抗人转铁蛋白受体单克隆抗体增强姜黄素对雄激素非依赖性前列腺癌抑制效应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的了解姜黄素在体外对雄激素非依赖性前列腺癌细胞的抑制效应。
     方法采用不同浓度的姜黄素(6.25μmol/L、12.5μmol/L、25μmol/L、50μmol/L和100μmol/L)作用于雄激素非依赖性前列腺癌细胞,MTT法检测姜黄素对细胞生长活性的影响。然后分别采用CFSE染色、Annexin V-PI染色和PI染色法,使用流式细胞仪分析姜黄素对PC-3细胞增殖、凋亡和细胞周期的影响。
     结果MTT结果显示6.25μmol/L、12.5μmol/L、25μmol/L和50μmol/L四个浓度的姜黄素处理24小时后,PC-3细胞的活性未受显著影响;而100μmol/L的姜黄素则对PC-3细胞产生显著的细胞毒性作用。50μmol/L的姜黄素作用后,PC-3细胞的增殖指数从7.08±0.20降到4.38±0.19(P<0.05);凋亡率从(5.34±0.96)%提高到(21.53±2.87)%(P<0.05);G2/M期细胞比例由(34.27±1.87)%上升到(57.29±1.91)%(P<0.05)。
     结论姜黄素能在体外显著抑制雄激素非依赖性前列腺癌细胞的增殖,诱导细胞凋亡并导致细胞周期的阻滞。
     目的明确姜黄素对雄激素非依赖性前列腺癌细胞内信号通路活性的影响,探讨姜黄素抗瘤效应产生的可能机制。
     方法采用荧光素酶报告基因系统检测姜黄素在体外对核因子-кB (NF-кB、激活蛋白-1(AP-1).Elkl.CHOP和CREB五个信号通路的影响,以带有荧光素酶报告基因的质粒(pNF-κB-Luc,pAP-1-Luc,pElk1-Luc,pCHOP-Luc,pCREB-Luc)转染PC-3细胞,姜黄素干预后,检测荧光素酶活性。
     结果荧光素酶活性检测结果显示,姜黄素能在体外显著抑制NF-кB和AP-1两个细胞内信号通路的活性(P<0.05),而对Elkl、CHOP和CREB三个信号通路的活性影响不明显。
     结论姜黄素可能通过抑制NF-кB和AP-1信号通路发挥抑癌效应。
     目的检测抗人转铁蛋白受体单克隆抗体(TfR mAb)对雄激素非依赖性前列腺癌细胞生物学行为的影响,了解抗人TfR mAb对姜黄素抗瘤作用的增强效应。
     方法利用杂交瘤细胞株制备抗人TfR mAb,分别采用CFSE染色、AnnexinⅤ-PI染色和PI染色法检测抗人TfR mAb对PC-3细胞增殖、凋亡和细胞周期的影响。采用FITC标记的鼠抗人TfR mAb检测姜黄素对雄激素非依赖性前列腺癌细胞表面转铁蛋白受体表达的影响。采用流式细胞仪进一步检测抗人TfR mAb联合姜黄素对PC-3细胞增殖、凋亡和细胞周期的影响。
     结果抗人TfR mAb对PC-3细胞增殖、凋亡和细胞周期无显著影响(P>0.05)。姜黄素能够显著上调雄激素非依赖性前列腺癌细胞表面TfR表达(P<0.05)。抗人TfRmAb可显著增强姜黄素对PC-3细胞凋亡的诱导作用(P<0.05),而不影响姜黄素对PC-3细胞增殖和细胞周期的影响(P>0.05)。
     结论姜黄素可导致雄激素非依赖性前列腺癌细胞表面转铁蛋白受体表达增高。抗人TfR mAb单独作用对雄激素非依赖性前列腺癌细胞的生物学行为无显著影响,但抗人TfR mAb可以增强姜黄素对雄激素非依赖性前列腺癌细胞的凋亡效应。
Objective:To investigate the anti-tumor activity of curcumin in androgen independent prostate cancer in vitro.
     Methods:After PC-3 cells were treated with 6.25μmol/L,12.5μmol/L,25μmol/L, 50μmol/L, and 100μmol/L curcumin, the cell activity was determined by MTT assay. After curcumin treatment, the effects of curcumin on the proliferation of prostate cancer cells were assessed by CFSE dilution. Flow cytometery (FCM) were performed to analysis the cell cycle and the induction of apoptosis on tumor cells.
     Results:After treating with 50μmol/L curcumin, the proliferation index of androgen independent prostate cancer cells in vitro decreased from 7.08±0.20 to 4.38±0.19 (P< 0.05);the percentage of apoptotic cells increased from 5.34%±0.96% to 21.53%±2.87%(P< 0.05);and the percentage of G2/M phase cells increased from 34.27%±1.87% up to 57.29%±1.91%(P<0.05).
     Conclusion:Curcumin with the concentration of 50μmol/L and below hadn't obvious effect on cell viability of androgen independent prostate cancer cells (P<0.05). Curcumin could significantly inhibit the androgen independent prostate cancer through blocking cellular proliferation and inducing apoptosis.
     Objective:To investigate the effect of curcumin on the intracellular signaling pathway activities of androgen independent prostate cancer and clarify the anti-tumor mechanisms of curcunin.
     Methods:The PathDetect Cis-/Trans- Reporting Systems (pNF-KB-Luc, pAP-1-Luc, pElkl-Luc, pCHOP-Luc, pCREB -Luc) were transiently transfected into PC3 cells, respectively. After 8 h of transfection, cells were treated with 50μmol/L curcumin for 24 h. The activity of each signaling pathway was determined by measuring the luciferase activities of the reporter in treated and untreated transfectants.
     Results:Curcumin inhibited the activity of NF-κB and AP-1 associated signaling pathway significantly (P< 0.05), but had little effect on the activity of Elkl, CHOP and CREB signaling pathway.
     Conclusions:Curcumin exerts anti-tumor effects via inhibition of the NF-κB and AP-1 associated signaling pathway.
     Objective:To study the anti-tumor activity of anti-human transferrin receptor monoclonal antibody (TfR mAb) in androgen independent prostate cancer in vitro and investigate the effect of TfR mAb on the anti-tumor activity of curcumin.
     Methods:After curcumin treatment, transferrin receptor expression was detected by flow cytometry on androgen-independent prostate cancer cells. And the cell activity of prostate cancer cells after TfR mAb treatment was determined by MTT assay. After treating with TfR mAb and curcumin, the proliferation of prostate cancer cells were assessed by CFSE dilution. Flow cytometery (FCM) were performed to analysis the cell cycle and the induction of apoptosis on tumor cells.
     Results:Curcumin could increase the transferrin receptor expression of androgen-independent prostate cancer cells significantly (P<0.05). Anti-human TfR mAb alone had not significant effect on the proliferation, apoptosis and cell cycle of androgen-independent prostate cancer cells (P>0.05). But anti-human TfR mAb enhance the inhibitory effect of curcumin on the apoptosis of PC-3 cells significantly (P<0.05).
     Conclusion:Curcumin treatment could increase the transferrin receptor expression of androgen-independent prostate cancer cells. Anti-human TfR mAb alone had not obvious anti-tumor activity in androgen independent prostate cancer cells. Blocking the transferrin receptor could enhance the apoptosis effect of curcumin on the proliferation of androgen-independent prostate cancer cells.
引文
1. Aggarwal BB. Prostate cancer and curcumin:add spice to your life. Cancer Biol Ther. 2008V7N9:1436-1440.
    2. Daniels TR, Delgado T, Rodriguez JA, et al. The transferrin receptor part Ⅰ:Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol.2006 Nov;121(2):144-58.
    3. Daniels TR, Delgado T, Helguera G, et al. The transferrin receptor part Ⅱ:targeted delivery of therapeutic agents into cancer cells. Clin Immunol.2006 Nov; 121 (2):159-76.
    4. Wirth GJ, Schandelmaier K, Smith V, et al. Microarrays of 41 human tumor cell lines for the characterization of new molecular targets:expression patterns of cathepsin B and the transferrin receptor. Oncology.2006;71(1-2):86-94.
    5. Ye Qing, Wang Shuo, Wang Zhihua, et al. The in vitro antitumor effect and in vivo tumor-specificity distribution of human-mouse chimeric antibody against transferrin receptor. Cancer Immunol Immunother.2006 Dec 8:1-11.
    6. Nakase I, Gallis B, Takatani-Nakase T, et al. Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett.2009 Feb 18;274(2):290-8.
    7. Jiao Y, Wilkinson J 4th, Christine Pietsch E, et al. Iron chelation in the biological activity of curcumin. Free Radic Biol Med.2006 Apr 1;40(7):1152-60.
    8. Jiao Y, Wilkinson J 4th, Di X, et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood.2009 Jan 8;113(2):462-9.
    1. Crawford E D. Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology,2009,73:S4-10.
    2. Dai B, Ye DW, Kong YY, et al. Individualized prostate biopsy strategy for Chinese patients with different prostate-specific antigen levels. Asian J Androl,2008, 10(2):325-331.
    3. Schutz FA, Oh WK. Neoadjuvant and adjuvant therapies in prostate cancer. Urol Clin North Am,2010,37(1):97-104.
    4. Zeigler CM, Rennert H, Mittal RD, et al. Evaluation of prostate cancer characteristics in four populations worldwide. Can J Urol,2008,15(3):4056-4064.
    5. Thangapazham RL, Sharma A, Maheshwari RK. Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J,2006,8(3):443-449.
    6. Stacewicz-Sapuntzakis M, Borthakur G, Burns JL, et al. Correlations of dietary patterns with prostate health. Mol Nutr Food Res,2008,52(1):114-130.
    7. Perabo FG, Von Low EC, Ellinger J, et al. Soy isoflavone genistein in prevention and treatment of prostate cancer. Prostate Cancer Prostatic Dis,2008,11(1):6-12.
    8. Trump DL, Deeb KK, Johnson CS. Vitamin D:considerations in the continued development as an agent for cancer prevention and therapy. Cancer J,2010,16(1):1-9.
    9. Oh WK, Small EJ. Complementary and alternative therapies in prostate cancer. Semin Oncol,2002,29(6):575-584.
    10. Kurien B T, and Scofield R H. Curry spice curcumin and prostate cancer. Mol Nutr Food Res,2009,53:939-940.
    11. Cui SX, Qu XJ, Xie YY, et al. Curcumin inhibits telomerase activity in human cancer cell lines. Int J Mol Med,2006,18(2):227-231.
    12. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett,2008,269(2):199-225.
    13. Piantino C B, Salvadori F A, Ayres P P, et al. An evaluation of the anti-neoplastic activity of curcumin in prostate cancer cell lines. Int Braz J Urol,2009,35:354-360.
    14. Roa W, Zhang X, Guo L, et al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology,2009,20:375101.
    1. Weber, W.M., Hunsaker, L.A., Roybal, C.N., Bobrovnikova-Marjon, E.V., Abcouwer, S.F., Royer, R.E., Deck, L.M., Vander Jagt, D.L. Activation of NFkappaB is inhibited by curcumin and related enones. Bioorg. Med. Chem.,2006,14(7),2450-2461.
    2. Wang S, Liu Z, Wang L, et al. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol,2009,6:327-334.
    3. Sung B, Murakami A, Oyajobi B O, et al. Zerumbone abolishes RANKL-induced NF-kappaB activation, inhibits osteoclastogenesis, and suppresses human breast cancer-induced bone loss in athymic nude mice. Cancer Res,2009,69:1477-1484.
    4. Kamat A M, Tharakan S T, Sung B, et al. Curcumin potentiates the antitumor effects of Bacillus Calmette-Guerin against bladder cancer through the downregulation of NF-kappaB and upregulation of TRAIL receptors. Cancer Res,2009,69:8958-8966.
    5. Karin, M., Liu, Z., Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol.,1997, 9(2),240-246.
    6. Jeong W S, Kim I W, Hu R, et al. Modulation of AP-1 by natural chemopreventive compounds in human colon HT-29 cancer cell line. Pharm Res,2004,21:649-660.
    7. Kajanne R, Miettinen P, Tenhunen M, et al. Transcription factor AP-1 promotes growth and radioresistance in prostate cancer cells. Int J Oncol,2009,35:1175-1182.
    8. Shen Q, Uray I P, Li Y, et al. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene,2008,27:366-377.
    9. Detry C, Lamour V, Castronovo V, et al. CREB-1 and AP-1 transcription factors JunD and Fra-2 regulate bone sialoprotein gene expression in human breast cancer cells. Bone, 2008,42:422-431.
    10. Matthews C P, Colburn N H, and Young M R. AP-1 a target for cancer prevention. Curr Cancer Drug Targets,2007,7:317-324.
    1. Jiao Y, Wilkinson J 4th, Christine Pietsch E, et al. Iron chelation in the biological activity of curcumin. Free Radic Biol Med.2006 Apr 1;40(7):1152-60.
    2. Jiao Y, Wilkinson J 4th, Di X, et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood.2009 Jan 8;113(2):462-9.
    3. Daniels TR, Delgado T, Rodriguez JA, et al. The transferrin receptor part I:Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol.2006 Nov; 121 (2):144-58.
    4. Daniels TR, Delgado T, Helguera G, et al. The transferrin receptor part II:targeted delivery of therapeutic agents into cancer cells. Clin Immunol.2006 Nov;121(2):159-76.
    5. Wirth GJ, Schandelmaier K, Smith V, et al. Microarrays of 41 human tumor cell lines for the characterization of new molecular targets:expression patterns of cathepsin B and the transferrin receptor. Oncology.2006;71(1-2):86-94.
    6. Crawford E D. Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology,2009,73:S4-10.
    7. Ben-Shlomo Y, Evans S, Patel B, et al. Differences in the epidemiology and presentation of prostate cancer in Black and White men in England:lessons learnt from the process study. BJU Int,2009,103:723-724.
    8. Wang C Y. Perspectives on the epidemiology of prostate cancer. Can J Urol,2009, 16:4712-4713.
    9. Aggarwal BB, Takada Y, Oommen OV. From chemoprevention to chemotherapy: common targets and common goals. Expert Opin Investig Drugs 2004; 13:1327-38.
    10. Kurien B T, and Scofield R H. Curry spice curcumin and prostate cancer. Mol Nutr Food Res,2009,53:939-940.
    11. Schutz FA, Oh WK. Neoadjuvant and adjuvant therapies in prostate cancer. Urol Clin North Am,2010,37(1):97-104.
    12. Thangapazham RL, Sharma A, Maheshwari RK. Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J,2006,8(3):443-449.
    13. Aggarwal BB. Prostate cancer and curcumin:add spice to your life. Cancer Biol Ther, 2008,7:1436-1440.
    14. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett,2008,269(2):199-225.
    15. Penson D F, Rossignol M, Sartor A O, et al. Prostate cancer:epidemiology and health-related quality of life. Urology,2008,72:S3-11.
    1. Crawford E D. Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology,2009,73:S4-10.
    2. Dai B, Ye DW, Kong YY, et al. Individualized prostate biopsy strategy for Chinese patients with different prostate-specific antigen levels. Asian J Androl,2008, 10(2):325-331.
    3. Schutz FA, Oh WK. Neoadjuvant and adjuvant therapies in prostate cancer. Urol Clin North Am,2010,37(1):97-104.
    4. Dorai T, Cao YC, Dorai B, et al. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate,2001,47(4):293-303.
    5. Zeigler CM, Rennert H, Mittal RD, et al. Evaluation of prostate cancer characteristics in four populations worldwide. Can J Urol,2008,15(3):4056-4064.
    6. Thangapazham RL, Sharma A, Maheshwari RK. Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J,2006,8(3):443-449.
    7. Stacewicz-Sapuntzakis M, Borthakur G, Burns JL, et al. Correlations of dietary patterns with prostate health. Mol Nutr Food Res,2008,52(1):114-130.
    8. Perabo FG, Von Low EC, Ellinger J, et al. Soy isoflavone genistein in prevention and treatment of prostate cancer. Prostate Cancer Prostatic Dis,2008,11(1):6-12.
    9. Trump DL, Deeb KK, Johnson CS. Vitamin D:considerations in the continued development as an agent for cancer prevention and therapy. Cancer J,2010,16(1):1-9.
    10. Oh WK, Small EJ. Complementary and alternative therapies in prostate cancer. Semin Oncol,2002,29(6):575-584.
    11. Aggarwal BB. Prostate cancer and curcumin:add spice to your life. Cancer Biol Ther, 2008,7:1436-1440.
    12. Chendil D, Ranga RS, Meigooni D, et al. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene,2004,23(8):1599-1607.
    13. Cui SX, Qu XJ, Xie YY, et al. Curcumin inhibits telomerase activity in human cancer cell lines. Int J Mol Med,2006,18(2):227-231.
    14. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett,2008,269(2):199-225.
    15. Claudio E, Saret S, Wang H, et al. Cell-autonomous role for NF-kappa B in immature bone marrow B cells. J Immunol,2009,182(6):3406-3413.
    16. Crispen PL, Uzzo RG, Golovine K, et al. Vitamin E succinate inhibits NF-κB and prevents the development of a metastatic phenotype in prostate cancer cells: implications for chemoprevention. Prostate,2007,67(6):582-590.
    17. Suh J, Rabson AB. NF-kappa B activation in human prostate cancer:important mediator or epiphenomenon? J Cell Biochem,2004,91(1):100-117.
    18. Zhang L, Altuwaijri S, Deng F, et al. NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol,2009,175(2):489-499.
    19. Matthews CP, Colburn NH, Young MR. AP-1 a target for cancer prevention. Curr Cancer Drug Targets,2007,7(4):317-324.
    20. Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, et al. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene,2001, 20(52):7597-7609.
    21. Jacobs-Helber SM, Wickrema A, Birrer MJ, et al. API regulation of proliferation and initiation of apoptosis in erythropoietin-dependent erythroid cells. Mol Cell Biol,1998, 18(7):3699-3707.
    22. Ripple MO, Henry WF, Schwarze SR, et al. Effect of antioxidants on androgen-induced AP-1 and NF-kappaB DNA-binding activity in prostate carcinoma cells. J Natl Cancer Inst,1999,91(14):1227-1232
    1. Ben-Shlomo Y, Evans S, Patel B, et al. Differences in the epidemiology and presentation of prostate cancer in Black and White men in England:lessons learnt from the process study. BJU Int,2009,103:723-724.
    2. Crawford E D. Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology,2009,73:S4-10.
    3. Aggarwal BB, Takada Y, Oommen OV. From chemoprevention to chemotherapy: common targets and common goals. Expert Opin Investig Drugs 2004,13:1327-38.
    4. Zhang L, Altuwaijri S, Deng F, et al. NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol,2009,175:489-499.
    5. Chu L W, Reichardt J K, and Hsing A W. Androgens and the molecular epidemiology of prostate cancer. Curr Opin Endocrinol Diabetes Obes,2008,15:261-270.
    6. Huggins, C., Hodges, C. Prostatic cancer. Ⅰ. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res,1941,1,293-297.
    7. Scher, H.I., Liebertz, C., Kelly, W.K., Mazumdar, M., Brett, C., Schwartz, L., Kolvenbag, G., Shapiro, L., Schwartz, M. Bicalutamide for advanced prostate cancer: the natural versus treated history of disease. J. Clin Oncol.,1997,15(8),2928-2938.
    8. Zou J X, Guo L, Revenko A S, et al. Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer. Cancer Res,2009, 69:3339-3346.
    9. Chang, C.S., Kokontis, J., Liao, S.T. Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science,1988,240(4850),324-326.
    10. Singh P, Hallur G, Anchoori R K, et al. Rational design of novel antiandrogens for neutralizing androgen receptor function in hormone refractory prostate cancer. Prostate, 2008,68:1570-1581.
    11.Heinlein, C.A., Chang, C. Androgen receptor in prostate cancer. Endocr. Rev.,2004, 25(2),276-308.
    12. Stan S D, and Singh S V. Transcriptional repression and inhibition of nuclear translocation of androgen receptor by diallyl trisulfide in human prostate cancer cells. Clin Cancer Res,2009,15:4895-4903.
    13. Steinkamp M P, O'Mahony O A, Brogley M, et al. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res,2009,69:4434-4442.
    14. Lin, H.K., Wang, L., Hu, Y.C., Altuwaijri, S., Chang, C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J.,2002,21(15),4037-4048.
    15. Lin, H.K., Hu, Y.C., Lee, D.K., Chang, C.S. Regulation of androgen receptor signaling by PTEN (phosphotase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol. Endocrinol.,2004, 18(10),2409-2423.
    16. Levesque M H, El-Alfy M, Cusan L, et al. Androgen receptor as a potential sign of prostate cancer metastasis. Prostate,2009,69:1704-1711.
    17. Mao H L, Zhu Z Q, and Chen C D. The androgen receptor in hormone-refractory prostate cancer. Asian J Androl,2009,11:69-73.
    18. Mizokami A, Koh E, Izumi K, et al. Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of testosterone and dihydrotestosterone from dehydroepiandrosterone. Endocr Relat Cancer,2009, 16:1139-1155.
    19. Taplin, M.E., Bubley, G.J., Shuster, T.D., Frantz, M.E., Spooner, A.E., Ogata, G.K., Keer, H.N., Balk, S.P. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med.,1995,332(21),1393-1398.
    20. Mellado B, Codony J, Ribal M J, et al. Molecular biology of androgen-independent prostate cancer:the role of the androgen receptor pathway. Clin Transl Oncol,2009, 11:5-10.
    21. Lepor, H. Comparison of single-agent androgen suppression for advanced prostate cancer. Rev. Urol.,2005,7 (Suppl 5), S3-S12.
    22. Craft N, Chhor C, Tran C, et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res 1999,59:5030-6.
    23. Schroder, F.H. In Campbell's Urology,8th ed., Retik, A.B., Vaughan, E.D. Jr., Wein, A.J., Eds., W.B. Saunders Co.:Philadelphia, PA,2002, pp.3182-3208.
    24. Bennett N, Hooper J D, Lee C S, et al. Androgen receptor and caveolin-1 in prostate cancer. IUBMB Life,2009,61:961-970.
    25. Hara T, Miyazaki H, Lee A, et al. Androgen receptor and invasion in prostate cancer. Cancer Res,2008,68:1128-1135.
    26. Kassouf, W., Tanguay, S., Aprikian, A.G. Nilutamide as second line hormone therapy for prostate cancer after androgen ablation fails. J. Urology,2003,169(5),1742-1744.
    27. Tararova N D, Narizhneva N, Krivokrisenko V, et al. Prostate cancer cells tolerate a narrow range of androgen receptor expression and activity. Prostate,2007, 67:1801-1815.
    28. Chodak, G.W. Maximum androgen blockade:a clinical update. Rev. Urol.,2005,7 (Suppl 5), S13-S17.
    29. Taplin M E. Drug insight:role of the androgen receptor in the development and progression of prostate cancer. Nat Clin Pract Oncol,2007,4:236-244.
    30. Qin, H.L., Panek, J.S. Total synthesis of the Hsp90 inhibitor geldanamycin. Org. Lett., 2008,10(12),2477-2479.
    31. http://dtp.nci.gov/timeline/noflash/success_stories/S3_geldanamycin.htm
    32. Takahashi Y, Perkins S N, Hursting S D, et al.17beta-Estradiol differentially regulates androgen-responsive genes through estrogen receptor-beta- and extracellular-signal regulated kinase-dependent pathways in LNCaP human prostate cancer cells. Mol Carcinog,2007,46:117-129.
    33. De Candia, P., Solit, D., Giri, D., Brogi, E., Siegel, P., Olshem, A., Muller, W., Rosen, N., Benezra, R. Angiogenesis impairment in lddeficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast rumors. Proc. Natl. Acad. USA,2003,100(21),12337-12342.
    34. Burger, A.M., Fiebig, H.H., Stinson, S.F., Sausville, E.A.17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models. Anticancer Drugs,2004,15(4),377-387.
    35. Smith, V., Sausville, E.A., Camalier, R.F., Fiebig, H.H., Burger, A.M. Comparison of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17DM AG) and 17-allylamino-17-demethoxygeldanamycin(17AAG) in vitro:effects on Hsp90 and client proteins in melanoma models. Cancer Chemother. Pharmacol.,2005,56(2), 126-137.
    36. Abbruzzese JL and Lippman SM. The convergence of cancer prevention and therapy in early-phase clinical drug development. Cancer Cell 2004,6:321-6.
    37. Thangapazham RL, et al. Androgen responsive and refactory prostate cancer cells exhibit distinct curcumin regulated transcriptome Cancer Biol Ther 2008,7:1427-35..
    38. Remiszewski, S.W., Sambucetti, L.C., Bair, K.W., Bontempo. J., et al. N-Hydroxy-3-phenyl-2-propenamides as novel inhibitors of human histone deacetylase with in vivo antitumor activity:discovery of (2E)-N-hydroxy-3-[4-[[(2-hydroxyethyl) [2-(1H-indol-3-yl)ethyl]amino]methyl]phenyl]-2-propenamide (NVP-LAQ824). J. Med. Chem.,2003,46(21),4609-4624.
    39. Uehara, S., Yasuda, I., Takeya, K., Itodawa, H. Comparison of the commercial turmeric and its cultivated plant by their constituents. Shoyakugaku Zasshi,1992,46(1),55-61.
    40. Itokawa, H., Shi, Q., Akiyama, T., Morris-Natschke, S.L., Lee, K.H. Recent advances in the investigation of curcuminoids. Chin. Med.,2008,3. http://www. cmjoumal.org/content/3/1/11
    41. Weber, W.M., Hunsaker, L.A., Roybal, C.N., Bobrovnikova-Marjon, E.V., Abcouwer, S.F., Royer, R.E., Deck, L.M., Vander Jagt, D.L. Activation of NFkappaB is inhibited by curcumin and related enones. Bioorg. Med. Chem.,2006,14(7),2450-2461.
    42. Aggarwal, B.B. Sethi, G., Ahn, K.S., et al. Targeting signaltransducer-and-activator-of-transcription-3 for prevention and therapy of cancer:modern target but ancient solution. Ann. Y.N. Acad. Sci.,2006,1091,151-169.
    43. Karin, M., Liu, Z., Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol.,1997, 9(2),240-246.
    44. Salh, B., Assi, K., Templeman, V., Parhar, K., Owen, D., Gome-Munoz, A., Jacobson, K. Curcumin attenuates DNB-induced murine cells. Am. J. Physiol. Gastrointest. Liver Physiol.,2003,285(1), G235-G243.
    45. Chaudhary, L.R., Hruska, K.A. Inhibition of cell survival protein kinase B/Akt by curcumin in human prostate cancer cells. J. Cell Biochem.,2003,89(1),1-5.
    46. Tsui, K. H., Feng, J. H., Lin, C. M., Chang, P. L., Juang, H. H. Curcumin blocks the activation of androgen and interleukin-6 on prostate-specific antigen expression in human prostatic carcinoma cells. J. Androlog.,2008,29(6),661-668.
    47. Duvoix, A., Morceau, F., Delhalle, S., Schmitz, M., Schnekenburger, M., Galteau, M.M., Dicato, M., Dicato, M., Diecrich, M. Induction of apoptosis by curcumin:mediation by glutathione Stransferase P1-1 inhibition. Biochem. Pharmacol.,2003,66(8),1475-1483.
    48. Gupta, S., Afaq, F., Mukhtar, H. Involvement of nuclear factorkappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene,2002,21(23),3727-3738.
    49. Bootcov, M.R., Bauskin, A.R., Valenzuela, S.M., Moore, A.G., Bansal, M., He, X.Y., Zhang, H.P., Donnellan, M., Mahler, S., Pryor, K., Walsh, B.J., Nicholson, R.C., Fairlie, W.D., Por, S.B., Robbins, J.M., Breit, S.N. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TBF-beta superfamily. Proc. Natl. Acad Sci. USA,1997,94(21),11514-11519.
    50. Karan, D., Holzbeierlein, J., Thrasher, J.B. Macrophage inhibitory cytokine-a:possible bridge molecule of inflammation and prostate cancer. Cancer Res.,2009,69(1),2-5.
    51. Fuchs, J.R., Pandit, B., Bhasin, D., Etterr, J.P., Regan, N., Abdelhamid, D., Li, C., Lin, J., Li, P.K. Structure-activity relationship studies of curcumin analogues. Bioorg. Med. Chem. Lett.,2009,19(7),2065-2069.
    52. Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B. Bioavailability of curcumin:problems and promises. Mol. Pharm.,2007,4(6),807-818.
    53. Asai, A., Miyazawa, T. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci.,2000,67(23),2785-2793.
    54. Liang, G., Yang, S.L., Shao, L.L., et al. Synthesis, structure, and bioevaluation of 2,5-bis(arylmethenyl)cyclopentanone. J. Asian Nat. Prod. Res.,2008,10(9-10), 957-965.
    55. http://www.caymanchem.com/app/template/Product.vm/catalog/10009986/a/z
    56. Pedersen, U., Rasmussen, P.B., Lawesson, S.O. Synthesis of naturally occurring curcuminoids and related compounds. Liebigs Ann.Chem.,1985,8,1557-1569.
    57. Ohtsu, H., Xiao, Z., Ishida, J., Nagai, M., Wang, H.K., Itokawa,H., Su, C.Y., Shih, C.C.Y, Chiang, T., Chang, E., Lee, Y., Tsai,M.Y., Chang, C., Lee, K.H. Antitumor agents.217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J. Med. Chem.,2002,45(23),5037-5042.
    58. Ohtsu, H., Itokawa, H., Xiao, Z., Su, C.Y., Shih, C.C.Y., Chiang,T., Chang, E., Lee, Y., Chiu, S.Y., Chang, C., Lee, K.H. Antitumor agents.222. Synthesis and anti-androgen activity of new diarylheptanoids. Bioorg. Med. Chem.,2003,11(23),5083-5090.
    59. Lin, L., Shi, Q., Nyarko, A.K., Bastow, K.F., Wu, C.C., Su, C.Y., Shih, C.C.Y., Lee, K.H. Antitumor agents.250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J. Med. Chem.,2006,49(13),3963-3972.
    60. Tamvakopoulos, C., Dimas, K., Sofianos, Z.D., Hatziantoniou, S., Han, Z., Liu, Z.L. Wyche, J.H., Pantazis, P. Metabolism and anticancer activity of the curcumin analogues, dimethoxycurcumin. Clin. Cancer Res.,2007,13(4),1269-1277.
    61. http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confI D=64&abstractID=20458
    62. Yang, Z., Chang, Y.J., Yu, I.C., Yeh, S., Wu, C.C., Miyamoto, H., Merry, D.E., Sobue, G., Chen, L.M., Chang, S.S., Chang, C.S.ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nat. Med.,2007, 13(3),348-353.
    63.Yan C, Jamaluddin MS, Aggarwal B, Myers J, Boyd DD. Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther 2005,4:233-41.
    64. Schaefer, J.P., Wheatley, P.J. The crystal and molecular structure of tetraacetylethane. J. Chem. Soc. A,1966,528-532.
    65. Power, L.F., Turner, K.E., Moore, F.H. Refinement of the crystal and molecular structure of tetraacetylethane by neutron diffraction. J. Cryst. Mol. Struct.,1975,5(1), 59-66.
    66. Lin, L., Shi, Q., Su, C.Y., Shih, C.C.Y., Lee, K.H. Antitumor agents 247. New 4-ethoxycarbonylethyl curcumin analogs as potential antiandrogenic agents. Bioorg. Med. Chem.,2006,14(8),2527-2534.
    67. Ohori, H., Yamakoshi, H., Tomizawa, M., Shibuya, M., Kakudo, Y., Takahashi, A., Takahashi, S., Kato, S., Suzuki, T., Ishioka, C., Iwabuchi, Y., Shibata, H. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol. Cancer Ther.,2006,5(10),2563-2571.
    68. Ma, W.L., Hsu, C.L,, Wu, M.H., Wu, C.T., Wu, C.C., Lai, J.J., Jou, Y.S., Chen, C.W., Yeh, S.Y., Chang, C.S. Androgen receptor is a new potential therapeutic target for the treatment of hepatocellular carcinoma. Gastroenterology,2008,135(3),947-955.
    69. Lin, H.K., Wang, L., Hu, Y.C., et al. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J.,2002, 21(15),4037-4048.
    70. Lin, H.K., Hu, Y.C., Lee, D.K., Chang, C. Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol. Endocrinol.,2004,18(10), 2409-2423.
    71. Lee, C.L., Chang, F.R., Yeh, M.H., Yu, D.L., Liu, Y.N., Bastow, K.F., Morris-Natschke, S.L., Wu, Y.C., Lee, K.H. Cytotoxic phenanthrenequinones and 9,10-dihydrophenanthrenes from Calanthe arisanensis. J. Nat. Prod.,2009,72(2),210-213.
    80. Isaacs W, De Marzo A, Nelson WG. Focus on prostate cancer. Cancer Cell 2002; 2:113-6.
    81. Haenszel W, Kurihara M. Studies of Japanese migrants I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst 1968; 40:43-68.
    82. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 1995; 55:4438-45.
    83. Shah RB, Ghosh D, Elder JT. Epidermal growth factor receptor (ErbB1) expression in prostate cancer progression:correlation with androgen independence. Prostate 2006; 66:1437-44.
    84. Wang X, Jones TD, Zhang S, et al. Amplifications of EGFR gene and protein expression of EGFR, Her-2/neu, c-kit and androgen receptor in phyllodes tumor of the prostate. Mod Pathol 2007; 20:175-82.
    85. Fu M, Wang C, Li Z, Sakamaki T and Pestell RG. Minireview:Cyclin D1:normal and abnormal functions. Endocrinology 2004; 145:5439-47.
    86. Liu XH, Yao S, Kirschenbaum A and Levine AC. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and downregulates bcl-2 expression in LNCaP cells. Cancer Res 1998; 58:4245-9.
    87. Lao CD, Ruffin MTT, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altem Med 2006; 6:10.
    88. Dorai T, Dutcher JP, Dempster DW, Wiernik PH. Therapeutic potential of curcumin in prostate cancer-V:Interference with the osteomimetic properties of hormone refractory C4-2B prostate cancer cells. Prostate 2004; 60:1-17.
    89. Khor TO, Keum YS, Lin W, et al. Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res 2006; 66:613-21.
    90. Kurien B T, and Scofield R H. Curry spice curcumin and prostate cancer. Mol Nutr Food Res,2009,53:939-940.
    91. Zhang HN, Yu CX, Zhang PJ, et al. Curcumin downregulates homeobox gene NKX3.1 in prostate cancer cell LNCaP. Acta Pharmacol Sin 2007; 28:423-30.
    92. Shi Q, Shih C C, and Lee K H. Novel anti-prostate cancer curcumin analogues that enhance androgen receptor degradation activity. Anticancer Agents Med Chem,2009, 9:904-912.
    93. Aggarwal B B. Prostate cancer and curcumin:add spice to your life. Cancer Biol Ther, 2008,7:1436-1440.
    94. Korutla L, Cheung JY, Mendelsohn J, Kumar R. Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin. Carcinogenesis 1995; 16:1741-5.
    95. Edwards J, Mukherjee R, Munro AF, Wells AC, Almushatat A, Bartlett JM. HER2 and COX2 expression in human prostate cancer. Eur J Cancer 2004; 40:50-5.
    96. Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999; 5:280-5.
    97. Jung Y, Xu W, Kim H, Ha N, Neckers L. Curcumin-induced degradation of ErbB2:A role for the E3 ubiquitin ligase CHIP and the Michael reaction acceptor activity of curcumin. Biochim Biophys Acta 2007; 1773:383-90.
    98. Chaudhary L R, and Hruska K A. Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem,2003,89:1-5.
    99. Zha S, Gage WR, Sauvageot J, et al. Cyclooxygenase-2 is upregulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 2001; 61:8617-23.
    100. Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB. Curcumin (diferuloylmethane) downregulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 2006; 69:195-206.
    101. Chen CD, Sawyers CL. NFkappaB activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol 2002; 22:2862-70.
    102. Yang L, Zhang LY, Chen WW, et al. [Inhibition of the expression of prostate specific antigen by curcumin]. Yao Xue Xue Bao 2005; 40:800-3.
    103. Hatziapostolou M, Polytarchou C, Katsoris P, Courty J, Papadimitriou E. Heparin affin regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells. J Biol Chem 2006; 281:32217-26.
    104. Mohan R, Chintala SK, Jung JC, et al. Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem 2002; 277:2065-72.
    105. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS and McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002; 62:1832-7.
    106. Skommer J, Wlodkowic D, Pelkonen J. Gene-expression profiling during curcumininduced apoptosis reveals downregulation of CXCR4. Exp Hematol 2007; 35:84-95.
    107. Okamoto M, Lee C, Oyasu R. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res 1997; 57:141-6.
    108. Giri D, Ozen M, Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol 2001; 159:2159-65.
    109. Cho JW, Lee KS, Kim CW. Curcumin attenuates the expression of IL-lbeta, IL-6 and TNFalpha as well as cyclin E in TNFalpha-treated HaCaT cells; NFkappaB and MAPKs as potential upstream targets. Int J Mol Med 2007; 19:469-74.
    110. Davies MA, Koul D, Dhesi H, et al. Regulation of Akt/PKB activity, cellular growth and apoptosis in prostate carcinoma cells by MMAC/PTEN. Cancer Res 1999; 59:2551-6.
    111. Lin J, Adam RM, Santiestevan E and Freeman MR. The phosphatidylinositol 3'-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells. Cancer Res 1999; 59:2891-7.
    112. Bharti AC, Takada Y, Aggarwal BB. Curcumin (diferuloylmethane) inhibits receptor activator of NFkappaB ligand-induced NFkappaB activation in osteoclast precursors and suppresses osteoclastogenesis. J Immunol 2004; 172:5940-7.
    113. Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM and Small EJ. Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer 2006; 107:67-74.
    114. Catz SD, Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kappaB and its significance in prostate cancer. Oncogene 2001; 20:7342-51.
    115. Herrmann JL, Briones F Jr, Brisbay S, Logothetis CJ and McDonnell TJ. Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53. Oncogene 1998; 17:2889-99.
    116. Lessard L, Begin LR, Gleave ME, Mes-Masson AM, Saad F. Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer:an immunohistochemical study. Br J Cancer 2005; 93:1019-23.
    117. Huang S, Pettaway CA, Uehara H, Bucana CD and Fidler IJ. Blockade of NFkappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion and metastasis. Oncogene 2001; 20:4188-97.
    118. Singh S, Aggarwal BB. Activation of transcription factor NFkappaB is suppressed by curcumin(diferuloylmethane). J Biol Chem 1995; 270:24995-5000.
    119. Bharti AC, Shishodia S, Reuben JM, et al. Nuclear factor-kappaB and STAT3 are constitutively active in CD 138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 2004; 103:3175-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700