水稻黑条矮缩病毒(RBSDV)群体遗传结构分析及与RBSDV P8互作玉米蛋白的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是我国重要的粮食作物、饲料作物和工业原料。病害的发生给我国玉米生产造成了严重损失,其中粗缩病可导致玉米严重减产,甚至绝产,是玉米上危害最严重的病害之一。引起我国玉米粗缩病的主要是呼肠孤病毒科(Reoviridae)斐济病毒属(Fijivirus)的水稻黑条矮缩病毒(Rice black-streaked dwarf virus,RBSDV)。RBSDV的病原特征、传播途径等生物学特性和基因结构以及功能解析已有所研究,但其分子变异、进化机制和致病机理还不十分清楚。由于田间寄主植物和传毒昆虫的发生数量、带毒率与玉米粗缩病的发生密切相关,了解RBSDV田间寄主,及时检测传毒介体灰飞虱的带毒率,对于制定玉米粗缩病的防控措施具有重要意义;明确影响RBSDV进化的因素,了解病毒在自然条件下的进化趋势,研究病毒与寄主间的互作,可为抗病品种选育及病毒病的可持续控制提供理论指导。
     本研究建立并优化了RBSDV的检测体系,明确了RBSDV的田间寄主,测定了RBSDV重排体SDZZ10的全基因组序列,从山东玉米上检测到南方水稻黑条矮缩病毒(Southern rice black-streaked dwarf virus,SRBSDV),分析了RBSDV的群体遗传结构,并鉴定了玉米中与RBSDV P8互作的蛋白。具体结果如下:
     1、针对RBSDV的S10片段设计了4对引物,通过比较不同的Mg2+浓度、Taq DNA聚合酶用量、退火温度、检测引物建立了最佳RT-PCR检测体系:10×PCR buffer2.5μL,25mM MgCl21.5μL,dNTP (each2.5mM)2.0μL,检测引物F4(5’-AGY GAA GAA TTTGTA GGT GTG-3’)和R4(5’-GTT TCA ACA AAT GAC GCT AC-3’)(10μM)各1.0μL,5U/μL Taq DNA聚合酶0.2μL,模板RNA5.0μL,加11.8μL水将体系补至25μL。利用这一体系可以从单头灰飞虱和30ng玉米样品提取的总RNA中检测到病毒的存在,同时从禾本科的牛筋草(Eleusine indica)、野燕麦(Avena fatua)、马唐(Digitariasanguinalis)、稗草(Echinochloa crusgalli)、狗尾草(Setaria viridis)、狗牙根(Cynodondactylon),菊科苣荬菜(Sonchus brachyotus)、醴肠(Eclipta prostrata),苋科的反枝苋(Amaranthus retroflexus)等均检测到RBSDV,首次发现双子叶植物苣荬菜、反枝苋也是RBSDV的自然寄主。
     2、测定了RBSDV分离物SDZZ10所有可读框(ORF)的序列,与已知的2个RBSDV分离物Hbm和Zjr全基因组序列比较,SDZZ10的大多数ORF与Hbm相应ORF的核苷酸序列一致率更高,其蛋白与Hbm相应蛋白的氨基酸一致率也更高,但SDZZ10的ORF3,ORF4,ORF9-2和ORF10与Zjr相应ORF的核苷酸一致率更高,P4,P9-1和P9-2与Zjr相应蛋白的氨基酸一致率更高。在ORF8和ORF10的系统进化树中,SDZZ10分别属于不同的组,说明SDZZ10是一个自然发生的重排体。
     3、测定了南方水稻黑条矮缩病毒(SRBSDV)分离物JNi4的S7-S10基因序列。JNi4的S7到S10和RBSDV相应片段的核苷酸一致率分别为72.6-73.1%,72.3-73%,73.9-74.5%和77.3-79%,与SRBSDV HN和GD分离物相应片段的一致率为99.7%,99.1%-99.7%,98.9%-99.5%和98.6%-99.2%。JNi4在根据S7到S10基因组序列构建的系统发生树中和GD、HN形成一个独立的分枝。这些结果证实了SRBSDV作为斐济病毒属一个独立种的观点,证明JNi4是SRBSDV的一个分离物。山东是目前为止发生SRBSDV的最北地区。
     4、测定了来自山东、江苏和安徽等地水稻和玉米101个RBSDV分离物的S8(S8包含一个开放阅读框ORF8,编码次要衣壳蛋白)和103个分离物的S10(ORF10编码主要衣壳蛋白)的序列。RBSDV的S8和S10基因处于负选择。RBSDV三个分离物的S8和两个分离物的S10存在明确的重组现象。中国RBSDV种群根据S8基因可以分为3个组,而根据S10基因可以分为2个组,分组与分离物的地理和寄主来源之间没有相关性。在同时获得S8和S10序列的85个分离物中有17个是组间重排体,30个是亚组间重排体。不同地区和不同寄主的RBSDV亚种群内和亚种群间基因交流频繁,来自中国玉米的种群处在扩张趋势。未发现RBSDV新谱系。这些结果表明重组、重排、负向选择压力及基因交流是影响中国RBSDV进化的重要因素。
     5、根据SDZZ10S8序列构建了诱饵载体质粒pGBKT7-S8,利用酵母双杂系统从玉米cDNA文库中筛选与RBSDV P8互作的玉米蛋白。经假阳性排除、序列测定以及在GenBank数据库中blast检索,初步筛选到26种可能互作的蛋白,并进一步证实玉米40S核糖体蛋白S13可以和RBSDV P8互作。为了确定与P8互作的40S核糖体蛋白S13的区域,将其基因平均分为三段(N端、M段、C端)。按照N、M、C、N+M和M+C进行PCR扩增,并将片段正确连入相应载体中构建了5个缺失突变体,分别进行酵母验证和荧光双分子互补验证,结果表明40S核糖体蛋白S13与RBSDV P8互作的区域为N端和C端。
Maize is one of the most important food and forage crops and industrial raw materials.Diseases lead to severe losses of maize production in China. Maize rough dwarf disease(MRDD) is devastating and caused significant losses to maize production. As a species of thegenus Fijivirus in the family Reoviridae, Rice black-streaked dwarf virus (RBSDV) can causeMRDD in maize. The biological characteristics and spread of MRDD, genome structure andgene function of RBSDV have been well documented, but its molecular diversity andevolution mechanism of RBSDV remain largely unknown. Because natural hosts in the field,incidence and percentage of viruferous small brown planthopper are closely related tooccurrence of MRDD, quick and efficient detection of RBSDV field hosts and viruferousvector are critical for providing prevention and control measures. Elucidating the factorsaffecting RBSDV evolutio and understanding the interaction between host and viral proteinswill provide theoretical guide for the breeding of resistant maize cultivar to RBSDV and thesustainable control of MRDD.
     In the study, we established and optimized the detection system for RBSDV, anddetected hosts in the field, sequenced the genome of a RBSDV reassortant, detected SRBSDVfrom Shandong maize, analyzed the genetic structure of RBSDV populations, and identifiedmaize protein interacting with P8. The results were as follows:
     Firstly, four pairs of primers were designed according to the nucleotide sequences ofRBSDV S10. RT-PCR detection system for RBSDV was optimized after comparing primerpair, concentrations of Mg2+and Taq polymerase and times of RNA dilution. The optimalRT-PCR system was10×PCR buffer2.5μL,25mM MgCl21.5μL, dNTP (each2.5mM)2.0μL, primers F4and R4(10μM) each1.0μL,5U/μL Taq DNA polymerse0.2μL, templateRNA5.0μL, sterilized water11.8μL to make a total volume of25μL. With the methodestablished, RBSDV can be detected from RNA extracted from single Laodelphax striatellusor30ng infected maize leaves. Besides graminceous plants, Sonchus brachyotus andEclipta prostrate from family Asteraceae and Amaranthus retroflexus fromAmaranthaceae are also natural hosts of RBSDV.
     Secondly, we reported the complete genomic sequences of all the open reading frames(ORFs) in SDZZ10. Comparing with two RBSDV isolates whose complete genomicsequences were available, the most ORFs and corresponding proteins of SDZZ10sharedhigher nucleotide (nt) or amino acid (aa) identities with RBSDV-Hbm; While ORFs3,4,9-2and10of SDZZ10shared higher nt identities with RBSDV-Zjr, P4, P9-1and P9-2sharedhigher aa identities with RBSDV-Zjr. Phylogenetic analyses of ORF8and ORF10showedthat SDZZ10was clustered into different groups, indicating that SDZZ10is a naturalreassortant.
     Thirdly, we sequencing S7-S10of SRBSDV isolate, JNi4. The S7to S10of JNi4sharenucleotide identities of72.6-73.1%,72.3-73%,73.9-74.5%and77.3-79%, respectively, withcorresponding segments of Rice black-streaked dwarf virus isolates, and identities of99.7%,99.1%-99.7%,98.9%-99.5%, and98.6%-99.2%with those of SRBSDV isolates HN and GD.JNi4forms a separate branch with GD and HN in the phylogenetic trees constructed withgenomic sequences of S7to S10. These results confirm the proposed taxonomic status ofSRBSDV as a distinct species of the genus Fijivirus and indicate that JNi4is an isolate ofSRBSDV. Shandong is so far the norther nmost region where SRBSDV is established.
     Fourly, we obtained the sequences of101segment8(S8; carries ORF8encoding theminor core capsid protein) and103S10(ORF10encoding the major capsid protein). BothORF8and ORF10are under negative selection. The S8sequences of3isolates and S10sequences of two isolates were ‘clear’ recombinants. The RBSDV population of China can beclassified into three groups according to the S8and two according to the S10sequences,irrespective of their hosts or geographical origins. Among85RBSDV isolates with both S8and S10sequences available,17are between-group reassortants,30are between-subgroupreassortants. The RBSDV subpopulations from different geographical regions and hosts showfrequent gene flow within or between subpopulations. The RBSDV population from maize inChina is in a state of expanding. In this study no new emergent population was detected.Taken together, our results indicate that recombination, reassortment, negative selection andgene flow are important factors that drive evolution of RBSDV in China.
     Finally, to identify the maize protein interacting with RBSDV P8, a cDNA library wasscreened by yeast two-hybrid system with pGBKT7-S8as bait plasmid which carried theORF8of RBSDV isolate SDZZ10. Totally26maize proteins were obtained as potentialinteracting proteins. We further confirmed that the40S ribosomal protein S13can interactwith RBSDV P8by YTHS and BiFC. To determine the specific interaction region, we dividedthe sequence of the40S ribosomal protein S13to three regions (N, M and C), and constructed five deletion mutants. According to the results of YTHS and BiFC, we concluded that the40Sribosomal protein S13interacted with P8via its N-and C-termini.
引文
白逢伟,曲志才,曹清玉,许嘉,叶鸣明,沈大棱.水稻黑条矮缩病毒基因组组分10编码的外壳蛋白基因的克隆及表达.复旦学报(自然科学版),2002,41(2):217-221.
    白逢伟,曲志才,许嘉,叶鸣明,许云敏,沈大棱.水稻黑条矮缩病毒基因组第九组分cDNA的克隆及序列分析.复旦学报(自然科学版),2001,40(6):692-694.
    曹杨,潘峰,周倩,李冠华,刘双清,黄志农,李有志.南方水稻黑条矮缩病毒介体昆虫白背飞虱的传毒特性.应用昆虫学报,2011,48(5):1314-1320.
    陈永坤,李新海,肖木辑,李明顺,苑森行,王向东,张世煌.64份玉米自交系抗粗缩病的遗传变异分析.作物学报,2006,32(12):1848-1854.
    陈佳,朱芹芹,袁从阳,孙作文,李向东,周涛,范在丰.引起玉米粗缩病的水稻黑条矮缩病毒山东分离物的分子特性.植物病理学报,2008,38(5):540-543.
    陈建军,李波,吴雯雯.玉米粗缩病研究进展.江西农业学报,2009,(9):83-85.
    陈巽祯,杨满昌,刘信义,杨本荣.玉米粗缩病发病规律及综合防治研究.华北农学报,1986,1(2):90-97.
    陈景堂,池书敏,刘志增,王静华,孟义江,宋占权.玉米粗缩病(MRDV)研究现状及展望.玉米科学,2000,8(3):76-78.
    陈菁.双分子荧光互补技术及其在蛋白质相互作用研究中的应用进展.生物医学工程研究,2008,27(4):302-306.
    陈声祥,张巧艳.我国水稻黑条矮缩病和玉米粗缩病研究进展.植物保护学报,2005,32(1):98-103.
    邸垫平,易晓云,苗洪芹,路银贵,田兰芝.玉米粗缩病抗性遗传研究.植物病理学报,2012,42(4):404-410.
    韩志勇,沈革志,潘建伟.一种改良的质粒DNA小量提取法.生物技术通报,2000,(4):45-46.
    樊晋宇,崔宗强,张先恩.双分子荧光互补技术.中国生物化学与分子生物学报,2008,24(8):767-774.
    方守国,于嘉林,冯继东,吴大椿,李大伟,韩成贵,刘仪.水稻黑条矮缩病毒基因组片段3全长cDNA的克隆及其序列分析.农业生物技术学报,2001,9(4):311-315.
    方守国,王朝辉,韩成贵,李大伟,于嘉林.水稻黑条矮缩病毒基因组片段6编码一种非结构蛋白.华北农学报,2007,22(6):5-8.
    季英华,高瑞珍,张野,程兆榜,周彤,范永坚,周益军.一种快速同步检测水稻黑条矮缩病毒和南方水稻黑条矮缩病毒的方法.中国水稻科学,2011,25(1):91-94.
    花文苏,赵守桂,陆其通.玉米水稻种植区玉米粗缩病发生规律及防治技术.中国植保导刊,2005,25(5):12-13.
    何丽泉,杨培,杨书堂,贾来珍,马藏欣.玉米粗缩病的发生及防治.植物保护,1982,(3):17.
    胡秀弟,朱静,吴文斗,任国敏,李凡.南方水稻黑条矮缩病毒S9片段基因编码产物的生物信息学分析.中国农学通报,2013,29(6):12-19.
    龚祖埙,沈菊英,陈巽祯,刘信义.我国禾谷类病毒病的病原问题——Ⅷ.玉米粗缩病病原的研究.生物化学与生物物理学报,1981,13(1):55-60.
    郭启唐,李钊敏,董哲生.玉米粗缩病及自交系抗病性观察与分析.植物保护,1995,21(1):21-23.
    李芳贤.玉米粗缩病(MRDV)的发生危害与防治对策.玉米科学,2000,8(4):75-78.
    李春波,钟永旺,张旭东,魏春红,李毅.水稻黑条矮缩病毒第九号基因片段的克隆和表达.微生物学报,2003,43(3):330-335.
    李常保,宋建成,姜丽君.玉米粗缩病及其研究进展.植物保护,1999,25(5):37-40.
    李红信.玉米粗缩病的发生原因与防治对策.安徽农学通报(下半月刊),2009,15(18):109-110.
    刘向东,翟保平,刘慈明.灰飞虱种群暴发成灾原因剖析.昆虫知识,2006,43(2):141-146.
    刘志增,池书敏,宋占权,陈景堂,孟义江.玉米自交系及杂交种抗粗缩病性鉴定与分析.玉米科学,1996,4(4):68-70.
    刘金文,李忠峰,王志坚,朱延羽,陈艳,吴强伟.黄淮地区玉米粗缩病的发病原因及对策.河南农业,2012,(8):48-49.
    刘瑛.两种植物呼肠孤病毒的小管蛋白鉴定及其功能结构域研究.福建农林大学硕士论文,2011.
    楼辰军,李凤华,钱芳,杨兆顺.玉米粗缩病的研究概况.天津农业科学,2006,12(1):36-38.
    路银贵,苗洪芹,邸垫平,田兰芝.中国玉米杂交优势群主要种质抗玉米粗缩病性鉴定.河北农业大学学报,2010,33(3):5-12.
    卢嫣红,张金凤,熊如意,徐秋芳,周益军.南方水稻黑条矮缩病毒S6编码一个沉默抑制子.中国农业科学,2011,44(14):2909-2917.
    鲁运江.南方水稻黑条矮缩病的识别及防控技术.种子科技,2011,29(12):39-40.
    陆颖,羊健,张恒木,陈剑平.与水稻黑条矮缩病毒p5b互作的水稻基因片段筛选.中国水稻科学,2012,26(5):537-541.
    吕明芳,羊健,张恒木,陈剑平.水稻黑条矮缩病毒基因组S7编码的2个非结构蛋白在病株中的表达检测.中国水稻科学,2012,26(1):9-15.
    孟凡亮.鲁南地区夏玉米粗缩病发生流行因素分析与治理对策探索.中国植保导刊,2009,29(1):19-29.
    苗洪芹,杨彦杰,李双月,邸垫平,路银贵.玉米粗缩病毒的传毒介体灰飞虱的虫量、不同播期对玉米粗缩病的影响.华北农学报,2001,16(2):104-107.
    郁葵.我国北方地区玉米粗缩病的发生规律及防治.种子科技,2013,(2):68.
    欧阳元龙,吴建祥,熊如意,周益军,周雪平.水稻黑条矮缩病病毒外壳蛋白基因S10的原核表达、多克隆抗体制备及应用.中国水稻科学,2010,24(01):25-30.
    阮义理,蒋文烈,林瑞芬.稻病毒病介体昆虫灰稻虱的研究.昆虫学报,1981,24(3):283-289.
    阮义理,陈声祥,林瑞芬,蒋文烈,金登迪.水稻黑条矮缩病的研究.浙江农业科学,1984,(4):185-187.
    孙丽英,徐佳凌,方守国,王朝辉,韩成贵,李大伟,于嘉林.水稻黑条矮缩病毒玉米分离物基因组S8和S9的序列分析及其原核表达.农业生物技术学报,2004,12(3):306-311.
    孙晓棠,崔汝强,贺浩华,欧阳林娟,胡丽芳,彭小松,陈小荣,朱昌兰.双重RT-PCR法同时快速检测南方水稻黑条矮缩病毒和水稻黑条矮缩病毒.江西农业大学学报,2012,34(5):914-917.
    沈君辉,尚金梅,刘光杰.中国的白背飞虱研究概况.中国水稻科学,2003,17(S1):7-22.
    苏加岱,黄九柏,刘汉舒,马井玉,胡英华.黄淮海流域玉米粗缩病发生原因分析及防治对策.山东农业科学,2009,9(9)59-61.
    苏智宗,仝岗山,王邦文,吉贞芳,王安乐.玉米抗粗缩病品种的探讨.玉米科学,2000,8(S1):73-74.
    檀根甲,王向阳,李淼,董猛,巩旭,孟召鹏.玉米主要品种对粗缩病的田间抗性评价.安徽农业大学学报,2012,39(5):667-671.
    田安平,石银鹿,秦曙,韵洪亮.晋南玉米粗缩病流行原因调查与分析.山西农业科学,1995,23(1):37-39.
    王安乐,陈朝辉,王娇娟,邵新胜,魏国英.玉米自交系抗粗缩病特性的遗传基础及轮回选择效应研究.山西农业科学,1998,26(4):64-67.
    王桂跃,韩海亮,苏婷,王华第.玉米粗缩病发病流行规律的探讨.浙江农业科学,2012,(9):1283-1285.
    王康,郑静君,张曙光,周国辉.室内试验证实南方水稻黑条矮缩病毒不经水稻种子传播.广东农业科学,2010,(7):95-96.
    王朝辉,周益军,范永坚,程兆榜,张文荟.江苏水稻黑条矮缩病毒S10的cDNA克隆序列分析.中国病毒学,2002,17(2):142-144.
    王寿伦,邵振润,郭振中,迟新之,杨万海.山东省玉米病毒病严重发生情况考察报告.玉米科学,1997,5(3):61-65.
    吴淑华,王朝辉,范永坚,周益军,程兆榜,张文荟.江苏省玉米粗缩病病原病毒的RT-PCR检测.农业生物技术学报,2000,8(4):369-372.
    夏中军,鲍剑松.2008年玉米粗缩病发生原因及预防对策.安徽农学通报,2008,14(22):75.
    肖冬来,邓慧颖,谢荔岩,吴祖建,谢联辉.酵母双杂交系统筛选与水稻黑条矮缩病毒P6互作的水稻蛋白.热带作物学报,2010,31(3):435-439.
    邢建安,解兴,李艳霞,尹合波.玉米粗缩病的发生与防治技术.上海农业科技,2013,(1):114-115.
    徐中志,和允祺,和丽华.玉米粗缩病发病因素及防治研究.云南农业大学学报,1993,8(3):281-282.
    薛林,张丹,徐亮,金萌萌,彭长俊,徐辰武.玉米抗粗缩病自交系种质的发掘和遗传多样性及其在育种中的应用.作物学报,2011,37(12):2123-2129.
    杨本荣,马巧月.玉米粗缩病的病毒寄主范围研究.植物病理学报,1983,13(3):1-8.
    杨迎青,周国辉,蒲玲玲,兰波,李湘民.2种水稻矮缩病毒一步检测方法的建立.华中农业大学学报,2012,31(3):337-340.
    羊健,田慧,戴良英.我国水稻黑条矮缩病和玉米粗缩病病原的研究概况.江西植保,2007a,30(1):2-6.
    羊健,张恒木,陈剑平,戴良英.水稻黑条矮缩病毒P8蛋白的原核表达、抗血清制备及其特性.植物保护学报,2007b,34(3):252-256.
    赵悦,吴璀献,朱旭东,蒋学辉,张孝羲,翟保平.浙江武义2009年南方水稻黑条矮缩病的毒源地分析.昆虫学报,2011a,54(8):949-959.
    赵悦,张孝羲,翟保平.江西上犹2009、2010年南方水稻黑条矮缩病的毒源地分析.应用昆虫学报,2011b,(05):1321-1334.
    钟永旺,周洁,庄斌全,魏春红,李毅.水稻黑条矮缩病毒第七号片段的cDNA克隆及其在大肠杆菌中的表达.微生物学报,2003,43(4):442-447.
    章松柏,李大勇,肖冬来,张长青,吴祖建,谢联辉.水稻黑条矮缩病的发生和病毒检测.湖北农业科学,2010,49(3):592-594.
    张恒木,陈剑平,程晔,雷娟利,薛庆中.水稻黑条矮缩病毒基因组片段S9的cDNA克隆和全序列分析.生物化学与生物物理学报,2001b,33(4):467-471.
    张恒木,陈剑平,薛庆中,雷娟利.水稻黑条矮缩病毒基因组片段S10的cDNA克隆及全序列分析.中国水稻科学,2002,16(1):24-28.
    张凌娣,王朝辉,王献兵,张卫华,李大伟,韩成贵,翟亚锋,于嘉林.两种植物病毒编码蛋白的基因沉默抑制子功能鉴定.科学通报,2005,50(3):219-224.
    张蔚明,刘燕娟,周倩,廖晓兰.南方水稻黑条矮缩病毒外壳蛋白P10的原核表达和抗血清制备及应用.湖南农业大学学报(自然科学版),2011,37(4):400-402.
    郑巧兮,沈菊英,龚祖埙,杨本荣,马巧月.一种新的纯化玉米粗缩病毒的方法及病毒形态的研究.生物化学与生物物理学报,1984,16(6):571-576.
    周倩,朱俊子,梁晋刚,陈欣怡,高必达.南方水稻黑条矮缩病毒快速检测.基因组学与应用生物学,2010,29(5):1009-1012.
    周国辉,张曙光,邹寿发,许兆伟,周志强.水稻新病害南方水稻黑条矮缩病发生特点及危害趋势分析.植物保护,2010,36(1):144-146.
    周国辉,温锦君,蔡德江,李鹏,许东林,张曙光.呼肠孤病毒科斐济病毒属一新种:南方水稻黑条矮缩病毒.科学通报,2008,53(20):2500-2508.
    朱俊子,周倩,崔亚,高必达.南方水稻黑条矮缩病毒的新的自然寄主.湖南农业大学学报(自然科学版),2012,38(1):58-60.
    朱庆荣,徐桂香,庞国冲,苏庆国.玉米播期及品种对玉米粗缩病发生的影响研究.现代农村科技,2012,(14):54-55.
    Akita F., Higashiura A., Shimizu T., Pu Y., Suzuki M., Uehara-Ichiki T., Sasaya T., KanamaruS., Arisaka F., Tsukihara T., Nakagawa A., Omura T. Crystallographic analysis revealsoctamerization of viroplasm matrix protein P9-1of Rice black streaked dwarf virus. J Virol,2012,86(2):746-756.
    Alexandrov N.N., Brover V.V., Freidin S., Troukhan M.E., Tatarinova T.V., Zhang H., SwallerT.J., Lu Y.P., Bouck J., Flavell R.B., Feldmann K.A. Insights into corn genes derived fromlarge-scale cDNA sequencing. Plant Mol Biol,2009,69(1-2):179-194.
    Anzola J.V., Xu Z.K., Asamizu T., Nuss D.L. Segment-specific inverted repeats foundadjacent to conserved terminal sequences in wound tumor virus genome and defectiveinterfering RNAs. Proc. Nat. Acad. Sci. USA,1987,84(23):8301-8305.
    Aranda M.A., Fraile A., Dopazo J., Malpica J.M., Garcia-Arenal F. Contribution of mutationand RNA recombination to the evolution of a plant pathogenic RNA. J Mol Evol,1997,44(1):81-88.
    Aronheim A., Zandi E., Hennemann H., Elledge S.J., Karin M. Isolation of an AP-1repressorby a novel method for detecting protein-protein interactions. Mol Cell Biol,1997,17(6):3094-3102.
    Atanasiu D., Whitbeck J.C., Cairns T.M., Reilly B., Cohen G.H., Eisenberg R.J. Bimolecularcomplementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interactwith each other during cell fusion. Proc Natl Acad Sci U S A,2007,104(47):18718-18723.
    Azuhata F., Uyeda I., Kimura I., Shikata E. Close similarity between genome structures ofrice black-streaked dwarf and maize rough dwarf viruses. J Gen Virol,1993,74(Pt7):1227-1232.
    Azuhata F., Uyeda I., Shikata E. Conserved terminal nucleotide sequences in the genome ofrice black streaked dwarf virus. J Gen Virol,1992,73(Pt6):1593-1595.
    Azzam O., Arboleda M., Umadhay K.M., de los Reyes J.B., Cruz F.S., Mackenzie A.,McNally K.L. Genetic composition and complexity of virus populations at tungro-endemicand outbreak rice sites. Arch Virol,2000a,145(12):2643-2657.
    Azzam O., Yambao M.L., Muhsin M., McNally K.L., Umadhay K.M. Genetic diversity ofrice tungro spherical virus in tungro-endemic provinces of the Philippines and Indonesia. ArchVirol,2000b,145(6):1183-1197.
    Bai F.W., Qu Z.C., Yan J., Zhang H.W., Xu J., Ye M.M., Wu H.L., Liao X.G., Shen D.L.Identification of rice black streaked dwarf virus in different cereal crops with dwarfingsymptoms in China. Acta Virol,2001,45(5-6):335-339.
    Bai F.W., Yan J., Qu Z.C., Zhang H.W., Xu J., Ye M.M., Shen D.L. Phylogenetic analysisreveals that a dwarfing disease on different cereal crops in China is due to rice black streakeddwarf virus (RBSDV). Virus Genes,2002,25(2):201-206.
    Baird G.S., Zacharias D.A., Tsien R.Y. Circular permutation and receptor insertion withingreen fluorescent proteins. Proc Natl Acad Sci U S A,1999,96(20):11241-11246.
    Blackwood E.M., Eise nman R.N. Max: a helix-loop-helix zipper protein that forms asequence-specific DNA-binding complex with Myc. Science,1991,251(4998):1211-1217.
    Bonnet J., Fraile A., Sacristan S., Malpica J.M., Garcia-Arenal F. Role of recombination in theevolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus.Virology,2005,332(1):359-368.
    Boyko V., Leavitt M., Gorelick R., Fu W., Nikolaitchik O., Pathak V.K., Nagashima K., HuW.S. Coassembly and complementation of Gag proteins from HIV-1and HIV-2, two distincthuman pathogens. Mol Cell,2006,23(2):281-287.
    Bujarski J.J., Kaesberg P. Genetic recombination between RNA components of a multipartiteplant virus. Nature,1986,321(6069):528-531.
    Chen J., Zhu Q.Q., Yuan C.Y., Sun Z.W., Li X.D., Zhou T., Fan Z.F. Molecularcharacterization of Rice black-streaked dwarf virus isolates causing maize rough dwarfdisease in Shandong. Acta Phytopathol Sin,2008,38(05):540-543.
    Chen Z., Liu J., Zeng M., Wang Z., Yu D., Yin C., Jin L., Yang S., Song B. Dotimmunobinding assay method with chlorophyll removal for the detection of southern riceblack-streaked dwarf virus. Molecules,2012,17(6):6886-6900.
    Chien C.T., Bartel P.L., Sternglanz R., Fields S. The two-hybrid system: a method to identifyand clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A,1991,88(21):9578-9582.
    Citovsky V., Lee L.Y., Vyas S., Glick E., Chen M.H., Vainstein A., Gafni Y., Gelvin S.B.,Tzfira T. Subcellular localization of interacting proteins by bimolecular fluorescencecomplementation in planta. J Mol Biol,2006,362(5):1120-1131.
    Distefano A.J., Conci L.R., Munoz Hidalgo M., Guzman F.A., Hopp H.E., del Vas M.Sequence analysis of genome segments S4and S8of Mal de Rio Cuarto virus (MRCV):evidence that the virus should be a separate Fijivirus species. Arch Virol,2002,147(9):1699-1709.
    Distefano A.J., Conci L.R., Munoz Hidalgo M., Guzman F.A., Hopp H.E., del Vas M.Sequence and phylogenetic analysis of genome segments S1, S2, S3and S6of Mal de RioCuarto virus, a newly accepted Fijivirus species. Virus Res,2003,92(1):113-121.
    Domingo E. Quasispecies Theory in Virology. J virol,2002,76(1):463-465.
    Domingo E., Ruiz-Jarabo C.M., Sierra S., Arias A., Pariente N., Baranowski E., Escarmis C.Emergence and selection of RNA virus variants: memory and extinction. Virus Res,2002,82(1-2):39-44.
    Dong G., Ni Z., Yao Y., Nie X., Sun Q. Wheat Dof transcription factor WPBF interacts with
    TaQM and activates transcription of an alpha-gliadin gene during wheat seed development.Plant Mol Biol,2007,63(1):73-84.
    Drake J.W., Holland J.J. Mutation rates among RNA viruses. Proc Natl Acad Sci U S A,1999,96(24):13910-13913.
    Dunoyer P., Thomas C., Harrison S., Revers F., Maule A. A cysteine-rich plant proteinpotentiates Potyvirus movement through an interaction with the virus genome-linked proteinVPg. J Virol,2004,78(5):2301-2309.
    Durfee T., Becherer K., Chen P.L., Yeh S.H., Yang Y., Kilburn A.E., Lee W.H., Elledge S.J.The retinoblastoma protein associates with the protein phosphatase type1catalytic subunit.Genes Dev,1993,7(4):555-569.
    Eigen M. On the nature of virus quasispecies. Trends Microbiol,1996,4(6):216-218.
    Fang S., Yu J., Feng J., Han C., Li D., Liu Y. Identification of rice black-streaked dwarffijivirus in maize with rough dwarf disease in China. Arch Virol,2001,146(1):167-170.
    Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature,1989,340(6230):245-246.
    Fraile A., Alonso-Prados J.L., Aranda M.A., Bernal J.J., Malpica J.M., Garcia-Arenal F.Genetic exchange by recombination or reassortment is infrequent in natural populations of atripartite RNA plant virus. J Virol,1997,71(2):934-940.
    Fu Y.X., Li W.H. Statistical tests of neutrality of mutations. Genetics,1993,133(3):693-709.
    Garcia-Arenal F., Escriu F., Aranda M.A., Alonso-Prados J.L., Malpica J.M., Fraile A.Molecular epidemiology of Cucumber mosaic virus and its satellite RNA. Virus Res,2000,71(1-2):1-8.
    Garcia-Arenal F., Fraile A., Malpica J.M. Variability and genetic structure of plant viruspopulations. Annu Rev Phytopathol,2001,39:157-186.
    Garcia-Arenal F., Fraile A., Malpica J.M. Variation and evolution of plant virus populations.Int Microbiol,2003,6(4):225-232.
    Glasa M., Palkovics L., Kominek P., Labonne G., Pittnerova S., Kudela O., Candresse T., SubrZ. Geographically and temporally distant natural recombinant isolates of Plum pox virus(PPV) are genetically very similar and form a unique PPV subgroup. J Gen Virol,2004,85(Pt9):2671-2681.
    Grzela R., Strokovska L., Andrieu J.P., Dublet B., Zagorski W., Chroboczek J. Potyvirusterminal protein VPg, effector of host eukaryotic initiation factor eIF4E. Biochimie,2006,88(7):887-896.
    Gyuris J., Golemis E., Chertkov H., Brent R. Cdi1, a human G1and S phase proteinphosphatase that associates with Cdk2. Cell,1993,75(4):791-803.
    Hanada K., Suzuki Y., Nakane T., Hirose O., Gojobori T. The origin and evolution of porcinereproductive and respiratory syndrome viruses. Molecular Biology and Evolution,2005,22(4):1024-1031.
    Heinlein M., Epel B.L., Padgett H.S., Beachy R.N. Interaction of tobamovirus movementproteins with the plant cytoskeleton. Science,1995,270(5244):1983-1985.
    Hey J., Harris E. Population bottlenecks and patterns of human polymorphism. Mol Biol Evol,1999,16(10):1423-1426.
    Holmes E.C., Moya A. Is the quasispecies concept relevant to RNA Viruses? Journal ofvirology,2002,76(1):460-462.
    Hu C.D., Kerppola T.K. Simultaneous visualization of multiple protein interactions in livingcells using multicolor fluorescence complementation analysis. Nat Biotechnol,2003,21(5):539-545.
    Hudson R.R. A new statistic for detecting genetic differentiation. Genetics,2000,155(4):2011-2014.
    Hudson R.R., Boos D.D., Kaplan N.L. A statistical test for detecting geographic subdivision.Mol Biol Evol,1992a,9(1):138-151.
    Hudson R.R., Slatkin M., Maddison W.P. Estimation of levels of gene flow from DNAsequence data. Genetics,1992b,132(2):583-589.
    Isogai M., Uyeda I., Lee B.C. Detection and assig nment of proteins encoded by rice blackstreaked dwarf fijivirus S7, S8, S9and S10. J Gen Virol,1998,79(Pt6):1487-1494.
    Ivanov K.I., Puustinen P., Gabrenaite R., Vihinen H., Ronnstrand L., Valmu L., Kalkkinen N.,Makinen K. Phosphorylation of the potyvirus capsid protein by protein kinase CK2and itsrelevance for virus infection. Plant Cell,2003,15(9):2124-2139.
    Joanin P., Gigot C., Philipps G. cDNA nucleotide sequence and expression of a maizecytoplasmic ribosomal protein S13gene. Plant Mol Biol,1993,21(4):701-704.
    Jonsson U., Fagerstam L., Ivarsson B., Johnsson B., Karlsson R., Lundh K., Lofas S., PerssonB., Roos H., Ronnberg I., et al. Real-time biospecific interaction analysis using surfaceplasmon resonance and a sensor chip technology. Biotechniques,1991,11(5):620-627.
    Kaelin W.G., Jr., Krek W., Sellers W.R., DeCaprio J.A., Ajchenbaum F., Fuchs C.S.,Chittenden T., Li Y., Farnham P.J., Blanar M.A., et al. Expression cloning of a cDNAencoding a retinoblastoma-binding protein with E2F-like properties. Cell,1992,70(2):351-364.
    Kaelin W.G., Jr., Pallas D.C., DeCaprio J.A., Kaye F.J., Livingston D.M. Identification ofcellular proteins that can interact specifically with the T/E1A-binding region of theretinoblastoma gene product. Cell,1991,64(3):521-532.
    Kang B.C., Yeam I., Frantz J.D., Murphy J.F., Jahn M.M. The pvr1locus in Capsicumencodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. PlantJ,2005,42(3):392-405.
    Keegan L., Gill G., Ptashne M. Separation of DNA binding from the transcription-activatingfunction of a eukaryotic regulatory protein. Science,1986,231(4739):699-704.
    Kragler F., Curin M., Trutnyeva K., Gansch A., Waigmann E. MPB2C, amicrotubule-associated plant protein binds to and interferes with cell-to-cell transport oftobacco mosaic virus movement protein. Plant Physiol,2003,132(4):1870-1883.
    Krishnamurthy K., Mitra R., Payton M.E., Verchot-Lubicz J. Cell-to-cell movement of thePVX12K,8K, or coat proteins may depend on the host, leaf developmental stage, and thePVX25K protein. Virology,2002,300(2):269-281.
    Le D.T., Netsu O., Uehara-Ichiki T., Shimizu T., Choi I.R., Omura T., Sasaya T. Moleculardetection of nine rice viruses by a reverse-transcription loop-mediated isothermalamplification assay. J Virol Methods,2010,170(1-2):90-93.
    Lee J.Y., Yoo B.C., Rojas M.R., Gomez-Ospina N., Staehelin L.A., Lucas W.J. Selectivetrafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science,2003,299(5605):392-396.
    Li C., Zhong Y., Zhang X., Wei C., Li Y. Cloning and expression of S9-1gene of riceblack-streaked dwarf virus in Escherichia coli. Wei Sheng Wu Xue Bao,2003,43(3):330-335.
    Li J.J., Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complexby a one-hybrid system. Science,1993,262(5141):1870-1874.
    Li Y., Jia M., Jiang Z., Zhou T., Fan Z. Molecular variation and recombination in RNAsegment10of rice black-streaked dwarf virus isolated from China during2007-2010. ArchVirol,2012,157(7):1351-1356.
    Liu H., Wei C., Zhong Y., Li Y. Rice black-streaked dwarf virus minor core protein P8is anuclear dimeric protein and represses transcription in tobacco protoplasts. FEBS Letters,2007a,581:2534-2540.
    Liu H., Wei C., Zhong Y., Li Y. Rice black-streaked dwarf virus outer capsid protein P10hasself-interactions and forms oligomeric complexes in solution. Virus Res,2007b,127(1):34-42.
    Magliery T.J., Wilson C.G., Pan W., Mishler D., Ghosh I., Hamilton A.D., Regan L. Detectingprotein-protein interactions with a green fluorescent protein fragment reassembly trap: scopeand mechanism. J Am Chem Soc,2005,127(1):146-157.
    Marconi G., Albertini E., Barone P., De Marchis F., Lico C., Marusic C., Rutili D., Veronesi F.,Porceddu A. In planta production of two peptides of the Classical Swine Fever Virus (CSFV)E2glycoprotein fused to the coat protein of potato virus X. BMC Biotechnol,2006,6:29.
    Marsolier M.C., Prioleau M.N., Sentenac A. A RNA polymerase III-based two-hybrid systemto study RNA polymerase II transcriptional regulators. J Mol Biol,1997,268(2):243-249.
    Martin D.P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P. RDP3: a flexible and fastcomputer program for analyzing recombination. Bioinformatics,2010,26(19):2462-2463.
    Martin D.P., Williamson C., Posada D. RDP2: recombination detection and analysis fromsequence alig nments. Bioinformatics,2005,21(2):260-262.
    Martin S., Sambade A., Rubio L., Vives M.C., Moya P., Guerri J., Elena S.F., Moreno P.Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. JGen Virol,2009,90(Pt6):1527-1538.
    Matsukura K., Towata T., Sakai J., Onuki M., Okuda M., Matsumura M. Dynamics ofSouthern rice black-streaked dwarf virus in rice and implication for virus Acquisition.Phytopathology,2013,103(5):509-512.
    Matsushita Y., Ohshima M., Yoshioka K., Nishiguchi M., Nyunoya H. The catalytic subunit ofprotein kinase CK2phosphorylates in vitro the movement protein of Tomato mosaic virus. JGen Virol,2003,84(Pt2):497-505.
    Milne R.G., del Vas M., Harding R.M., Marzachì R., Mertens P.P.C. Genus Fijivirus. In:Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U. and Ball, L.A.(eds). VirusTaxomony: Classification and nomenclature of viruses. Eighth report of the internationalcommittee on the taxonomy of viruses. San Diego: Elsevier Academic Press,2005,534-542.
    Milne R.G., Lovisolo O. Maize rough dwarf and related viruses. Adv Virus Res,1977,21:267-341.
    Miyata T., Yasunaga T. Molecular evolution of mRNA: a method for estimating evolutionaryrates of synonymous and amino acid substitutions from homologous nucleotide sequences andits application. J Mol Evol,1980,16(1):23-36.
    Moon R.T., Lazarides E. Synthesis and post-translational assembly of intermediate filamentsin avian erythroid cells: vimentin assembly limits the rate of synemin assembly. Proc NatlAcad Sci U S A,1983,80(18):5495-5499.
    Morell M., Espargaro A., Aviles F.X., Ventura S. Detection of transient protein-proteininteractions by bimolecular fluorescence complementation: the Abl-SH3case. Proteomics,2007,7(7):1023-1036.
    Nagy P.D. Recombination in Plant RNA Viruses. In: Roossinck, M.J.(ed). Plant VirusEvolution: Springer Berlin Heidelberg,2008,133-156.
    Nishikiori M., Dohi K., Mori M., Meshi T., Naito S., Ishikawa M. Membrane-bound tomatomosaic virus replication proteins participate in RNA synthesis and are associated with hostproteins in a pattern distinct from those that are not membrane bound. J Virol,2006,80(17):8459-8468.
    Ohshima K., Tomitaka Y., Wood J.T., Minematsu Y., Kajiyama H., Tomimura K., Gibbs A.J.Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots ofrecombination. J Gen Virol,2007,88(Pt1):298-315.
    Ornaghi J.A., Boito, G.T., Marinelli, A., Beviacqua, J.E., Giuggia, J., Lenardon, S.L., March,G.J. Infectivity in natural populations of Delphacodes kuscheli vector of Mal de Rio Cuartovirus [Zea mays L.-Argentina]. Maydica,1999,44(3):219-223.
    Prince V.E., Pickett F.B. Splitting pairs: the diverging fates of duplicated genes. Nat RevGenet,2002,3(11):827-837.
    Quadt R., Kao C.C., Browning K.S., Hershberger R.P., Ahlquist P. Characterization of a hostprotein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc NatlAcad Sci U S A,1993,90(4):1498-1502.
    Revers F., Le Gall O., Candresse T., Le Romancer M., Dunez J. Frequent occurrence ofrecombinant potyvirus isolates. J Gen Virol,1996,77(Pt8):1953-1965.
    Rodriguez-Cerezo E., Garcia-Arenal F. Genetic heterogeneity of the RNA genome populationof the plant virus U5-TMV. Virology,1989,170(2):418-423.
    Rogers A.R., Harpending H. Population growth makes waves in the distribution of pairwisegenetic differences. Mol Biol Evol,1992,9(3):552-569.
    Rogers A.R., Jorde L.B. Genetic evidence on modern human origins. Hum Biol,1995,67(1):1-36.
    Roossinck M.J. Mechanisms of plant virus evolution. Annu Rev Phytopathol,1997,35:191-209.
    Rozas J. DNA sequence polymorphism analysis using DnaSP. Methods Mol Biol,2009,537:337-350.
    SenGupta D.J., Zhang B., Kraemer B., Pochart P., Fields S., Wickens M. A three-hybridsystem to detect RNA-protein interactions in vivo. Proc Natl Acad Sci U S A,1996,93(16):8496-8501.
    Smith G.P. Filamentous fusion phage: novel expression vectors that display cloned antigenson the virion surface. Science,1985,228(4705):1315-1317.
    Sparkes I.A., Runions J., Kearns A., Hawes C. Rapid, transient expression of fluorescentfusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc,2006,1(4):2019-2025.
    Stagljar I., Korostensky C., Johnsson N., te Heesen S. A genetic system based onsplit-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc NatlAcad Sci U S A,1998,95(9):5187-5192.
    Storms M.M., Kormelink R., Peters D., Van Lent J.W., Goldbach R.W. The nonstructuralNSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells.Virology,1995,214(2):485-493.
    Sun Z., Zhang S., Xie L., Zhu Q., Tan Z., Bian J., Sun L., Chen J. The secretory pathway andthe actomyosin motility system are required for plasmodesmatal localization of the P7-1ofrice black-streaked dwarf virus. Arch Virol,2012.
    Supyani S., Hillman B.I., Suzuki N. Baculovirus expression of the11mycoreovirus-1genomesegments and identification of the guanylyltransferase-encoding segment. J Gen Virol,2007,88(Pt1):342-350.
    Tajima F. Statistical method for testing the neutral mutation hypothesis by DNApolymorphism. Genetics,1989,123(3):585-595.
    TAKAHASHI Y., OMURA T., SHOHARA K., TSUCHIZAK I. Comparison of fourserological methods for practical detection of ten viruses of rice in plants and insects. St. Paul,MN, ETATS-UNIS: American Phytopathological Society1991.
    Tamura K., Dudley J., Nei M., Kumar S. MEGA4: Molecular evolutionary genetics analysis(MEGA) software version4.0. Mol. Biol. Evol.,2007,24(8):1596-1599.
    Thompson J.D., Higgins D.G., Gibson T.J. improving the sensitivity of progressive multiplesequence alig nment through sequence weighting, position specific gap penalties and weightmatrix choice. Nucleic Acids Res,1994,22:4673-4680.
    Tomimura K., Gibbs A.J., Jenner C.E., Walsh J.A., Ohshima K. The phylogeny of Turnipmosaic virus; comparisons of38genomic sequences reveal a Eurasian origin and a recent'emergence' in east Asia. Mol Ecol,2003,12(8):2099-2111.
    Tomitaka Y., Ohshima K. A phylogeographical study of the Turnip mosaic virus population inEast Asia reveals an 'emergent' lineage in Japan. Mol Ecol,2006,15(14):4437-4457.
    Tsompana M., Abad J., Purugganan M., Moyer J.W. The molecular population genetics of theTomato spotted wilt virus (TSWV) genome. Mol Ecol,2005,14(1):53-66.
    Uyeda I., Ando Y., Murao K., Kimura I. High resolution genome typing and genomicreassortment events of rice dwarf Phytoreovirus. Virology,1995,212(2):724-727.
    Uyeda I., Azuhata F., Shikata E. Nucleotide sequence of rice black-streaked dwarf virusgenome segment10. Proc. Japan Acad.,1990,66(B):37-40.
    Valli A., Lopez-Moya J.J., Garcia J.A. Recombination and gene duplication in theevolutionary diversification of P1proteins in the family Potyviridae. J Gen Virol,2007,88(Pt3):1016-1028.
    Van der Walt E., Rybicki E.P., Varsani A., Polston J.E., Billharz R., Donaldson L., MonjaneA.L., Martin D.P. Rapid host adaptation by extensive recombination. J Gen Virol,2009,90(Pt3):734-746.
    Van Lent J., Wellink J., Goldbach R. Evidence for the involvement of the58K and48Kproteins in the intercellular movement of Cowpea mosaic virus. J Gen Virol,1990,71(1):219-223.
    Vidal M., Brachmann R.K., Fattaey A., Harlow E., Boeke J.D. Reverse two-hybrid andone-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions.Proc Natl Acad Sci U S A,1996,93(19):10315-10320.
    Vojtek A.B., Hollenberg S.M., Cooper J.A. Mammalian Ras interacts directly with theserine/threonine kinase Raf. Cell,1993,74(1):205-214.
    Wang Q., Tao T., Zhang Y., Wu W., Li D., Yu J., Han C. Rice black-streaked dwarf virus P6self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruitsviroplasm-associated protein P9-1. Virol J,2011,8:24.
    Wang Q., Yang J., Zhou G.H., Zhang H.M., Chen J.P., Adams M.J. The complete genomesequence of two isolates of southern rice black-streaked dwarf virus, a new member of thegenus Fijivirus. J Phytopathol,2010.
    Wang Z., Yu D., Li X., Zeng M., Chen Z., Bi L., Liu J., Jin L., Hu D., Yang S., Song B. Thedevelopment and application of a Dot-ELISA assay for diagnosis of southern riceblack-streaked dwarf disease in the field. Viruses,2012,4(1):167-183.
    Wang Z.H., Fang S.G., Xu J.L., Sun L.Y., Li D.W., Yu J.L. Sequence analysis of the completegenome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease.Virus Genes,2003,27(2):163-168.
    Wang Z.H., Fang S.G., Zhang Z.Y., Han C.G., Li D.W., Yu J.L. Development of an ID-ELISAfor the detection of Rice black-streaked dwarf virus in plants. J Virol Methods,2006,134(1-2):61-65.
    Watson J.D., Crick F.H. Molecular structure of nucleic acids; a structure for deoxyribosenucleic acid. Nature,1953,171(4356):737-738.
    Wei T.Y., Wang H., Lin H.X., Wu Z.J., Lin Q.Y., Xie L.H. Sequence analysis of RNA3ofRice stripe virus isolates found in China: evidence for reassortment in Tenuivirus. Sheng WuHua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2003,35(1):97-103.
    Wei T.Y., Yang J.G., Liao F.R., Gao F.L., Lu L.M., Zhang X.T., Li F., Wu Z.J., Lin Q.Y., XieL.H., Lin H.X. Genetic diversity and population structure of rice stripe virus in China. J GenVirol,2009,90(Pt4):1025-1034.
    Whitham S.A., Wang Y. Roles for host factors in plant viral pathogenicity. Curr Opin PlantBiol,2004,7(4):365-371.
    Wittmann S., Chatel H., Fortin M.G., Laliberte J.F. Interaction of the viral protein genomelinked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso)4E ofArabidopsis thaliana using the yeast two-hybrid system. Virology,1997,234(1):84-92.
    Wright S. The genetical structure of populations. Ann. Eugenics,1951,15:323-354.
    Wu J., Ni Y., Liu H., Rao L., Zhou Y., Zhou X. Development and use of three monoclonalantibodies for the detection of rice black-streaked dwarf virus in field plants and planthoppervectors. Virol J,2013,10(1):114.
    Yin X., Xu F.F., Zheng F.Q., Li X.D., Liu B.S., Zhang C.Q. Molecular characterization ofsegments S7to S10of a southern rice black-streaked dwarf virus isolate from maize innorthern China. Virol Sin,2011,26(1):47-53.
    Yu X.Q., Lan Y.F., Wang H.Y., Liu J.L., Zhu X.P., Valkonen J.P., Li X.D. The completegenomic sequence of Tobacco vein banding mosaic virus and its similarities with otherpotyviruses. Virus Genes,2007,35(3):801-806.
    Zhang C., Liu Y., Liu L., Lou Z., Zhang H., Miao H., Hu X., Pang Y., Qiu B. Rice blackstreaked dwarf virus P9-1, an alpha-helical protein, self-interacts and forms viroplasms invivo. J Gen Virol,2008a,89(Pt7):1770-1776.
    Zhang C.L., Gao R., Wang J., Zhang G.M., Li X.D., Liu H.T. Molecular variability of Tobaccovein banding mosaic virus populations. Virus Res,2011,158(1-2):188-198.
    Zhang H.M., Chen J.P., Adams M.J. Molecular characterisation of segments1to6of Riceblack-streaked dwarf virus from China provides the complete genome. Arch Virol,2001a,146(12):2331-2339.
    Zhang H.M., Chen J.P., Lei J.L., Adams M.J. Sequence analysis shows that a dwarfing diseaseon rice, wheat and maize in China is caused by Rice black-streaked dwarf virus. Eur J PlantPathol,2001b,107(5):563-567.
    Zhang H.M., Yang J., Chen J.P., Adams M.J. A black-streaked dwarf disease on rice in Chinais caused by a novel fijivirus. Arch Virol,2008b,153(10):1893-1898.
    Zhang P., Mar T.T., Liu W., Li L., Wang X. Simultaneous detection and differentiation of Riceblack streaked dwarf virus (RBSDV) and Southern rice black streaked dwarf virus (SRBSDV)by duplex real time RT-PCR. Virol J,2013,10:24.
    Zhou G.H., Wen J.J., Cai D.J., Li P., Xu D.L., Zhang S.G. Southern rice black-streaked dwarfvirus: A new proposed Fijivirus species in the family Reoviridae. Chin Sci Bull,2008,53(23):3677-3685.
    Zhou T., Du L., Fan Y., Zhou Y. Reverse transcription loop-mediated isothermal amplificationof RNA for sensitive and rapid detection of southern rice black-streaked dwarf virus. J VirolMethods,2012,180(1-2):91-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700