大直径扩底单桩水平载荷试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大直径扩底桩具有施工设备简单、成桩质量可靠、承载力大、无噪音干扰和经济效益显著等优点,已成为多层及高层建筑、桥梁工程、大型设备和重型厂房等工程中重要的基础形式。本文通过现场载荷试验,数值模拟、理论分析,对水平荷载作用下大直径扩底桩的承载力、荷载传递机理及变形机理开展了研究工作。
     (1)从加荷级别、变形观测、测试元件的埋设、受力点设置、数据测读时间、加卸载方法等方面对水平静载试验方案进行了研究,为大直径扩底桩水平载荷现场试验提供了可行的方案,使现场载荷试验得以顺利完成。对4根水平荷载作用下的大直径扩底灌注桩进行了现场静载荷试验,确定了其临界荷载、极限荷载和水平承载力特征值及相应位移量;同时进行桩身内力测试,在对试验数据进行整理,对试验结果进行分析的基础上,研究了水平荷载荷载传递机理及桩身剪应力和弯矩沿深度变化的规律。结果表明:大直径孔桩的H-Y0,曲线和H-ΔY/ΔH曲线,可分为三阶段:弹性阶段、弹塑性阶段和破坏阶段;地基土水平抗力系数的比例系数与桩顶位移是具有明显的非线性关系,可近似用双曲线来拟合;桩身弯矩最大截面处,钢筋应力随荷载的增加而呈线性增加,当水平荷载达极限值时应力突变,桩身断裂,这说明其极限水平荷载由桩身强度控制;桩身弯矩由上至下逐渐变大,深度为3-4D时最大,然后变小,桩变截面处仍有弯矩产生,尤其是较短的S22桩,这说明扩底对桩身弯矩分布有较大的影响。
     (2)利用有限差分程序,采用摩尔-库仑破坏准则,对水平荷载作用下大直径扩底桩进行了数值模拟计算,分析了桩身位移沿桩身埋深的分布规律和表层土弹性模量及扩底尺寸对桩身位移的影响。结果表明:上部土层的弹性模量对桩身水平位移的影响比较显著。为了保证大直径扩底桩有良好的水平承载性能,表土层弹性模量宜在10MPa以上;为充分发挥大直径扩底桩的水平承载性能,桩长宜为7D左右,不宜大于10D。
     (3)提出了基于地基反力和桩身强度的大直径扩底桩水平承载力计算方法,分析了桩身尺寸(桩直径、扩底直径、桩长和扩底段高度)、桩周土和桩端土性质对桩水平承载力的影响。计算分析表明:大直径扩底短桩属刚性桩;基于不同的临界状态,推导的基于力平衡、力矩平衡和桩身强度的三种大直径扩底短桩水平承载力计算公式,具有概念清楚、意义明确的特点,可以方便地求出大直径扩底桩的水平承载力;通过与规范法和工程实测值进行对比,基于桩身强度的水平承载力计算公式与实测结果较吻合。
     本文的研究成果对大直径扩底桩的设计、施工提供了理论依据具有积极的指导意义。
Large diameter belled pile has been widely used in Multi-storey and high-rise buildings, bridges, factories and other large equipment and heavy engineering for its simple construction, reliable and easy to check, large capacity, no noise interference and the advantages of significant economic benefits. In this paper, the level of load on the large diameter hand-dug hole pedestal pile deformation mechanism and the load bearing characteristics of the work are studied in details based on the static load test, numerical simulation and theoretical analysis.
     (1) After the static load test scheme is studied from the loading level, deformation, test devices planted, set of working point, time of data readings and loading-unloading method, a feasible plan is achieved for horizontal load field test of the large diameter hand-dug hole pedestal pile. On-site static loading test for the four root level load enlarged end of large diameter pile is carried out to determine its critical load, limit load bearing capacity, horizontal bearing capacity eigenvalues and corresponding displacement. Meanwhile, the internal force test of pile body is carried on for getting the test data and experimental results to further research the horizontal load transfer mechanism of shear stress and bending moment and pile body along the depth change rules.
     The results are included in the below:a) the H-Yo curve and H-△Y/△H curve of large diameter pile can be divided into three stages, namely elastic stage, elastic-plastic stage and destroy stage; b)there exsits the obvious nonlinear relationship, which can be approximated to fit a hyperbolic line, between the horizontal resistance coefficient of the foundation soil proportion coefficient and the displacement of pile top.; c)at the largest cross-section bending moment, the reinforced stress linearly increases with the load increasing. When the horizontal load reaches limit, strain value mutations that pile body fractures. This shows that the limit of the horizontal load is controlled by the strength of the pile; d)Bending moment distribution is evenly larger from top to bottom when it is getting a depth of 3-4D maximum, and then smaller. A moment in the cross-section place of pile is still produced, especially in the shorter S22 pile. This shows that the belled has great influence on the distribution of bending moment.
     (2)Through FLAC3D program and Mohr-Coulomb criterion, a numerical simulation calculation for the large diameter belled pile under horizontal loads is carried out to analyze the displacement rules of pile body along the buried depth of pile body regularity of distribution and the influence of the surface soil modulus of elasticity and enlarged end of pile body size on the displacement of pile body. It can be showed that the result has a good consistency with the test results, and that the upper layers of elastic modulus has notable influence on to the influence of pile body horizontal displacement of the pile body. In order to ensure a good level of pile bearing capacity, the topsoil elastic modulus is above in appropriately lOMPa. To fully play to the horizontal bearing capacity of large diameter belled pile, Pile length should be around for the 7D, but should not be greater than 10D.
     (3)The horizontal bearing capacity calculation method of large diameter belled pile based on the foundation counterforce and pile body strength is proposed to analyze the impact of the pile body size (pile diameter, belled diameter, the pile length and the height of pedestal), soil around the pile and properties of pile tip soil on the horizontal bearing capacity of pile. The calculations show that the large diameter belled pile is rigid pile. Based on different critical conditions, the three horizontal bearing capacity calculation formula of large diameter belled pile,, clear concept and clear meaning, is derived according to force balance, moment balance and strength of pile, by which the horizontal bearing capacity of large diameter belled pile can be easily computed. Through the comparison with standardized method and measured value of engineering, it shows that the results from the calculation formula of pile body strength for the level of the bearing capacity are nearly identical to the on-site measured results.
     The results of this paper provide a theoretical basis for design and construction of large diameter belled pile, and also have the positive significance for theorectical research.
引文
[1]桩基工程手册编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1997.
    [2]邓其生.中国古代建筑基础技术建筑技术[J],第2期,1980.
    [3]赵明华.桥梁桩基计算与检测[M].北京:人民交通出版社,2000.
    [4]费康.现浇薄壁管桩理论与实践[D].南京:河海大学,2004.9.
    [5]刘金砺,桩基研究与应用若干进展浅析[J].施工技术,2000,29(9):24.
    [6]韩理安.水平承载桩的计算[M].湖南长沙:中南大学出版社,2004.
    [7]张耀年.横向受荷桩的通解[J].岩土工程学报,1998,20(1):84-86.
    [8]王伯惠.桥梁桩基计算的统一和简化[D].沈阳:辽宁交通科学院研究所,1978.5.
    [9]范文田.侧向梯形荷载受力桩的通解[J].铁道学报,1980(4):58-63.
    [10]Y.L.Chang.Discussion on"lateral Pile loading tests" by Feagin, Tans, ASCE, 1937:272-278.
    [11]P.E.Rase, Theory of lateral bearing capacity of Piles, Proc.lstICSMFE,1936.
    [12]B.B.Broms, lateral resistance of Piles in cohesive soil,Proc., ASCE,1964,90(2):27-63.
    [13]B.B.Broms, lateral resistance of Piles in cohesive soil,Proc., ASCE,1964,90(3):123-156.
    [14]B.B.Broms, Design of laterally loaded Piles, Proe., ASCE,1965,91(3).
    [15]P.E.Rase, Theory of lateral bearing capacity of Piles, Proc.lstICSMFE,1936.
    [16]Reece LC, Cox WR,Koop FD.Analysis of laterally loaded piles in sand. In Proceedings of the 6th Offshore Technology Conference,1974, (OTC2080):473-485.
    [17]李仁平,陈仁明,陈云敏.软粘土地基中码头桩基的受力分析[J].工业建筑,2001.4,46-49.
    [18]朱同浩,钟小萍.侧向受荷桩与土体的相互作用分析[J].岩土工程学报,1988,10(1).
    [19]廖雄华,张克绪.天津港高桩码头桩基一岸坡土体相互作用的数值分析[J].水利学报,2002.4,51-57.
    [20]Tomio Ito et al.Design Method For Stabilizing Pile against Landslide— One Row of Piles.Soil and Foundation,1981,21(1).
    [21]Shahrourl, Meimon YAnalysis of the behavior of offshore Piles under load..Proc Int Conf on Deep Foundations.1991.277-284.
    [22]Zhang L M..Behavior of laterally loaded large-section barrettes, Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2003,Vol.129,No.7.639-648.
    [23]Pressley JS, Poulus HG. Technical notes on practical applications:Finite element analysis of mechanisms of pile group. Jnum Anal Meth Geom 1987; 10:213-21.
    [24]Chow YK. Axial and lateral response of Pile groups embedded in nonhomogeneous soils. J Num Anal Meth Geomech.1987; 11 (3):621-38.
    [25]Tomio Ito et al.Method to Estimate Lateral Force Acting on Stabilizing Piles.Soils and Foundation,1975,15(4).
    [26]Christos Anagnosto Poulos, Miehael Georgiadis.Interation of axial and lateral pile responses.Getech Engrg,ASCE,1993,119(4):793-798.
    [27]史佩栋.实用桩基工程手册[M].北京:中国建筑工业出版社,2000年4月.
    [28]桩基工程手册编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995.
    [29]林天健,熊厚金,王利群.桩基础设计指南[M].北京:中国建筑出版社,2003.
    [30]杨克己,韩理安.桩基工程[M].人民交通出版社,1992.
    [31]横山幸满.桩结构物的计算方法和计算实例[M].北京:中国铁道出版社,1984.
    [32]张舒羽.水平承载桩静载P-Y曲线研究[D].南京:河海大学,2001.
    [33]胡立方,周建国.单桩水平承载力计算方法的比较分析[J].辽宁交通科技,2003.8,19-22.
    [34]Broms,B.B., lateral resistance of pile in cohesive soils, Proc, ASCE,1964,91(3):77-99.
    [35]日本港湾协会,港湾构造物设计基准[M].1971,5(2):46-61.
    [36]交通部科学研究院钻孔桩小组(卢世深执笔),计算钻孔桩承载力的C法,桩基工程学术会议论文选集,1981.
    [37]王伯惠,上官兴.中国钻孔灌注桩新发展[M].北京:人民交通出版社,1999.
    [38]吴恒立.计算推力桩的综合刚度原理和双参数法[M].北京:人民交通出版社,2000.
    [39]Matlock, H., Correlations for design of laterally loaded piles in sole clay, prceedings of the II Annual Offshore Technology Conference,1970, (OTC):577-594.
    [40]叶万灵,时蓓玲.桩的水平承载力实用非线性计算方法——NL法[J].岩土力学,2000,(2).
    [41]中华人民共和国行业标准,港口工程桩基规范(JTJ254—98)局部修订(桩的水平承载力设计)[M].北京:人民交通出版社,2001.
    [42]陈海民.大直径嵌岩桩水平承载特性研究[D].天津:天津大学,2004.
    [43]M.T.Davisson Sally JR. Model study of laterally loaded pile. Soil Mech Found Div, ASCE 1970;96(5):1605-1627.
    [44]Mayne PW, Kulhawy FH, Trautmann CH. Laboratory modeling of laterally loaded drilled shafts in clay. J Geotech Engng 1995:121(12):827-835.
    [45]Caliendo, J.A.&Anderson, L.R.Lateral load testing of model piles, phase l.Report no.96-60 to the Mountain Plains Consortium, Utah Transportation Center,1996.
    [46]Pan J L, Goh A T C, Wong K S& The C I. Model tests on single piles in soft clay, Can. Geotech. J.,2000, Vol.37,890-897.
    [47]M. Alizadeh and M. T. Davission. Lateral load tests on piles-ARKANSAS RIVER PROJECT.J.of SMFD, Pro.of ASCE,1970, SMS, pp.1583-1603.
    [48]Lymon C.Reese and Robert C.Weleh, Lateral loading of deep foundations in stiff clay, Journal of the Geotechnical Engineering Division, Vol.101, No.GT7,1975,633-649.
    [49]T. W. Dunnavant and M.W.O'Neill. Experimental p-y model for submerged stiff clay. Journal of Geotechnical engineering.Vol.115, No.1,1989.pp.95-114.
    [50]Nabil F.Ismael.Behavior of laterally loaded bored piles in cement sands. Journal of Geotechnical engineering, Vol.116,No.11,1990, pp.1678-1699.
    [51]An-Bin Huang,Chao-Kuang Hsueh and Michael W.O'Neill et. al, Effects of construction on laterally loaded pile group, Journal of Geotechnical and Geoenvironmental Engineering, Vol.127,No.5,2001,385-397.
    [52]王梅,楼志刚,李建乡等.水平荷载作用下单桩非线性m法试验研究[J].岩土力学,2002,23(1):23-30.
    [53]吴春林,闰明礼.CFG桩及其复合地基水平荷载作用下的性状[J].工程勘察,1996,NO.4,p18-21.
    [54]黄质宏.单桩水平承载力试验分析及研究[J].贵州工学院学报,1996,25(3):42-47.
    [55]宋功河.桩基水平静力试验及其探讨[J].南昌大学学报(工科报),1996,18(3):62-66.
    [56]李兵.短桩在粉、细砂中的垂直及水平承载力的试验研究[J].地基基础,1996,No.3,28-32.
    [57]徐和,徐敏若,郑春生.单桩横向承载力试验研究[J].岩土工程学报,1982,4(3):27-41.
    [58]赵明华,吴鸣,郭玉荣.轴、横向荷载下桥梁基桩的受力分析及试验研究[J].中国公路学报,2002,15(1):50-54.
    [59]王哲,龚晓南.轴向与横向力同时作用下大直径灌注筒桩的受力分析[J].苏州科技学院学报(工程技术版),2005,18(3):31-37.
    [60]龚健,陈仁朋,陈云敏.微型桩原型水平荷载试验研究[J].岩石力学与工程学报,2004,23(20):3541-3546.
    [61]郑刚,刘双菊,伍止超,等.刚性桩复合地基在水平荷载作用下工作性状的模型试验[J].岩土工程学报,2005,27(8):865-868.
    [62]G J.Dyson and M. F. Randolph, Monotonic lateral loading of piles in calcareous sand, Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.4,2001, 346-352.
    [63]Michael Mc Vay, Robert Casper, and Te-Ⅰ Shang, Laterl response of three-row groups in loose to dense sands at 3D and 5D pile spacing, Journal of Geotechnical Engineering, Vol.121, No.5,pp436-441.
    [64]I. L. Nunez, R. Pillips & M. F. Randolph. Modeling laterally loaded piles in calcareous sand. Centrifuge 1988, Balkema. Rotterdam, pp371-381.
    [65]A. Bouafia and J. Gamier. Experimental study of p-y curves for piles in sand. Centrifuge 1991, Balkema, Rotterdam, pp261-268.
    [66]Scott, R. F., Pile testing in a centrifuge, Proe.10th ICSMFE, Vol.2,1981, pp839-842.
    [67]Barton, Y.O., Response of pile groups to lateral loading in the centrifuge, Application of centrifuge modeling to geotechnical design, Ed. Craig, W.H., England,1984, pp454-474.
    [68]Liming Zhang, Ting Hu. Modeling residual stresses of large piles in centrifuge. Centrifuge 1991, Balkema Rotterdam, pp237-243.
    [69]张利民.横轴向荷载下桩基离心机试验及三维数值模[D].成都科技大学,1989.
    [70]张利民,胡定.用离心模型研究桩基承载特性[J].岩土工程学报,1991,13(3):26-35.
    [71]马智杰,葛中华,刘志珍.预制小桩在软土中的特性及群桩效应研究[J].岩石力学与工程学会第七次学术大会论文集,西安,2002.
    [72]侯瑜京,韩连兵,梁建辉.深水港码头围堤和群桩结构的离心模型试验[J].岩土工程学 报,2004,26(5):594-600.
    [73]张耀年,龚一鸣.福州大直径灌注桩的荷载传递性能[J].岩土工程学报,1990,12(5):84-90.
    [74]陈冬贵.人工挖孔扩底灌注桩计算实例[J].岩土工程技术,2001,(1):49-52.
    [75]高广运.黄土中灌注桩竖向承载力试验分析[J].岩土工程学报,1998,20(3):75-79.
    [76]高广运,孙雨明,吴世明.人工挖孔扩底桩竖向承载性状[J].工程勘察,2001(1):11-13.
    [77]Join G S and GupmSP. Acomparative study of multi-under reamed pile with large diameter pile in sandy soil. Proc.3rd Budapest Conference on Soil Mechanics and Foundation Engineering,1968:563-570
    [78]Sonapal R E and Thakkas N S. Model under reamed pile load tests.Proc.5th South East Asian Conf. on Soil Engineering,Bangkok,Thai-land,1977:103-140
    [79]Kezdi A.Bearing capacity of piles and pile groups, In Proceedings of the 4th International Conference of ICSMFE,1957, London
    [80]Kezdi A.Bearing capacity of piles and pile groups, In Proceedings of the 4th International Conference of ICSMFE,1957, London
    [81]Mayerhof G G. Some problems in predicting behavior ofbored pile foundation.Proc 1st International Geotechnieal Seminar on Deep Foundation on Bored and Auger Piles.1988,133-144
    [82]刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版,1990
    [83]《沈阳城区桩基础设计与施工暂行规程》(SYJB1-91)[M].沈阳:辽宁科学技术出版社.1991
    [84]《沈阳城区单桩承载力研究》[M].沈阳:辽宁科学技术出版社.1991
    [85]何颐华,王铁宏.大直径扩底桩承载力及沉降变形的计算.建筑结构学报,1993,14(2):63-77
    [86]宰金璋,陈文,肖永正,余斯复.层状士中扩底桩的性状分析及其工程应用.福建建筑.1994a,39(1):19-24
    [87]宰金璋,陈文,肖永正,等.层状土中扩底桩的沉降特性研究与工程实践.见:中国土木工程学会编.第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1994b,377-381
    [88]高广运.黄土层中扩底墩基础的沉降计算和实测.工业建筑,1995,25(1):30-36
    [89]刘之春,蒋永生,龚维明.大直径扩底桩承载力的沉降变形控制设计法初探.东南大学学报(自然科学舨),2001,31(4):49-53
    [90]邓洪亮.扩底桩深度效应数值解法及其承载力确定方法.岩士力学,2002,23(1):97-102
    [91]王凤池,王明恕.大直径扩底桩墩的工作机理和承载力设计.岩士工程学报,2002,24(2):251-253
    [92]Segn D C, Biggar K W and Wong G. Enlarged Base(Belied)Piles for Use in Ice or Ice-Rich Permafrost. J. Cold Regions Engineering,2003,17(2):68-88
    [93]Weaver JS and Morgenstern NR.Pile design in permafrost. Canadian Geotechntcal Journal,1981a,18:357-370
    [94]Weaver JS and Morgenstern NR. Simple shear creep tests on frozen soils. Canadian Geotechntcal Journal,1981 b,18:217-229
    [95]张尚根,李刻铭,吴步旭,孟少平.扩底抗拔桩的变形分析.工业建筑,2003,33(6):40-41
    [96]张洁,尚岳全,林旭武.扩底抗拔桩荷载变形分析.低温建筑技术,2004(6):75-76
    [97]文松霖.铅直、水平荷载作用下扩底桩的承载机理.长江科学院院报,2004,21(5):24-27,31
    [98]卞肃江,钱刚.大直径扩底桩的扩底稳定分析.矿业快报,2004,20(8):17-20
    [99]Patnakar M V. Under reamed piles in cohesionless soils. India National Society of Soil Mechanics and Foundation Engineering,1970:252-256
    [100]Narasimha Rao, S., Prasad, C. V. and Sah, M. A. M(1988)"Expericnces with under-resmed piles"IGC-88, Dec 1988, V01.1.
    [101]顾宝和.根据变形确定扩底墩的轴向承载力.中国工程勘察学术委员会,第三届工程勘察学术交流会议论文选集,第三届工程勘察学术交流会议,1987
    [102]史鸿林,辛家尤,查松亭,王恩樟,人工挖孔扩底桩的原型荷载试验研究.安徽建筑,1992,(2):37-41
    [103]李大展,滕延京,何颐华,隋国释.湿陷性黄土中犬直径扩底桩垂直承载性状的试验研究.岩土工程学报,1994,16(2):11-21
    [104]Nov S. Behavioor of under reamed piles in cohesionless soils, Tenth National convention of Architectural Engineers, Institution of engineers,1994,32-38
    [105]黄强.大直径扩底桩承载力及变形计算.建筑结构学报,1994,15(1):67-77
    [106]蒋永莉.大直径扩底械墩基础的承载特性.北方交通大学学报,1995,19(2):235-238
    [107]张聚山,下俊林.扩底墩基础设计与分析[J].岩士工程学报,1996.V18(3):67-73
    [108]施峰,蔡来炳,柳春.人工挖孔扩底桩承载力试验研究.工程勘察.1999(2):21-25
    [109]丁胜仁.大直径挖孔扩底桩承载性能试验研究.西安:长安大学学位论文,2001
    [110]高广运,孙雨明,吴世明.人工挖孔扩底桩竖向承载性状.工程勘察,2002,29(1):11-13
    [111]蒋建平,高广运,顾宝和.扩底桩、楔形桩、等直径桩对比试验研究.岩土工程学报,2003,25(6):764-766
    [112]高广运,蒋建平,顾宝和.两种静载试验确定大直径扩底桩竖向承载力.地下空间,2003,23(3):272-276,343
    [113]郭全全,李珠.扩底后注浆桩的现场试验研究与分析.岩土力学,2003,24(5):804-808
    [114]刘文白,周健.孟克特术尔.扩底桩的抗拨承载力试验及计算.工业建筑,2003,33(4):42-45
    [115]刘文白,周健.扩底桩的上拔试验及其颗粒流数值模拟.岩士力学,2004,25(Supp.2):201-206
    [116]刘小文,沈细中,解家毕.大直径扩底桩承载力偏低原因分析.建筑技术,2004,35(4):293-295
    [117]殷亚军,刘长明,闰树民.大直径人工挖孔扩底桩抗拔静载试验分析.吉林建筑工程学院学报,2005,22(4):18-22
    [118]高广运,蒋建平,顾宝和.同场地扩底桩和直桩的对比研究.岩石力学与工程学报, 2005,24(3):502-506
    [119]王晓黎.多年冻土区钻孔扩底桩抗拔力研究.铁道科学与工程学报,2005,2(6):88-91
    [120]陈旭伟,葛炜.钻孔扩底灌注桩的抗拔试验分析与应用.建筑技术,2005,36(3):225-227
    [121]Puller David. Use of remote under ream inspection leads to increased pile capacity. Session Reports in the 2th Symposium on Construction Processes in Geotechnical Engineering,London,2005:12
    [122]Peter J Annie,Lakshmanan N, Manoharan P Devadas. Investigations on the Static Behavior Self-Compacting Conerete Under-Reamed PilesJournal of materials in civil engineering,2006,18(3):408-414
    [123]刘伟平,扶名福,罗小艳,曾宪坤.大直径挖孔扩底桩承载特性试验研究.南昌大大学学报(工学版),2006,26(1):60-63
    [124]胡庆红,张土乔,谢新宇.深厚软土中大直径灌注扩底桩受力性状试验研究.土木工程学报,2007,40(4):87-91
    [125]欧刚华江,解明雨,邬瑞锋.挖孔扩底桩垂照承载力.岩士工程学报,1992,14(3):49-55
    [126]汪中卫,高彦兵.扩底桩的荷载传递机理分析.住宅科技.1998:3-6
    [127]叶萌,宰金璋,汪中卫.扩底桩的应力与变形机理分析.结构工程师,1998,(4):35-41
    [128]张志勇,陈晓平.扩底单桩1临界桩长的数值模拟.武汉水利电力大学学报,2000,33(3):36-37,68
    [129]廖雄华,段文峰,张克绪.用节点位移的主-从关系考虑扩底桩的端承面尺寸效应.哈尔滨建筑大学学报,2000,33(2):33-37
    [130]霍志芳.人工挖孔扩底桩竖向承载力的计算.西安:长安大学学位论文.2002
    [131]吴晓辉,刘小文.大直径扩底桩承载力的数值分析.江西水利科技,2004,34(0S):71-73
    [132]王勇.变形控制挖孔扩底桩桩端承载力试验研究.西安:长安大学学位论文,2004
    [133]侯超群.人工挖孔扩底桩竖向承载力试验研究.西安:长安大学学位论文.2004
    [134]雷斌.深圳地区泵吸反循环扩底桩施工技术[J].岩土工程界,2000,12(4):46-50.
    [135]陈勇.泵吸反循环钻孔扩底桩在深圳地区的应用前景[J].广东土木建筑,2001(9):9-1?
    [136]柳春.软土地基人工挖孔桩承载力试验研究[J].岩土工程学报,1998,20(6):37-41.
    [137]葛会员,牛有来,侯超群.挖孔扩底桩桩侧摩阻力试验研究[J],山西建筑,2004,30(20):55-57.
    [138]李苑.大直径扩底墩灌注桩基础的应用技术[J].建筑技术,2006,37(3):198-199.
    [139]张晓辉.大直径人工挖孔扩底墩基础设计与应用[J].山西建筑2005,31(23):84-85.
    [140]冯勇,薛强.地下构筑物影响下的扩底墩施工技术[J].建筑技术开发,2004,31(4):65-66.
    [141]王为民.扩底墩坑式托换技术在工程中的应用[J].建筑技术,2002,33(6):441-441.
    [142]李明秋.高层建筑及重型厂房基础设计中应用大直径扩底墩[J].中国矿业,2000,9(4):106-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700