnik. Roles of selection Insensitivity, Major Genes,and Minor Genes inEvolution of insecticide Resistance.J.Econ.Entomol,2000,93(6): 1580-1587
    
    114. Guedes R N, Zhu K Y, Kambhampati S. An altered acetylcholinesterase conferring negative cross-insensitivity to different insecticidal inhibitors in organophosphate-resistant lesser grain borer, Rhyzopertha dominica. Pestic. Biochem.Physiol.,1997(58):55-62
    
    115. Gunning R. V, Devonshire A. L. and Moores G D. Metabolism of fenvalerate in pyrethroid-susceptible and -resistant in Australian Helicoverpa armigera (Lepidoptera:Noctuidae). Pestic. Biochem. Physiol. 1995(51):205-213
    
    116. Gunning R. V. , Moores G D., Devonshire A. L. Esterase inhibitors synergise the toxicity of pyrethroids in Australian Helicoverpa armigea(Hubner) Lepidoptera: Noctuidae. Pestic. Biochem. Physiol. 1999(63):50-62
    
    117. Gunning R. V., Easton C. S., Balfe M. E. Pyrethroid resistance mechanism in Australian Helicoverpa armigera. Pestic. Sci. 1991, 33: 473-490
    
    118. Gunning R. V, Moores G D, Devonshire A. L. Esterases and esfenvalerate resistance in Australian Helicoverpa armigera(Hubner)(Lepidoptera: Noctuidae) Pestic. Biochem. Physiol. 1996a, 54:12-23
    
    119. Hama H, Iwata T. Insencitive cholinesterase in the Nakagawara strain of the green rice leafhoppers, Nephotettix cincticeps, Uhler (Hemiptera:Cicadellidae), as a cause of resistance to carbamate insecticides . Appl. Entmol. Zool.,1971,6:183-191
    
    120. Hama H. Modified and normal cholinesterases in the resistant strains of carbamate-resistant and susceptible green rice leafhoppers, Nephotettix cincticeps, Uhler (Hemiptera:Cicadellidae). Appl. Ent. Zool., 1976,11:239-247
    
    121. Hama H. Toxicity and antiacetylcholinesterase activity of propaphos, O, O-di(n)propyl-O-4-methylthiophenyl phosphate, against the resistant green rice leafhopper, Nephotettix cincticeps Uhler. Botyu-Kataku,1975,40:14-19
    
    122. Han Z J, Moores G D, Ian D, Devonshire A L. Association between biochemical marks and insecticide resistance in the cotton aphid, Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 1998,62(3): 164-171
    
    123. Han Zhaojiu, Han Zhaojun, Wang Yinchang, Chen Changkun,, Biochemical features of a resistant population of the rice stem borer, Chilo suppressalis (Walker), 2003,46 (2): 161 -170
    
    124. Hansen L.G., Hodgson E. Biochemical characteristics of insect microsomes N-and O-demethylation. Biochem Pharmac, 1971,20(7): 1569-1573
    
    125. Harel M, Sussman J L, Krejci E, Bon S, Chanal P, Massoulie J and Silman 1. Conversion of acetylcholinesterase to butyrylcholinesterase: Modeling and mutagenesis. Proc Natl Acad Sci USA, 2000,89:10827-10831
    
    126. Hemingway J .Georghiou G P. Studies on the acetylcholinesterase of Anopheles albimanus resistantand susceptible to organophosphate and carbamate insecticides. Pestic Biochem Physiol, 1983,19:167-170
    
    127. Heong,K.L., M.M.Escalada. An analysis of insecticide use in rice. Case studies in the Philippines and Vietnam. Int J Pest Manage 1994(40): 173-178
    
    128. Herdt,R.W. Reseach Priorities for rice biotechnology. In:GS, Khush &GH.Toenniessen(Eds.) Rice Biotechnology. CAB Interational,Wallingford, 1991:19-54
    
    129. Heidari R. Devonshire A. L.. Hydrolysis of organophosphorus insecticide by in vitro modified carboxylesterase E3 from Lucilia cuprina. Insect Biochem. Mol. Biol,2004,353-363
    
    130. Hernandez R., F.D.Guerrero, J.E.George.Allele frequency and gene expression of a putative carboxylesterase-encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus.Insect Biochemistry and Molecular Biology,2002.32:1009-1016
    
    131. Heidari Rama, Alan L.Devonshire.Bronwyn E.Campell. Hydrolysis of pyrethroids by carboxylesterase from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis.Insect Biochemsitry andMolecuIar Biology,2005,35:597-609
    
    132. Hernandez, R., He, H. Q., Andrew, C, Chen, G, Wayne, I., George J. E. and Wagner G G Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilus microplus (Acari: Ixodidae). J. Med. Entomol.,2002,36(6):764-770
    
    133. Hoffmann F, Fournier D, Spierer P. Minigene rescues acetylcholinesterase lethal mutations in Drosophila melanogaster. J Molec Biol, 1992,223:17-22
    
    134. Huang H. S., Hu N. T. et al. Molecular cloning and heterologous expression of a glutathion S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochem. Mol. Biol. 1998,28(9): 651-658
    
    135. Iwata T, Hama H. Insensitivity of cholinesterase in Nephotettix cincticeps resistant to carbamate and organophosphorus insecticides. J. Ecom. Ent, 1972,65:643-644
    
    136. .Ji Hyung Baek, Ju II Kim, Dae-Weon Lee, Bu Keun Chung, Tadashi Miyata and Si Hyeock Lee Identification and characterization of acel-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pesticide Biochemistry and Physiology, 2005(81):164-175
    
    137. Jurgen Benting, Ralf Nauen. Rapid Report Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis gossypi mediates resistamce to pirimicarb and omethoate.Pest Management Science.2004(60):105I-1055
    
    138. Jutsum A.R., Heaney S.P.,.Perrin B.M. Pesticide resistance assessment of risk and the development and implement of effective management strategies. Pestic.Sci., 1998,54:435-446
    
    139. Ozaki K:Botyu-Kagaku, 1962,27:81
    140. Karunaratne S.H.P.P, Jayawardena K.G.1, Hemingway J.,Ketterman A.J. Characterisation of a B-type esterase involved in insecticide resistance from the mosquito Culex quinquefasciatus. Biochem.J 1993 (294):575-579
    
    141. Khush S, Toenniessen G H .Rice biotechnology.CAB.International,Wallingford,UK in association with the International Rice Research Institute,Manila,Philippines(1991)
    
    142. Konno Y, Carboxylesterase of the rice stem borer, Chilo suppressalis Walker(Lepidoptera: Pyralidae)responsible for fenitrothion resistance as sequestering protein. J. Pesticide Sci. 1996,21: 425-429
    
    143. Konno Y, Shishido T. Binding protein, a factor of fenitroxon detoxication in OP-resistant rice stem borer. J. Pesti. Sci., 1989, 14 (3):359-362
    
    144. Konno Y, Shishido T, Resistance mechanism of the rice stem borer to organophosphorus insecticides. J. Pesticide Sci.,1985,10:285-287
    
    145. Konno Y, Shishido T.Metabolism of fenitrothion in the organophosphorus-resistant and susceptible stains of rice stem borer, chilo suppressalis. J Pesti Sci.,1987,12(3):469-476
    
    146. Konno Y,Tanaka F. Aliesterase isozymes and insecticide susceptibility in rice-feeding and water-oat-feeding stains of the rice stem borer, Chilo suppressalis Walker, (Lepidoptera.Pyralidae). Appl Entomol Zool, 1996,31(2):326-329
    
    147. Kozaki T, Shono T, Tomita T. Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem Mol Biol,2001,31 (10):991-997 148. Ku C. C, Chiang F. M. Glutathion transferase isozymes involved in insecticide resistance of diamondback moth larvae. Pestic. Biochem. Phsiol. 1994, 50(3):191-197
    
    149. Kyomura N, Takahashi Y. Joint insecticidal effect of N-methylcarbamates on the green rice leafhopper, resistant to N-methylcarbamates J. Pestic. Sci.,1979,4:401-409
    
    150. Lee R M, Batham P. The activity and organophosphate inhibition of cholinesterases from susceptible and resistant ticks (Acari). Ent. Exp. Appl., 1966,9:13-24
    
    151. Li Fei ,Han Zhaojun. Purification and characterization of acetylcholinesterase from cotton aphid, Aphis gossypii glover. Archives of insect biochemistry and physiology,2002, 51(1):37-45
    
    152. Li Fei, Han Zhaojun, Mutation in acetyicholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochemistry and Molecular Biology, 2004(34):397-405
    
    153. Li Fei, Han Zhaojun, Two Different Genes Encoding Acetylcholinesterase Existing in cotton aphid, Aphis gossypii Glover. Genome,2002,45(6): 1134-1141
    
    154. Lockridge Oksana, Renee M.Blong, Patrick Masson. A Single Amino Acid Substitution,Gly117His,Confers Phosphotriesterase(Organophosphorus Acid Anhydride Hydrolase) Activity on Human Butyrylcholinesterase Biochemistry 1997,36,786-795
    155. Malcolm C. A., Bourguet D., Ascolillo A. A sex-linked Ace gene not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culexpipens. Insect Mol. Bio. 1998,7(2): 107-120
    
    156. Martin T.,Chandre F.,et al. Pyrethroid resistance mechanism in the cotton bollworm helicoverpa armigera (Lepidoptera:Noctuida) from West Africa. Pest management Science, 2000,56:549-554
    
    157. Molberg W K, Understanding and combating agrochemical resistance. In: Green M B, Lebaron H M, Moberg M Keds. Managing Resistance to Agrochemicals. Washington: American Chemical Society. 1990.1-15.
    
    158. Morton R A, Singh R S. The association between malathion resistance and acetylcholinesterase in Drosophila melanogaster. Biochem. Genet., 1982,20:179-198
    
    159. Mouches C, Pasteur N, Berge J.B. Ampliation of an esterase gene is responsible for insecticide resistance in a Californian Culex mosquito. Science. 1986,233:778-780.
    
    160. Mouches,C.,.Magnine M,.Berge J.B. Overproduction of detoxifying esterase in organophosphate resistant Culex mosquitoes and their present in other insects. Proc.Natl.Acad.Sci., 1987,84:2113-2116
    
    161. Mutero A, Pralavorio M, Bride J M. Resistance-associated point mutation in insecticide-insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 1994,91:5922-5926
    
    162. Takeshi N, Mori,A., Kozaki,T.An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochem.Biochem .Bioph. Res.Co,2004,313:794-801
    
    163. Takeshi N.,Kozaki,T.,Tomita,T.,Kono,Y. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem.Bioph.Res.Co,2003,307,15-22
    
    164. Newcomb R. D., Campbell P. M. A single amino acid substitution converts a carboxylesterase to an organophosphate hydrolase and confers insecticide resistance on a blowfly. Proc. Natl. Acad. Sci. USA 1997b,94,7464-7468
    
    165. Newcomb R. D., Campbell P. M. cDNA cloning , baculovirus-expression and kinetic properties of the esterase , E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem. Mol. Biol. 1997a,27:15-25
    
    166. Nolen J , Schnitzerling H J, Schuntner C A. Multiple forms of acetylcholinesterase from resistant and susceptible strains of the cattle tick, Boophilus microplus(Can). Pestic. Biochem. Physiol., 1972,2:85-94
    
    167. Oi M, Dauterman W C , Motoyama N. Biochemical factors responsible for an extremely high level of diazinon resistance in housefly strain. J Pestic Sci, 1990, 15:217-224
    
    168. Oppenoorth F J, Smissaert H R, Welling W. Insensitive acetylcholinesterase, high glutathione-S-transferase, and hydrolytic activity as resistance factors in a tetrachlorvinphos-resistantstrain of house fly. Pestic Biochem Physiol, 1977,7:34-47
    
    169. Oppenoorth F J. Glutathione-s-transferase and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance. Pestic Biochem Physiol, 1979, 11:176-178
    
    170. Paton M.G. Karunaratne S.H.P.P.Giakoumaki E.,Robwerts N.&Hemingway J. Quantiative analysis of gene amplification in insecticide resistant Culex mosquitos.Biochem J,2000,346:17-24
    
    171.Plapp F W Jr, Tripathi R K. Biochemical genetics of altered acetylcholinesterase resistance to insecticides in the housefly. Biochem Genet, 1978, 16:1-12
    
    172. Plapp,F.W. Jr., R.E.Frisbie, J.A.Jackman .Monitoring for pyrethriod resistance in Heliothis spp.m Texas in 1988. Proc. of the Beltwide Cotton Production and Research Confenence, Nashville/Tennessee, 1989:347-348
    
    173. Pralavorio M, Fournier D. Drosophila acetylcholinesterasexharacterization of different mutants resistant to insecticides. Biochem Genet, 1992, 30: 77-83
    
    174. Price N R. Insecticide-insensitive acetylcholinesterase from a laboratory selected and a field strain of housefly {Musca domedtica L.). Comp. Biochem. Physiol., 1988,90C:221-224
    
    175. Qu Mingjing, Han Zhaojun, Xu Xinjun et al. Triazophos Resistance Mechanism in Rice Stem Borer (Chilo suppressalis Walker). Pesticide Biochemistry and Physiology, 2003,77: 99-105
    
    176. Raymond M, Fournier D, Bride J M et al. Identification of resistance mechanism in Culex pipiens (Diptera:Culcidae) from Southern France:insensitive acetylcholinesterase and detoxifying oxidases. J. Econ. Entomol., 1986,79:1452-1458
    
    177. Raymond M,Beyssat-Arnaouty V.Sivasubramanian N,Mouches C.Amplification of various esterase B's responsible for organophosphate resistance in Culex mosquito. Biochem. Genet, 1989,27:417-423
    
    178. Raymond M.,Callaghan A.,Fort P.,Pasteur N. World-wide migration of amplified insecticide resistance genes in mosquitos.Nature,1991,350:151-153
    
    179. Ren X X, Han Z J. Mechanism of monocrophos resistance in cotton Bollworm, Helicoverpa argmigera (Hubner). Arch. Insect Biochem.,2002, 51:103-110
    
    180. Scott J G, Georghiou G P. Mechanisms responsible for high levels of permethrin resistance in the house fly. Pestic. Sci, 1986,17:195-206
    
    181. Smissaert H R. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science, 1964,143:129-131
    
    182. Soderlund D M, Adams P M, Bloomquist J R.Differences in the action of avermectin Bla on the GABAA receptor complex of mouse and rat. Biochem. Biophys. Res. Commun., 1987,146: 692-698
    
    183. Sussman J L, Harel M, Frolow F. Atomic structure of acetylcholinesterase from: Torpedo californica: A prototypic acetylcholine-binding protein. Science, 1991,253:872
    
    184. Tabashnik,B.E.Managing resistance with multiple pesticide tactic:theory,evidence,and
    recommendations.J.Econ.Entomol.,l989.82(5):1263-1269
    185. Tabashnik.B.E.Resistence risk assessmentrrealized heritability of resistance to Bacillus thuringiensis in diamongdback moth (Lepidoptera:Plutellidae), tobacco budworm (Lepidoptera:Nocyuidae), and Colorado patato beetle (Coleoptera:Chrysomelidae). J.Econ.Entomol., 1992,85(5): 1551-1559
    186. Takashi T, Osamu H, Yoshiaki K. Absence of protein polymorphism attributable to insecticide-insensitivity of acetylcholinesterase in the green rice \eafhopperflephotettix cincticeps Insect Biochem. Mol. Biol., 2000,30:325-333
    187. Tang Feng ,YUE Yong-de and HUA Ri-mao. The relationships among MFO, Glutathion S-Transferases, and phoxim resistance in Helicoverpa armigera. Pestic. Biochem. Physiol. 2000,68, 96-101
    188. Tripathi P K. Relation of acetylcholinesterase sensitivity to cross-resistance of a resistant house fly strain to organophosphates and carbamates. Pestic Biochem Physiol, 1976,6:30-34.
    189. Tsukamoto M, Narahashi T, Yamasaki T. Genetic control of low nerve sensitivity to DTP in insecticide-resistant house flies. Botyu-Kagaku., 1965,30: 128-132
    190. Vaughan A.,Hawkes N.Hemingway J. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide resistant Culex quinquefasciatus.Blochem i. 1997.325:359-365
    191. Voss G, Matsumura F. Biochemical studies on a modified and normal cholinesterase found in the leverkusen strains of the two-spotted spider mite Tetranychus urticae. Can. J. Biochem., 1965,43:63-72
    192. Voss G. Cholinesterase autoanalysis: a rapid method for biochemical studies on susceptible and resistant insects. J Econ Entomol, 1980,73:189.
    193. Walsh S B, Dolden T A, Moores G D, Kristensen M, Lewis T, Devonshire A L, Williamson M S. Identification and characterization of mutation in the housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 2001,359:175-181
    194. Weill Mylene, Philippe Fort, Arnaud Berthomieu. A novel acetylcholinesterase gene in mosquitoes code s for the insecticide target and is no-homologous to the ace gene in Drosophila The royal society,2002,9,2007-2016
    195. Weill,M.,Lutfalla,G.,Mogensen,K.,Chandra,F.,Berthomieu,A.,Vertical,C.,Pasteur,N.,Philips,A.,Fort,P .,Raymand,M.Insecticide resistance in mosquito vectors.Nature ,2003,423,136-137
    196. Wierenga J M and Hollingworth R M. Inhibition of altered acetylcholinesterases from insecticide resistant Colorado potato beetles (Coleoptera:Chrysomelidae). J. Econ. Entomol., 1993,86:673-679
    197. Yasuhiko Aiki, Toshinori Kozaki, Hiroshi Mizuno and Yoshiaki Kono Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite
    94??Tetranychus kanzawai.Pesticide Biochemistry and Physiology, 2005,82(2), 154-161
    
    198. Yang Y. H., Wu Y. Chen S. The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia. Insect Biochem. Mol. Biol. 2004.
    
    199. Yeoh C L, Kuwano E and Eto M. Studies on mechanism of organophosphate resistance in oriental houseflies Musca domestica vicina Macquart(Diptera:Muscidae).Appl Ent Zool,1981,16: 247-257
    
    200. Zhu Yu Cheng, Gordon L. Snodgrass and Ming Shun Chen.Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris.Insect Biochemistry and Molecular Biology, 2004,34(11),1175-1186
    
    201. Zhu Yu-Cheng, Alan K.Dowdy, James E.Baker.Differential mRNA expression levels and gene sequences of a putative carboxylesterase-like enzyme from two strains of the para sitoid Anisopteromalus calandrae(Hymenoptera:Pteromalidae). Insect Biochemistry and Molecular Biology. 1999,294,17-425
    
    202. Zahavi M,Tahori A S. Differences in acetylcholinesterase sensitivity to phosphamidon in Mediterranean fruit fly strains. Israel J. Entomol. V, 1970,185-191
    
    203. Zahavi M, Tahori A S, Klimer F. Insensitivity of acetylcholinesterases to organophosphorus compounds as related to size of esteratic site. Molec. Pharmac, 1971,7:611-619
    
    204. Zhu K Y and Brindley W A. Acetylcholinesterase and its reduced sensitivity to inhibition by paraoxon in organophosphate-resistant Lygus Hesperus Knight (Hemiptera: Miridae).Pestic Biochem Physiol, 1990,36:22-28
    
    205. Zhu K Y, Brindly W A. Enzymologicai and inhibitory properties of acetylcholinesterase purified from Lygus Hesperus Knight (Hemiptera: Miridae). Insect Biochem. Mol. Biol., 1992,22:245-251
    
    206; Zhu K Y, Clark J M. Cloning and sequencing of a cDNA encoding acetylcholinesterase in Colorado potato beetle, Leptinotarsa decemlineata(Say).Insect Biochem. Molec. Biol., 1995,25:1129-1138
    
    207. Zhu K Y, Clark J M. Purification and characterization of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem. Mol. Biol., 1994,24:453-461
    
    208. Zhu, K. Y, Lee, S. H. and Clark, J. M. A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pesticide Biochemistry and physiology. 1996,55:100-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700