二化螟和大螟对Bt水稻耐受性差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟Chilo supperssalis (Walker)和大螟Sesamia inferens (Walker)均为我国水稻生产上的重要害虫。随着水稻耕作制度的变更、害虫抗药性的产生和气候变暖等因素,二化螟和大螟种群的发生呈逐年上升趋势。转Bt基因抗虫水稻的成功研制为螟虫的防治提供了新策略。然而,Bt水稻所引发的生态安全问题是制约其商业化生产的重要因子。Bt杀虫晶体蛋白的种类不同,其杀虫谱也不同。Bt Cry晶体蛋白对二化螟具有较高的毒力效果,但对具有相近生态位的大螟毒力效果显著下降。田间试验也发现,转Bt Cry基因水稻对二化螟的控制效果显著高于大螟,可能引起转基因稻田害虫发生地位的变化。基于此,本文以二化螟、大螟和产业化前景的转Bt基因水稻为研究对象,系统开展了大螟人工饲养技术研究;Bt水稻对二化螟和大螟存活和营养利用的影响及二化螟和大螟对不同Bt毒蛋白的敏感基线研究。该研究结果可望明确二化螟和大螟对Bt水稻的耐受性差异,为害虫的抗性风险治理及Bt水稻的可持续应用和健康发展提供科学依据。主要研究结果如下:
     1.利用大豆粉、玉米粉、麦胚和鲜茭白等成分研制了大螟的半合成人工饲料,在人工饲料的基础上发展了大螟的人工饲养,即初孵幼虫-2日龄幼虫在茭白上饲养,3日龄-化蛹在人工饲料上饲养。利用该方法连续饲养大螟3代,幼虫的发育历期、蛹重、幼虫存活率、化蛹率、羽化率、卵孵化率和单雌产卵量等生活史参数与在天然饲料茭白上饲养的大螟相比,二者没有任何显著差异。而且利用该方法饲养,成本低、省工省力,能显著减少病原菌的感染。
     2.测定了Bt水稻(TT51、Cry2Aa)对鳞翅目害虫二化螟和大螟存活及营养利用影响。离体茎测定结果表明,Bt水稻TT51和Cry2Aa对二化螟和大螟均有较好的抗虫效果,6天后初孵幼虫死亡率几乎达100%;从幼虫取食第2d和第4d的校正死亡率来看,大螟在两转基因水稻的校正死亡率显著低于二化螟,表现出较高的耐受性。营养利用指标测定结果表明,大螟在不同生育期的两种转Bt基因水稻上的校正相对增长率(CRGR)明显高于二化螟或与二化螟差异不显著,但其校正相对取食量(CRCR)和校正近似消化率(CAD)低于二化螟或与二化螟差异不显著.这说明大螟在降低相对增长率,减少相对取食量的同时,提高了近似消化率,对转Bt水稻比二化螟具有更强的适应能力
     3.采用毒饲料饲喂法建立了二化螟和大螟对不同Bt毒蛋白的敏感基线。生测结果表明,大螟对不同Bt毒蛋白的LC50值显著高于二化螟,对不同Bt毒素二者LC50的相对比值分别为20.21 (Cry1Ac)、39.13 (Cry1Ab)、3.2(Cry1Ah)、1.85(Cry1Ca)和1.57(Cry2Aa)。与二化螟相比,大螟对不同Bt毒蛋白表现了较强的耐受性。大螟对Bt毒蛋白的敏感基线测定结果表明,不同地理种群的大螟初孵幼虫对Cry1Ac和Cry1Ab毒蛋白的LC50值的变化范围分别为138.09-1521.76mg(AI)/L和17.25-173.08mg(AI)/L。敏感种群和耐受种群对Cq1Ac和Cry1Ab毒蛋白敏感性的相对比值分别为11倍和10倍。不同地理种群大螟对两种Bt毒蛋白的LC50值存在显著的正相关关系,说明同一地理种群的大螟对Cry1Ac和Cry1Ab的耐受性是一致的,且对Cry1Ac的耐受性显著高于CrylAb。
The striped stem borer, Chilo supperssalis Walker (SSB) and the pink stem borer, Sesamia inferens Walker (PSB) are the important rice pests widely distributed in all rice growing regions in China. In recent years, SSB and PSB populations have increased gradually, because of changes in rice cultivation, use of new hybrid varieties and global climate and the occurrence of pest resistance to chemical insecticides. The development of transgenic rice lines expressing Bacillus thuringiensis (Bt) insecticidal protein provide the new strategy for the control of SSB and PSB. However, the ecological safety is the main factor for transgenic insect-resistant rice not being approved to be commercial application. Generally speaking, protein types of Bt insecticidal crystals are different, so are their insecticides spectrums. The Cry protein has showed high virulent effect on SSB, but low toxicity on PSB with similar niche to SSB. A preliminary field test also showed that the insecticidal Cry protein expressed in transgenic rice has effective control on SSB, but its efficacy on SSB decresed, which might change the component proportion of major pests in transgenic rice field. Therefore, researches on artifical rearing technique of PSB, the effect of Bt rice on the survival and nutritional utilization of SSB and PSB, baseline susceptibility of SSB and PSB to different Bt toxins were conducted. The main results were as follows:
     1. An artificial diet for PSB was formulated with soybean powder, corn powder, wheat germ powder and fresh water bamboo as major components. Rearing technique for mass and successive production of PSB was developed using fresh water bamboo (natural food source) for young larvae (neonates-2rd instar) and the artificial diet for older larvae (3rd instar and beyond). The performance of PSB reared on this fresh water bamboo/artificial diet regimen was evaluated over 3 consecutive generations by comparison with individuals fed on fresh water bamboo only for the whole generation. The fitness traits of larval durations, pupal weight, larval survival rate, pupation rate, eclosion rate and number of eggs laid per female were similar between these two diet regimens. Additionally, the rearing technique with fresh water bamboo/artificial diet combination could lower the cost by saving considerable amount of labor and time and significantly reduce the rate of insecticidal pathogen contaminations. The formulated diet and rearing technique were suitable for the mass and successive production of PSB.
     2. Effects of two transgenic Bt rice lines, TT51 and Cry2A, and their untransformed parental cultivar, Minghui63, at four different growing stages on the survival and nutritional utilization of SSB and PSB were conducted. The results indicated that both transgenic rice lines showed higher resistance to SSB than that to PSB at four different stages. The corrected mortalities of SSB feeding on both transgenic lines for 2 day and 4 day are significantly higher than that of PSB at different stages, respectively. Indices, Corrected relative growth rate, corrected relative consumption rate and corrected approximate digestibility, for larval consumption and digestibility indicated that both transgenic lines showed significant inhibition on the larval growth and development of SSB and PSB. CRGRs for SSB feeding on TT51 and Cry2Aa at different stages were lower than or similar to that for PSB on both lines, While CRCRs and CADs for SSB were higher than or similar to that for PSB.
     3. Baseline susceptibilities of SSB and PSB to different Bt toxins were established. The results of bioassay showed that the LC50 values of PSB to Bt toxins were very higher than that of SSB to Bt toxins. The ratio values of PSB and SSB LC50 values were 20.21 (CrylAc),39.13 (Cry1Ab),3.2 (Cry1Ah),1.85 (Cry1Ca) and 1.57 (Cry2Aa), which indicated that PSB showed higher tolerant to Bt toxin compared with SSB. Geographic variability in susceptibility of field-collected PSB to CrylAc and CrylAb was also studied using a diet incorporation method. Colonies of PSB were established from 6 different geographic areas of China. Among the different populations, the LC50 of CrylAc ranged from 138.09 mg (A.I.)/L to 1521.76 mg (A.I.)/L, and the LC50 of CrylAb ranged from 17.25 mg (A.I.)/L to 173.08 mg (A.I.)/L. The intra-specific variations in Cry1Ac and CrylAb susceptibility were 11- and 10-fold, respectively. Within a given population, the susceptibility to CrylAc and CrylAb were positively correlated and CrylAb was more susceptive to PSB than CrylAc. The results provided much needed groundwork for establishing susceptibility baseline and monitoring Bt tolerance of PSB.
引文
[1]Abbott W S. A method of computing the effectiveness of an insecticide[J]. Jnournal of Economic Entomology,1925,18:265-267.
    [2]Aguda R M, Datta K, Tu J, et al. Expression of Bt genes under control of different promoters in rice at vegetative and flowering stages[J]. International Rice Research,2001,26 (1):26-27 Notes.
    [3]Ahmad, A. et al. Expression of synthetic CRY1AB and CRY1AC genes in Basmati rice (Oryza sativa L.) variety 370 Ovia Agrobacterium-mediated transformation for the control of the European corn borer(Ostrinia nubilalis) [J]. In Vitro Cellular and Developmental Biology,2002, 38:213-220.
    [4]Alam M F, Abrigo E, Datta K, et al. Transgenic insect resistance maintainer line (IR68899B) for improvement of hybrid rice[J]. Plant Cell Report,1999,18:572-575.
    [5]Alam M F, Datta K, Abrigo E, et al. Production of transgenic deep water indica rice plants expressing a synthetic Bacillus thuringiensis CrylAb gene with enhanced resistance to yellow stem borer[J]. Plant Science,1998,135(1):25-30.
    [6]Alcantara E P, Aguda R M, Curtiss A, et al. Bacillus thuringiensis delta endotoxin binding to brush border membrane vesicles of rice stem borers[J]. Arch Insect Biochem Physiol,2004, 55(4),169-177.
    [7]Alfonso-Rubi J, Ortego F, Castanera P, et al. Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae[J]. Transgenic Research,2003,12:23-31.
    [8]Ali M I, Luttrell R G, Young S Y. Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera:Noctuidae) populations to CrylAc insecticidal protein[J]. Journal of Economic Entomology,2006,99:164-175.
    [9]Alstad D N, Andow D A. Managing the evolution of insect resistance to transgenic plants[J]. Science,1995,268:1894-1896.
    [10]Andow D A, Alstad D N. F2 screen for rare resistance alleles[J]. Journal of Economic Entomology,1998,91:572-578.
    [11]Anilkumar K J, Rodrigo-Simon A, Ferre J, et al. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie) [J]. Applied Environmental Microbiology,2008,74:462-469.
    [12]Bajaj S, Mohanty A,2005. Recent advances in rice biotechnology-towards genetically superior transgenic rice[J]. Plant Biotechnology Journal,2005,3:275-307.
    [13]Balachandran S, Chandel G, Alam M F, et al. Improving hybrid rice through another culture and transgenic approaches[M].4th International Symposium on hybrid rice, Hanoi, Vietnam,2002, pp:105-118.
    [14]Bashir K, Husnain T, Fatima T, et al. Field evaluation and risk assessment of transgenic indica basmati rice[J]. Molecular Breeding,2004,13(4):301-312.
    [15]Bashir K, Husnain T, Fatima T, et al. Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus thuringiensis is highly resistant to two lepidopteran insects in the field[J]. Crop Protection,2005,24 (10):870-879.
    [16]Bashir K, Husnain T, Riazuddin S. Response of transgenic rice expressing two Bt genes to nontarget insects[J]. International Rice Research,2004a,29(2):15-16 Notes.
    [17]Baxter S W, Zhao J Z, Gahan L J, et al. Novel genetic basis of field-evolved resistance to Bt in Plutella xylostella[J]. Insect Molecular Biology,2005,14,327-334.
    [18]Baxter S W, Zhao J Z. Shelton A M, et al. Genetic mapping of Bt-toxin binding proteins in a CrylA-toxin resistant strain of diamondback moth Plutella xylostella[J]. Insect Biochemical Molecular Biology,2008,38:125-135
    [19]Bentur J S, Andow D A, Cohen M B, et al. Frequency of alleles conferring resistance to a Bacillus thuringiensis toxin in a Philippine population of Scirpophaga incertulas (Lepidoptera: Pyralidae) [J]. Journal of Economic Entomology,2000,93:1515-1521
    [20]Bentz J, Barbosa P, Effects of dietary nicotine (0.1%) and parasitismby Cotesia congregata on the growth and food consumption andutilization of the tobacco hornworm Manduca sexta[J]. Entomologia Experimentalis et Applicata,1990,57:1-8.
    [21]Bhutani S, Kumar R, Chauhan R, et al. Development of transgenic indica rice plants containing potato proteinase inhibitor2 gene with improved defense against yellow stem borer[J]. Physiology and Molecular Biology of Plants,2006,12(1):43-52.
    [22]Bird L J, Akhurst R J. Variation in susceptibility of Helicoverpa armigera (Hiibner) and Helicoverpa punctigera (Wallengren) (Lepidoptera:Noctuidae) in Australia to two Bacillus thuringiensis toxins[J]. Journal of Invertebrate Pathology,2007,94:84-94.
    [23]Bourguet D, Chaufaux J, Seguin M, et al. Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer, Ostrinia nubilalis[J]. Theoretical and Applied Genetics,2003,106:1225-1233.
    [24]Breitler J C, Marfa V, Royer M, et al. Expression of a Bacillus thuringiensis Cry1B synthetic gene protects Mediterranean rice against the striped stem borer[J]. Plant Cell Report,2000,19: 1195-1202.
    [25]Breitler J C, Vassal J N, del Mar Catala M, et al. Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter, protection and transgene expression under Mediterranean field conditions [J]. Plant Biotechnology Journal,2004,2(5):417-30
    [26]Burd A D, Gould F, Bradley J R. Estimated frequency of non-recessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera:Noctuidae) in eastern North Carolina[J]. Journal of Economic Entomology,2003,96:137-142.
    [27]Chatterji S M, Sharma G C, Siddiqui K H, et al. Laboratory rearing of the pink stem borer, Sesamia inferens Walker, on artificial diets[J]. Indian Journal of Entomology,1963,31(1):75-77.
    [28]Chen H, Tang W, Xu C, et al. Transgenic indica rice plants harboring a synthetic cry 2A gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests[J]. Theoretical and Applied Genetics,2005,111:1330-1337.
    [29]Chen H, Zhang G, Zhang Q, et al. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera:Crambidae) [J]. Journal of Economic Entomology,2008,101(1):182-189.
    [30]Cheng X Y, Sardana R, Kaplan H. et al. Agrobacterium-transformed rice expressing synthetic CrylAb an CrylAc genes are highly toxic to striped stem borer and yellow stem borer[J]. Proceedings of the National Academy of Sciences,1998,95:2767-2772.
    [31]Cohen M B, Gould F, Bentur J S. Bt rice:practical steps to sustainable use[J]. International Rice Research Notes,2000a,25:5-10.
    [32]Cohen M B, Romena A M, Gould F. Dispersal by larvae of the stem borers Scirpophaga incertulas and Chilo suppressalis in plots of transplanted rice[J]. Environmental Entomology, 2000b,29 (5):958-971
    [33]Crickmore N, Zeigler D R, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiology and Molecular Biology Review,1998, 62,807-813.
    [34]Datta K, Baisakh N, Thet K M, et al. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight[J]. Theoretical and Applied Genetics,2002, 106:1-8.
    [35]Datta K, Baisakh N, Thet K M, et al. Transgenesis-breeding for multiple plant protection[J]. Philippine Journal of Crop Science,2003,27:29.
    [36]Datta K, Vasquez A, Tu J, et al. Constitutive and tissue specific differential expression of Cry1Ab gene in transgenic rice plants conferring resistance of rice insect pest[J]. Theoretical and Applied Genetics,1998,97:20-30.
    [37]Deka S, Barthakur S. Overview on current status of biotechnological interventions on yellow stem borer Scirpophaga incertulas (Lepidoptera:Crambidae) Resistance in rice[J]. Biotechnology Advances,2010,28:70-81.
    [38]Dirie A M, Cohen M B, Gould F. Larval dispersal and survival of Scirpophaga incertulas and Chilo suppressalis on Cry1Ab transformed and nontransgenic rice[J]. Environmental Entomology, 2000,29 (5):972-978
    [39]Duan X, Li X, Xue Q, et al. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant[J]. Nature Biotechnology,1996,14:494-498.
    [40]Ferre J, Van Rie J. Biochemistry and genetics of insect resistance to it Bacillus thuringiensis[J]. Annual Review Entomology,2002,47:501-533.
    [41]Foissac X, Du Edwards M G J P, Gatehouse A M R, et al. Putative protein digestion in a sap-sucking homopteran plant pest (rice brown plant hopper; Nilaparvata lugens, Delphacidae)-identification of trypsin-like and cathepsin B-like proteases[J]. Insect Biochemical and Molecular biology,2002,32:967-978.
    [42]Foissac X, Nguyen T L, Christou P, et al. Resistance to green leafhopper(Nephotettix virescens) and brown planthopper(Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA) [J]. Journal of Insect Physiology,2000,46(4):573-583
    [43]Food and Agriculture Organization of the United Nations (FAO). The state of food security in the world[C].2004, pp:30-31.
    [44]Forcada C, Alcacer E, Garcera M D,et al. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins[J]. Archives of Insect Biochemistry and Physiology,1996,31:257-272.
    [45]Fujimcto H, Itoh K, Yamamoto M, et al. Insect resistant rice generated by introduction of a modified endotoxin Gene of Bacillus thuringiensis[J]. Nature Biotechnology,1993,11: 1151-1155.
    [46]Gahan L J, Gould F, Heckel D G. Identification of a gene associated with Bt resistance in Heliothis virescens[J]. Science,2001,393:857-860.
    [47]Gahan L J, Gould F, Lopez J D, et al. A polymerase chain reaction screen of field populations of Heliothis virescens for a retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin[J]. Journal of Economic Entomology,2007,100(1):187-194.
    [48]Gahan L, Ma J Y T, Coble M L, et al. Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera:Noctuidae) [J]. Journal of Economic Entomology,2005,98: 1357-1368.
    [49]Gao Y L, Hu Y, Fu Q, et al. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis[J]. Journal of Invertebrate Pathology,2010,105(1): 11-15.
    [50]Gassmann A J, Carriere Y, Tabashnik B E. Fitness costs of insect resistance to Bacillus thuringiensis[J]. Annual Review Entomology,2009,54:147-163.
    [51]Georghiou G P, Wirth M C. Influence of exposure to singleversus multiple toxins of Bacillus thuringiensis subsp. israelensis ondevelopment of resistance in the mosquito Culex quinquefasciatus(Diptera:Culicidae)[J]. Applied Environmental Microbiology,1997,63: 1095-1101.
    [52]Gosal S S, Gill I M S, Gill R, et al. Tissue culture and transformation of some field crops, Food security and environment protection in the new millennium[M]. Proceedings of Asian Agriculture Congress, Manila,2001,314.
    [53]Gosal S S, Gill R, Sindhu A S, et al. Introducing the CrylAc gene into basmati rice and transmitting transgenes to R3 progeny[M]. Proceedings of the International Rice Research Institute,2003,558-60.
    [54]Gosal S S, Gill R, Sindhu A S, et al. Transgenic basmati rice carrying genes for stem borer and bacterial leaf blight resistance[M]. Proceedings of International Rice Research Conference Los banos, Philippines,2000,353-360.
    [55]Gould F, Blair N, Reid M, et al. Bt toxin resistance management:stable isotope assessment of alternate host use by Helicoverpa zea[J]. Proceedings of the National Academy of Sciences,2002, 99:16581-16586.
    [56]Gould F. Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology[J]. Annual Review Entomology,1998,43:701-726
    [57]Griffiths B S, Heckmann L H, Caul S, et al. Varietal effects of eight paired lines of transgenic Bt maize and near-isogenic non-Bt maize on soil microbial and nematode community structure[J]. Plant Biotechnology Journal,2007,5:60-68.
    [58]Griffitts J S, Haslam S M, Yang T, et al. Glycolipds as receptors for Bacillus thuringiensis crystal toxin[J]. Science,2005,307:922-925.
    [59]Griffitts J S, Whitacre J L, Stevens D E, et al. Bacillus thuringiensis toxin resistance fromloss of a putative carbohydrate-modifying enzyme[J]. Science,2001,293:860-864.
    [60]Gunning R V, Dang H T, Kemp F C, et al. New resistance mechanism in Helicoverpa armigera threatens transgenic crop expressing Bacillus thuringiensis CrylAc toxin[J]. Applied Environmental Microbiology,2005,71:2558-2563.
    [61]Han L Z, Liu P L, Hou M L, et al. Baseline susceptibility of Cnaphalocrocis medinalis (Lepidoptera:Pyralidae) to Bacillus thuringiensis Toxins in China[J]. Journal of Economic Entomology,2008,101:1691-1696.
    [62]Han L Z, Wu K M, Peng Y F, et al. Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis[J]. Journal of Invertebrate Pathology,2007, 96:71-79.
    [63]Han L Z, Wu K M, Peng Y F, et al. Evaluation of transgenic rice expressing Cry1Ac and CpTI against Chilo suppressalis and intrapopulation variation in susceptibility to CrylAc[J]. Environmental Entomology,2006,35:1453-1459.
    [64]He K L, Wang Z Y, Wen L P, et al. Determination of baseline susceptibility to CrylAb protein for Asian corn borer (Lepidoptera:Crambidae) [J]. Journal of Applied Entomology,2005,129: 407-412.
    [65]Herrero S, Gechev T, Bakker P L, et al. Bacillus thuringiensis CrylCa-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes [J]. BMC Genomics,2005,6:96.
    [66]Heuvelink E, Marcelis L F M. Influence of assimilate supply on leaf formation in sweet pepper and tomato [J]. Journal of Horticultural Science,1996,71 (3):405-414
    [67]Ho N H, Baisakh N, Oliva N, et al. Translational fusion hybrid Bt genes confer resistance against yellow stem borer in transgenic elite Vietnamese rice cultivars[J]. Crop Science,2006,46: 781-789.
    [68]Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiology Review,1989,53:242-255.
    [69]Holt H E. Season-long quantification of Bacillus thringiensis insecticidal crystal protein in field grown transgenic cotton Brisbane,1998. In:Zalucki, M. & R. Drew eds. Pest management-future challenges. Proceeding of the 6th Australian Applied Entomology Conference, Brisbane.1:215-222.
    [70]Hosoyama H, Kentaro I K, Keiko A K, et al. Introduction of a chimeric gene encoding an oryzacystatin—β-glucoronidase fusion protein into rice protoplasts and regenaratin of transformed plants[J]. Journal of Plant Cell Report,1995,15:174-177.
    [71]Huang J K, Hu R, Rozelle F S, et al. Insect-Resistant GM rice in farmers' fields:assessing productivity and health effects in China[J]. Science,2005,308:688-690.
    [72]Huang F, Leonard B R, Andow D A. Sugarcane borer (Lepidoptera:Crambidae)resistance to transgenic Bacillus thuringiensis maize[J]. Journal Economic Entomology,2007,100(1): 164-171.
    [73]Husnain T, Asad J, Maqbool S B, et al. Variability in expression of insecticidal CrylAb gene in indica basmati rice [J]. Euphytica,2002,128:121-8.
    [74]Husnain T, Bokhari S M, Riaz N, et al. Pesticidal genes of Bacillus thuringiensis in transgenic rice technology to breed insect resistance[J]. Pakistan Journal of Biochemistry and Molecular Biology,2003,36(3):133-42.
    [75]Intikhab S, Karim S, Riazuddin S. Natural variation among rice yellow stem borer and rice leaf folder populations to C delta endotoxins[J]. Pakistan Journal of Biological Science,2000,3(8): 1285-1289.
    [76]Irie K, Hosoyama H, Takeuchi T, et al. Transgenic rice established to express corn cystatin exhibits strong inhibitory activity against insect gut proteinases[J]. Plant Molecular Biology, 1996,30:149-157.
    [77]Janmaat A F, Meyers J. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni[J]. Proceedings Biology Science, 2003,270:2263-2270.
    [78]Jurat-Fuentes J L, Adang M J. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae [J]. Europen Journal of Biochemistry,2004, 271:3127-3135
    [79]Jurat-Fuentes J L, Adang M J. Cry toxin mode of action insusceptible and resistant Heliothis virescens larvae[J]. Journal Invertebrate Pathology,2006,92:166-171
    [80]Jurat-Fuentes J L, Gould F L, Adang M J, et al. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggest multiple mechanisms of resistance [J]. Applied Environmental Microbiology,2003,69:5898-5906.
    [81]Khanna H K, Raina S K. Elite indica transgenic rice plants expressingmodified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas) [J]. Transgenic Research,2002,11:411-423
    [82]Khush G S, Brar D S. Biotechnology for rice breeding:progress and potential impact. Proceedings.20th Session of the International Rice Commission (23rd-26th July,2002, Bangkok, Thailand.); 2002.
    [83]Khush G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Molecular Biology,1997, 35:25-34.
    [84]Kim S, Kim C, Kim W L T, et al. Inheritance and field performance of transgenic Korean Bt rice lines resistant to rice yellow stem borer[J]. Euphytica,2008,164:829-839.
    [85]Knight P J K, Carroll J, Ellar D J. Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin[J]. Insect Biochemical Molecular Biology,2004,34:101-112.
    [86]Knowles B H. Mechanism of action of Bacillus thuringiensis insecticidal-endotoxins[J]. Advances in Insect Physiology,1994,24:275-307.
    [87]Kumar K P, Gujar G T. Baseline susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to Bacillus thuringiensis CrylA toxin in India[J]. Crop Protect,2005,24:207-212.
    [88]Lee M K, Aguda R, Cohen M B. Deter mination of recept or bindingpr operties of Bacillus thuringiensis δ-endotoxin to rice stem borer midguts[J]. Applied Environmental Microbiology, 1997,63:1453-1459
    [89]Lee M, Milne R E, Ge A Z, et al. Location of Bombyx mori receptor binding region of a Bacillus thuringiensis delta endotoxin[J]. Journal of Biological Chemistry,1992,167:3115-3121.
    [90]LeOra Software. POLO-PC:Probit and Logit Analysis. LeOra Software, Berkeley, CA.1997.
    [91]Li G P, Wu K M, Gould F, et al. Frequency of Bt resistance genes in Helicoverpa armigera population from the Yellow River cotton-farming region of China[J]. Entomologia. Experimentalis et Applicata,2004,112:135-143.
    [92]Li G, Xu X, Xing H, et al. Insects resistance to Nilaparvata lugens and Cnephalocrosis medinalis in transgenic indica rice and the inheritance of gna+sbti transgenes[J]. Pest Management Science, 2005,61:390-396.
    [93]Loc, N.T., Tinjuangjun, P., Gatehouse, A.M.R., et al. Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants, which accumulate higher levels of proteins conferring insect resistance[J]. Molecular Breeding,2002,9:231-244
    [94]Luttrell R G, Wan L, Knighten K, et al. Variation in susceptibility of Noctuid (Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis[J]. Journal of Economic Entomology,1999,92:21-32.
    [95]Ma G, Roberts H, Sarjan M, et al. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? [J]. Insect Biochemical Molecular Biology,2005,35:729-739
    [96]Mahbubur Rahman M, Roberts H L, Schmidt O. Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella[J].Journal of Invertebrate Pathology,2007,96:125-132
    [97]Maiti M K, Nayak P, Basu A, et al. Performance of Bt IR64 rice plants resistant against yellow stem borer in their advanced generations. Food security and environment protection in the new millennium [J]. Proceedings of Asian Agriculture Congress. Manila; 2001, pp:314.
    [98]Mallet J, Porter P. Preventing insect adaptation to insect-resistant crops:are seed mixtures or refugia the best strategy? Proceedings of the Royal Society B, Biological Sciences,1992,250: 165-166.
    [99]Maqbool S B, Christou P. Multiple traits of agronomic importance intransgenic indica rice plants: analysis of transgene intergrati on patterns, expression levels and stability[J]. Molecular Breeding, 1999,5:471-480.
    [100]Maqbool S B, Husnain T, Riazuddin S, et al. Effective control of yellowstem borer and rice leaf folder in transgenic rice indica varieties Basmati 370 and M7 using the novel endotoxin cryⅡA Bacillus thuringinensis gene[J]. Molecular Breeding,1998,6:1-7
    [101]Maqbool S B, Riazuddin S, Thi Loc N, et al. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests[J]. Molecular Breeding,2001,7:85-93
    [102]Marfa V, Mele E, Gabarra R, et al. Influence of the developmental stage of transgenic rice plants (cv. Senia) expressing the Cry1B gene on the level of protection against the striped stem borer (Chilo suppressalis) [J]. Plant Cell Report,2002,20:1167-1172.
    [103]McGaughey W H. Insect resistance to the biological insecticide Bacillus thuringiensis[J]. Seienee, 1985,229:193-195.
    [104]Meng F X, Wu K M, Gao X W, et al. Geographic variation in susceptibility of Chilo suppressalis to Bacillus thuringiensis toxins in China[J]. Journal of Economic Entomology,2003,96 (6): 1838-1842.
    [105]Mochizuki A, Nishizawa Y, Onodera H, et al. Transgenic rice plants expressing a trypsin inhibitor are resistant against rice stem borers, Chilo suppressalis[J]. Entomologia Experimentalis Applicata,1999,93:173-178.
    [106]Morin S, Biggs R W, Sisterson M S, et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm[J]. Entomologia Experimentalis Applicata,2003,100: 5004-5009.
    [107]Morin S, Henderson S, Fabrick J A. DNA-based detection of Bt resistance alleles in pink bollworm[J]. Insect Biochemistry and Molecular Biology,2004,34:1225-1233.
    [108]Morin, S. Biggs R W, Sisterson M S, et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm[J]. Proceedings of the National Academy of Sciences, 2003,100:5004-5009.
    [109]Murray E E, Rocheleau T, Eberle M. et al. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts[J]. Plant Molecular Biology,1991,16(6):1035-1050.
    [110]Nagadhara D, Ramesh S, Pasalu I C, et al. Transgenic indica rice resistant to sap-sucking insects[J]. Plant Biotechnology Journal,2003,1:231-240.
    [111]Nagadhara D, Ramesh S, Pasalu I C. Transgenic rice the plants expressing snowdrop lectin gene (GNA) exhibit high-level resist-ance to the whitebacked planthopper (Sogatella furcifera) [J]. Theoretical and Applied Genetics,2004,109:1399-1405.
    [112]Nakamatsu Y, Gyotoku Y, Tanaka T. The endoparasitoid Cotesia kariyai (Ck) regulates the growth and metabolic efficiency of Pseudaletia separata larvae by venom and Ck polydnavirus[J]. Journal of Insect Physiology,2001,47(6):573-584.
    [113]Nayak P, Basu D, Das S, et al. Transgenic elite indica rice plants expressing Cry1Ac 8 endotoxin of Bacillus thuringiensis are resist-ant against yellow stem borer (Scirophaga incertulas) [J]. Proceedings of the National Academy of Sciences,1997,94:2111-2116.
    [114]Oppert B, Kramer K J, Beeman R W, et al. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins[J]. Journal of Biological Chemistry,1997,272:23473-23476
    [115]Qureshi Z A, Anwar M, Ashraf M. Rearing, biology and sterilization of the pink rice borer, Sesamia inferens Walker[J]. Jap. Pesticide. Inf.,1972,10:129
    [116]Rahman M M, Roberts H L, Sarjan M, et al. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephesia kuehniella[J]. Proceedings of the National Academy of Sciences,2004,101:2696-2699.
    [117]Rahman M, Rashid H, Shahid A A, et al. Insect resistance and risk assessment studies of advanced generations of basmati rice expressing two genes of Bacillus thuringiensis[J]. Electron J Biotechnol,2007,10(2):241-251.
    [118]Raina S K, Khanna H K, Talwar D, et al. Insect bioassays of transgenic indica rice carrying a synthetic Bt toxin gene, crylAc[J]. Advances in rice genetics. Proc of 4th Int Rice Res. Institute, 2003, pp:567-569.
    [119]Ramesh S, Nagadhara D, Reddy V D. Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens[J]. Plant Science,2004,166,1077-1085.
    [120]Rao K. V, Rathore K S, Hodges T K, et al. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper[J]. The Plant Journal,1998,15:469-477.
    [121]Riaz N, Husnain T, Fatima T, et al. Development of Indica Basmati rice harboring two insecticidal genes for sustainable resistance against lepidopteran insects [J]. South African Journal of Botany,2006,72(2):217-223.
    [122]Sachs E S, Benedict J H, Stelly D M, et al. Expression and segregation of genes encoding Cry1A insecticidal proteins in cotton [J]. Crop Science,1998,38:1-11
    [123]Saha P, Majumder P, Dutta I, et al. Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests[J]. Planta,2006,23:1329-1343.
    [124]SAS Institute.2000. JMP(?) Statistics and Graphics Guide. Version 4. Cary, NC, USA.
    [125]Savary S, Willocquet L, Elazegui F S, et al. Rice pest constraints in tropical Asia:quantification of yield losses due to rice pests in a range of production situations[J], Plant Disease,2000,84: 357-369.
    [126]Senthilkumar P, Siddiqui K. H. Compounding artificial diets for rearing of the pink stem borer, Sesamia inferens Walker[J]. Journal of Entomology Research,1993,17(2):81-90.
    [127]Sharma H C, Sharma K K, Crouch J H. Genetic trans-formation of crops for insect resistance: potential and limitations[J]. Critical Reviews in Plant Sciences,2004,23:47-72.
    [128]Shu Q Y, Ye G Y, Cui H R, et al. Transgenic rice plants with a synthetic crylAb gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species[J]. Molecular Breeding,2000,6:433-439.
    [129]Siddiqui K H, Sarup P, Matwaha K K. Formulation of artificial diets for mass rearing of the pink borer, Sesamia inferens Walker, in the laboratory[J]. Journal of Entomology Resarch,1983.7(2): 154-160.
    [130]Sinhg P, Moore R F. Handbook of Inseet Rearing. New York [M].:Tokyo,1985:45-62
    [131]Sisterson M S, Antilia L, Carriere Y, et al. Effects of insect population size on evolution of resistance to transgenic crops[J]. Journal of Economic Entomoloy,2004,97:1413-1424.
    [132]Slamet L I H, Novalina S, Damayanti D, et al. Inheritance of crylAb and snowdrop lectin gna genes in transgenic javanica rice progenies and bioassay for resistance to brown plant hopper and yellow stem borer[J]. IRRI,2003, pp:565-566.
    [133]Sun X, Wu A, Tang K. Transgenic rice lines with enhanced resistance to the small brown planthopper[J]. Crop Protection,2002,21(6):511-514
    [134]Tabashnik B E, Cushing N L, Finson N, et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutenidae) [J]. Journal of Economic Entomology,1990,83:1671-1676.
    [135]Tabashnik B E, Finson N, Groeters F R. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella[J]. Proceedings of the National Academy of Sciences,1994,91:4120-4124
    [136]Tabashnik B E, Gassmarm A J, Crowder D W, et al. Insect resistance to Bt crops:evidence versus theory[J]. Nature Biotechnology,2008,26:199-202.
    [137]Tabashnik B E, Liu Y, Malvar T. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis[J]. Proceedings of the National Academy of Sciences,1997,94:12780-12785.
    [138]Tabashnik B E, Malvar T, Liu Y. Cross-resistance of the diamondback moth indicates altered interactions with domain Ⅱ of Bacillus thuringiensis toxins[J]. Applied Environmental Microbiology,1996,62:2839-2844.
    [139]Tabashnik B E, Patin A L, Dennehy T J. Dispersal of pink bollworm (Lepodoptera:Gelechiidae) males in transgenic cotton that produces a Bacillus thuringiensis toxin[J]. Journal of Economic Entomology,1992,772-780.
    [140]Tabashnik B E. Evolution of resistance to Bacillus thuringiensis[J]. Annual Review of Entomology,1994,39:47-7.
    [141]Tang J D, Collins H L, Metz T D, et al. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies[J]. Journal of Economic Entomology,2001,94(1): 240-247.
    [142]Thompson S N. Effects of parasitization by the insect parasite Hyposoter exguiae on the growth, development and physiology of its host Trichoplusia ni[J]. Parasitology,1982,84:491-510.
    [143]Tinjuangjun P, Loc N T, Gatehouse A M R. Enhanced insect resistance in Thai rice varietie generated by particle bombardment[J]. Molecular Breeding,2000,6:391-399.
    [144]Tu J M, Zhang G A, Datta K, et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin[J]. Nature Biotechnology,2000,18:1101-1104.
    [145]Tyagi A K, Mohanty A, Bajaj S, et al. Transgenic rice:a valuable monocot system for crop improvement and gene research[J]. Critical Reviews in Plant Sciences,1999,19:41-79.
    [146]Tyagi A K, Mohanty A. Rice transformation for crop improvement and functional genomics[J]. Plant Science,2000,158:1-18.
    [147]Vain P, Worland, Clarke M C, Richard G, et al. Expression of an engineered cysteine proteinase inihibitor for nematode resistance in transgenic rice plants[J]. Theoretical and Applied Genetics, 1998,96:266-271.
    [148]Whalon M E, McGaughey W H. Bacillus thuringiensis:use and resistance management. In: Insectieides with novel modes of action:mechanism and application [J]. Ishaaya. I. and Degheele. D. Springer, Berlin.,1998:106-137
    [149]Wu C, Fan Y, Zhang C, et al. Transgenic fertile japonica rice plants expressing a modified cry1Ab gene resistant to yellow stem borer[J]. Plant Cell Report,1997b,17(2):129-132.
    [150]Wu C, Zhao R, Fan Y, et al. Transgenic rice plants resistant to yellow stem borer[J]. Rice Biotechnology,1997a,9:7.
    [151]Wu K M, Guo Y Y, Gao S S. Evaluation of the natural refuge functi on for Helicoverpa ar migera within Bt transgenic cotton growing areas in north China[J]. Journal of Economic Entomology, 2002,95 (4):832-837
    [152]Wu W X, Ye Q F, Min H, et al. Effect of crylAb toxin released from straw of Bt-transgenic rice on microflora and enzymatic activities in upland soil[J]. Acta Pedologica Sinica,2003,40: 606-612.
    [153]Wiinn J, Kloti A, Burkhardt P K, et al. Transgenic indica rice breeding line IR-58 expressing a synthetic CrylA(b) gene from Bacillus thuringiensis provides effective insect pest control [J]. Biology and Technology,1996,14:171-176.
    [154]Xu D, Duan X, Wang B. Expression of a late embryogenesis abundant protein gene, Hval, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiology, 1996,110:249-257.
    [155]Xu X, Yu L, Wu Y. Disruption of a cadherin gene associated with resistance to CrylAc-endotoxin of Bacillus thuringiensis in Helicoverpa armigera[J]. Applied Environmental Microbiolology,2005,71:948-954.
    [156]Yang Y, Chen H, Wu Y, et al. Mutated cadherin alleles froma field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin CrylAc. Applied Environmental Microbiology,2007,73:6939-6944.
    [157]Ye G Y, Shu Q Y, Yao H W. Field evaluation of resistance of transgenic rice containing a synthetic CrylAb gene from Bacillus thuringiensis Berliner to two stem borers[J]. Journal of Economic Entomology,2001a,94:271-276.
    [158]Ye G Y, Tu J M., Cui H. Transgenic IR72 with fused Bt gene crylAb/crylAc from Bacillus thuringiensis is resistant against four lepidopteran species under field conditions [J]. Plant Biotechnology,2001b,18:125-133.
    [159]Ye G Y, Yao H W, Shu Q Y. High levels of stable resistance in transgenic rice with a crylAb gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medinalis (Guenee) under field conditions[J]. Crop Protect,2003,22:171-178.
    [160]Zhao J Z, Cao J, Li Y, et al. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution[J]. Nature Biotechnology,2003,21(12):1493-1497.
    [161]Gill S S, Cowles E A. Pietrantonio P V. The mode of action of Bacillus thuringiensis endotoxins[J]. Annual Review Entomology,1992,37:615-636.
    [162]Knowles B H, Dow J A T. The crystal 8-endotoxins of Bacillus thuringiensis:models for their mechanism of action on the insect gut[J]. Bioassays,1993,15:469-476.
    [163]McGaughey W H, Whalon M E. Managing insect resistance to Bacillus thuringiensis[J]. Science, 1992,258:1451-1455.
    [164]Waldbauer G P. The consumption and utilization of food by insects[J]. Advances in Insect Physiology,1968,5:229-281.
    [165]傅强,黄世文,2005.水稻病虫害诊断与防治原色图谱[M].北京:金盾出版社.
    [166]高玉林,傅强,王锋,等.转CrylAc和CpTI双基因抗虫水稻对二化螟和大螟的致死效应及田间螟虫构成的影响[J].中国水稻科学,2006,20(5):543-548.
    [167]郭林芳,李保平.斑痣悬茧蜂寄生对甜菜夜蛾幼虫取食和食物利用的影响[J]..昆虫学报,2008,51(10):1017-1021.
    [168]韩兰芝,侯茂林,吴孔明,等.转crylAc+CpTI基因水稻对大螟的致死和亚致死效应[J].中国农业科学,2009,42(2):523-531.
    [169]何丹军,沈晋良,周威君,等.应用单雌系F2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率[J].棉花学报,2001,13(2):105-108
    [170]黄诚华,姚洪渭,叶恭银,等.浙江省二化螟不同种群和大螟对三唑磷的敏感性研究[J].农药学学报,2005,7(4):323-328.
    [171]姜永厚,傅强,程家安,等.转Bt基因水稻对二化螟绒茧蜂生物学特性的影响[J].昆虫学报,2004,47(1):124-129
    [172]李冬虎,傅强,王锋,等.转sck/crylAc双基因抗虫水稻对二化螟和稻纵卷叶螟的抗虫效果[J].中国水稻科学,2004,18:43-47.
    [173]刘雨芳,王锋,尤民生,等.转基因水稻及其杂交后代对稻纵卷叶螟的田间抗性检测[J].中国农业科学,2005,38(4):725-729.
    [174]刘卓荣,2007.大螟天然庇护所及人工饲料的研究[D].硕士学位论文.北京:中国农业科学院:29-41.
    [175]盛承发,吴伟祥,高留德,等.我国水稻螟虫大发生现状、损失估计及防治对策[J].植物保护,2003,29(1);37-39
    [176]舒庆尧,叶恭银,崔海瑞,等.转基因水稻“克螟稻”选育[J].浙江大学学报,1998,24(6):579-580.
    [177]苏军,胡昌泉,翟红利,等.农杆菌介导籼稻明恢86高效稳定转化体系的建立[J].福建农业学报,2003,18(4):209-213
    [178]王琛柱,钦俊德.棉铃虫幼虫中肠主要蛋白酶活性的鉴定[J].昆虫学报,1996,39(1):
    [179]王延年.昆虫人工饲料的发展、应用和前途[J].昆虫知识,1990,27(5):310-314
    [180]王忠华,舒庆尧.夏英武基因工程在水稻改良方面的研究进展[J].生物技术通报.1999, 2:5-8
    [181]卫剑文,许新华,陈金婷,等.应用Bt和SBTi基因提高水稻抗虫性的研究[J].生物工程学报,2000,16(5):603-608
    [182]吴刚,崔海瑞,舒庆尧,等.“克螟稻”后代crylAb基因表达特性及其对二化螟抗性的研究[J].中国农业科学,2001,34(5):465-468.
    [183]吴刚,崔海瑞,舒庆尧,等.Bt转基因植物研究进展及其持续利用[J].生物技术,1999,9(5):34-38.
    [184]忻介六,苏德明.昆虫、螨类和蜘蛛的人工饲料[M].北京:科学出版社,1979.
    [185]忻介六,邱益三.昆虫、螨类和蜘蛛的人工饲料(续篇)[M].北京:科学出版社,1986.
    [186]赵红盈,张永军,吴孔明,等.转crylAc/CpTI双价抗虫水稻CrylAc杀虫蛋白的表达特性及其对二化螟的毒杀效果[J].农业生物技术学报,2004,12:76-79.
    [187]魏伟,钱迎倩,马克平.害虫对转基因Bt作物的抗性及其管理对策应用[J].与环境生物学报,1999,5(2):215-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700