介质供磷水平对冬小麦/玉米苗期生长过程的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷素不足已成为限制作物产量重要因素之一,因此,如何提高小麦、玉米对介质磷素吸收利用能力,筛选“磷高效”种质资源,对充分发挥植物高效利用土壤磷素营养潜力具有重要科学和实践意义。以往对小麦、玉米磷营养研究往往集中在单一作物不同基因型的比较,而有关小麦和玉米两种作物对磷素反应差异的比较性研究还较少。本试验选取2种不同分蘖类型的冬小麦基因型(多分蘖品种小偃22号和少分蘖品种兰考4号)和2个不同产量潜力的玉米基因型(高产品种屯玉65号和低产品种户单4号)作为研究对象,利用营养液培养方法,研究了在介质不同供磷水平(无磷、低磷胁迫、中等磷胁迫和标准供磷)下冬小麦和玉米不同基因型苗期冠层、根系及整株的生物量和磷积累量,作物光合荧光参数、根系形态特征和生物学性状等,系统比较了两种作物不同基因型间磷素吸收利用效率的差异,为快速筛选磷高效基因型和耐低磷基因型提供选择指标和一定理论依据。研究获得以下主要结果:
     1.从植株生物量指标看,小麦和玉米两种作物在苗期对磷胁迫均有良好反应,且玉米对磷素的反应并不比小麦逊色,只是二者对磷素敏感的阶段不同,且这种敏感性因作物基因型差异而异。植株不同部位对磷素反应亦不相同。在苗期早期生长阶段(即出苗后40 d以前),作物冠层生长并不需要介质较高供磷水平,而在苗期后期(即出苗后40~50 d),磷胁迫对冠层生长会产生明显抑制作用;介质较低供磷水平有利于促进玉米根系生长,而对小麦根系则需要较高供磷水平。总体而言,在苗期早期生长阶段,玉米对介质低磷胁迫的反应强于小麦,而进入苗期后期生长阶段,小麦的反应又强于玉米。
     2.介质供磷水平对小麦和玉米苗期磷累积量的影响显著不同,且因作物基因型、器官及测定时期不同而异。不同器官磷素养分累积量主要取决于生物量,而不是磷含量。介质供磷后,苗期早期生长阶段(出苗后25 d以前),小麦磷累积量对介质最佳供磷水平的反应较玉米高;在苗期后期(即出苗后40~50 d)时,小麦和玉米最佳供磷水平一致。如果以低磷胁迫(P1)作为对比进行分析,玉米苗期整株(冠层+根系)磷累积量对介质供磷的敏感性比小麦更强。试验供试小麦基因型间差异较玉米基因型间差异大,即兰考4号对介质供磷的敏感性较小偃22号强,屯玉65号和户单4号对介质供磷反应的敏感性基本一致。
     3.在缺磷胁迫下小麦和玉米叶片的Pn、Gs、Ls均降低,而胞间CO_2(Ci)浓度升高,说明试验作物叶片Pn的降低主要受非气孔因素限制。在介质完全缺磷情况下,小麦叶片Pn较玉米高;但供磷后,玉米叶片Pn显著大于小麦,且其对磷素的反应较小麦敏感。玉米不同基因型Pn在供磷水平间所表现出的规律性较小麦强,屯玉65号始终大于户单4号;而两种小麦基因型Pn的差异因供磷水平不同而异。缺磷处理下小麦、玉米叶片F_m、F_v、PSⅡ原初光能转换效率(F_v/ F_m)、PSⅡ潜在活性(F_v/ F_0)下降,F_0升高,表明PSⅡ的光能转换和利用效率降低。玉米低磷处理P1叶片F_v/ F_m降低,而小麦叶片F_v/F_m并未降低,表明低磷胁迫对小麦未产生光抑制;因此,以P0处理参比,玉米荧光参数对介质供磷的反应比小麦更敏感。两种玉米基因型F_v/ F_m、F_v/ F_0差异的规律性较小麦明显。户单4号受磷胁迫的影响小于屯玉65号,表现出较强的耐低磷能力。
     4.处理50 d后根系测定结果表明,磷素供应显著增加小麦和玉米根系干重、根长、根表面积和根体积,这进一步证明了磷可促进根系的生长,增大根系在土壤中的养分吸收空间。试验供磷处理对小麦和玉米根长的增加作用主要是细根长度的增加。从供试不同基因型看,小偃22号与兰考4号相比、屯玉65号和户单4号相比,在低磷胁迫情况下前者较后者有较大的根部生物量和根冠比,根系的生长状况相对较好。
     5.供磷水平显著影响小麦和玉米株高、叶面积等生物学性状。缺磷处理下小麦不分蘖或分蘖数减少。从不同基因型看,对小麦来说,供磷后兰考4号分蘖数、株高及叶面积均高于小偃22号;对玉米来说,供磷后户单4号叶片数、株高及叶面积等性状均高于屯玉65号。与玉米不同,磷素供应对苗期冬小麦的影响主要通过影响分蘖而影响生物量。
Phosphorus stress is one of the key factors to limit crop production. Screening of crops varieties which efficiently use phosphate is important to increase the crops capacity to utilize soil phosphate. Few researchers reported the differences of response to phosphate between wheat and maize.Two varieties of wheat (Xiaoyan 22 with more tillerings, and Lankao 4 with less tillerings) and maize (Tunyu 65 with potentially higher yield, and Hudan 4 with potentially lower yield) were grown in Hoagland solution to investigate the effects of phosphate concentration on biomass of shoot and root, P uptake, Chlorophyll fluorescence parameters and root morphological character of them at different seedling stage. Phosphate levels referred to 0 (P0), 0.05 (P1), 0.3 (P2), 0.5 (P3) P2O5 mmol·L~(-1). The main results of the research are as follows:
     1. Both of wheat and maize responded to low phosphorus stress. However, the responses were different in growth period and genotypes. Shoot biomass and root biomass of crops also responded differently. During the early stage of seedling (40 days after emergence), shoot biomass of crops didn’t decrease significantly with the low concentration of phosphate comparing with normal phosphate (0.5 P_2O_5 mmol·L~(-1)) while opposite results were found during the later stage of seedling (40~50 days after emergence). Under low-phosphate stress, root biomass of maize increased while root biomass of wheat was found to be decreased. Total biomass of maize was more sensitive to the reduction of phosphate concentration than that of wheat during the early stage of seedling while the reverse was true during the later stage of seedling.
     2. There were different effects of phosphate level on P uptake by wheat and maize. They also depended on genotypes, organs and time of measuring. P uptake in different parts of crop mainly depended on biomass rather than P concentration of crop. The maximum P uptake by wheat was higher than maize during the early seedling stage (25 days after seedling emergence), while no difference was found during the later seedling stage (40-50 days after seedling emergence). When 0.05 mmol·L~(-1) treatment was used as a control, P uptake of whole plant for maize was more sensitive to P in medium than for wheat, Lankao 4 was more sensitive than Xiaoyan 22, and no difference was found between Tunyu 65 and Hudan 4.
     3. Leaf net photosynthetic rate (Pn), stomatal conductance (Gs) and stomatal limiting value (Ls) of wheat and maize were gradually reduced while intercellular CO_2 concentration (Ci) was enhanced because of P deficiency, suggesting that the decreased photosynthetic rate might be controlled by non-stomatal limitation. When no phosphate was applied, leaf net photosynthetic rate (Pn) of wheat was higher than maize while Pn of maize was significantly higher than wheat and it was also more sensitive to phosphate when phosphate was supplied. Leaf net photosynthetic rate (Pn) of Tunyu 65 was always greater than Hudan 4 while the difference of Pn between two wheat genotypes was fluctuant with the phosphate levels. Comparing with normal phosphate level (P3), lack of phosphate (P0) caused reduces of maximum fluorescence (F_m), variable fluorescence (F_v), the intrinsic photochemical efficiency (F_v/ F_m) and potential activities (F_v/ F_0) of wheat and maize leaves and increases of original fluorescence (F0), indicating that the photo change and PSⅡuse efficiency decreased. F_v / F_m of maize leaf was reduced due to P deficiency (P1) while that of wheat leaf wasn’t. This suggested that photo-inhibition of photosynthesis happened to maize under low phosphorus stress. Hudan 4 showed greater tolerance to low phosphorous stress than Tunyu 65.
     4. Root dry weight, length, surface area and volume of wheat and maize increased significantly when phosphate was applied, comparing with P0. Increase of root length attributed mainly to fine roots. Xiaoyan 22 had greater root biomass and root shoot ratio under low-P stress than Lankao 4 while Tunyu 65 had greater root biomass and root shoot ratio than Hudan 4.
     5. When phosphate was applied, Lankao 4 had greater tillers number, height and leaf area than Xiaoyan 22 while Hudan 4 had greater leaves number, height and leaf area than Tunyu 65.
引文
[1] 陆景陵主编. 植物营养学(上册)[M]. 北京农业大学出版社,1994: 26~35,171~174
    [2] 鲁如坤. 土壤-植物营养学原理和施肥[M]. 北京:化学工业出版社,1998:49~53
    [3] Vance C P. Xymbiotic nitrogen fixation and phosphorus acquisition: plant nutrition in world of declining renewable resources [J]. Plant Physiol.,2001, 127:390~397
    [4] 鲁如坤. 我国的磷矿资源和磷肥生产消费Ⅱ磷肥消费和需求[J]. 2004,36(2):113~116
    [5] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review [J]. Plant Soil,2001,237:173~195
    [6] 李庆逵,朱兆良,于天仁. 中国农业持续发展中的肥料问题[M]. 江西科学技术出版社,1997
    [7] Cuauhtemoc Tarecicio Cervantes-Martinez. Effect of oat solublefiber on serum cholesterol, in selection of high beta-glucan content in oat grain. USA: UMI, 2000
    [8] Von Uexküll H R, Mutert E. Global extent, development and economic impact of acid soils [J]. Plant and Soil, 1995, 171:1~15
    [9] 向万胜,黄敏,李学垣. 土壤磷素的化学组分及其植物有效性[J]. 植物营养与肥料学报,2004,10(6):663~670
    [10] Holford I C P. Soil phosphorus, its measurements and its uptake by plants [J]. Aust. J. Soil Res, 1997, 35 : 227~239
    [11] 严小龙,张福锁. 植物营养遗传学[M]. 北京:中国农业出版社,1997:1~77
    [12] 顾益初,钦绳武. 长期施用磷肥条件下潮土中磷素的积累形态转化和有效性[J]. 土壤,1997,29(1):13~17
    [13] 司有斌,王慎强,陈怀满. 农田氮、磷的流失及水体富营养化[J]. 土壤,2000,4:188~193
    [14] 袁新民,同延安,杨学云,等. 施用磷肥对土壤 NO3- _ N 累积的影响[J]. 植物营养与肥料学报,2000,6(4):397~403
    [15] 司友斌,王慎强,陈怀满. 农田氮、磷的流失及水体富营养化[J]. 土壤,2000,4:188~193
    [16] 李庆逵,蒋柏藩,鲁如坤. 中国磷矿的农业利用[M]. 江苏:江苏科学技术出版社,1990:12~16
    [17] 王庆仁,李继云,李振声.植物高效利用土壤难溶态磷研究动态及展望[J].植物营养与肥料学报,1998,4(2):107~116
    [18] 郭程瑾,李宾兴,周彦珍,等. 不同磷效率小麦品种的磷吸收特性[J].植物遗传资源学报,2006,7(1):49~53
    [19] 沈 宏,施卫明,王校常,等. 不同作物对磷胁迫的适应机理研究[J].植物营养与肥料学报,2001,7(2):172~177
    [20] 张丽梅,贺丽源,李建生,等. 不同耐低磷基因型玉米磷营养特性研究[J]. 中国农业科学,2005,38(1):110~115
    [21] Batten G D. A review of phosphorus efficiency in wheat [J]. Plant and Soil, 1992(146):163~168
    [22] 贺明荣,王振林,曹鸿明. 不同小麦品种磷素吸收运转差异及其与利用效率的关系[J]. 西北植物学报,1998,18(5):113~117
    [23] 万延慧,朱龙英,杨志杰,等. 低磷胁迫对不同番茄基因型苗期影响的研究[J]. 农业工程学报,2005,21(增刊):57~59
    [24] 吕 滨(译). 植物矿质营养遗传研究进展. 国外农学—土壤肥料,1987,3:3~6
    [25] 丁 洪,姜秀勇,柳建新. 小麦基因型磷素营养特性研究进展[J]. 麦类作物,1999 ,19 (5) : 51~54
    [26] 黄爱缨,王三根,蔡一林,等. 玉米自交系苗期磷营养特性评价[J]. 植物营养与肥料学报,2006,12(5):635~641
    [27] 王秀荣,严小龙,卢仁骏. 菜豆叶片特征与磷效率关系初探[J]. 植物营养与肥料学报. 1999,5(l):89~92
    [28] Jacob J. and Lawlor D.W. Stomatal and mesophyll limitation of photosynthesis in phosphate deficient sunflower, maize and wheat plant [J]. J of Exp. Bot.,1991,104: 657~665
    [29] 张淑华,潘国君,刘传雪,等. 水稻品种耐低磷胁迫特性研究进展[J]. 黑龙江农业科学,2006,(4):91~95
    [30] 李春俭. 土壤和植物营养的最新研究进展[J]. 中国农业大学学报, 2001,4:13~23,198~210
    [31] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review [J]. Plant Soil,2001,237:173~195
    [32] Barber S A, Mackay. Root growth and potassium uptake by two corn genotypes in the field [J]. Fert Res, 1986,10:217~231
    [33] 邱化蛟,许秀美,冷寿慈,等. 植物磷素利用效率[J]. 莱阳农学院学报,2001,18(2):116~120
    [34] 范曾丽,王三根. 缺磷胁迫对不同玉米幼苗生长的影响[J]. 中国农学通报,2007,23(3):231~235
    [35] Gaarcia M and Ascfnio J. Root morphology and acid phosphorus activity in tomato plants during development and recovery from phosphorus stress [J]. Journal of Plant Nutrition,1992,15(11):2491~2530
    [36] Dracup M N H, Barret-Lennard E G, and Greenway H, et al. Effect of phosphatase activity of cell walls from roots of subterranean clover [J]. J.Exp.Botany,1994,35:466~480
    [37] Rengel Z. Genetic control of root exudation [J]. Plant and Soil, 2002,245: 59~70
    [38] Duff S M, Plaxton W C, Lefebvre D D. Phosphate-starvation responsein plant cell: de novo synthesis and degradation of acid phosphateases [J]. Proc Nat Acad Sci USA, 1991, 88: 9538~9542
    [39] Del Pozo J C, Allona I, Rubio V, et al. AragoncilloC, Paz2Ares J. A type 5 acid phosphatase gene from Arabidopsisthaliana is induced by phosphate starvation and by some other types of phosphate mobilizing/ oxidative stress conditions [J]. Plant J, 1999, 19: 579~589
    [40] Clark R B, Brown J C. Differential phosphorus uptake by phosphorus stressed corn inbred [J]. Crop Sci, 1974,14:505~508.
    [41] 丁 洪,李生秀,郭庆元,等. 酸性磷酸酶活性与大豆耐低磷胁迫能力的相关分析[J]. 植物营养与肥料学报,1997,3(2):123~127
    [42] 孙海国,张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究[J]. 应用生态学报,2002,13(3):379~381
    [43] Marschner H, Romheld V, Cakmak I. Root-induced changes of nutrient availability in the rhizosphere [J]. Journal of Plant Nutrition, 1987, 10 : 1175~1184
    [44] 潘晓华,刘水英,李锋,等. 低磷胁迫对不同水稻品种幼苗生长和磷效率的影响[J]. 江西农业大学学报(自然科学版),2002,24(3):297~300
    [45] 潘晓华,刘水英,李锋,等. 低磷胁迫对不同水稻品种幼苗光合作用的影响[J]. 作物学报,2003,29(5):770~774
    [46] 李德华,向春雷,姜益泉,等. 低磷胁迫下不同水稻品种根系生理特性的研究[J]. 华中农业大学学报,2006,25(6):626~629
    [47] Fernandez D S and Ascencio J. Acid phosphatase in bean and cowpea plants grown under phosphorus stress [J]. Journal of Plant Nutrition, 1994,17:229~241
    [48] 鲁剑巍,陈防,张竹青,等. 磷肥用量对油菜产量、养分吸收及经济效益的影响[J]. 中国油料作物学报,2005,27(1):73~76
    [49] 丁玉川,陈明昌,程 滨,等. 北方春大豆磷高效基因型的筛选[J]. 植物营养与肥料学报,2006,12(4):597~600
    [50] Jacob J, Lawlor D W. In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate-deficient sunflower and maize leaves [J]. Plant,Cell and Environment, 1993, 16:785~795
    [51] 李绍长,胡昌浩,龚 江,等. 低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响[J]. 作物学报,2004,30(4):365~370
    [52] Evans J R. Photosynthesis and nitrogen relationships in levels of C3 plants [J]. Ecologia,1989,78:9~19
    [53] Berry J A, Downton W J S. Environmental regulation of photosynthesis [J]. In:Covindjee T D. Photosynthesis Vol.2.New York: Academic Press, 1982,263~343
    [54] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:268~270
    [55] 林启美,黄德明. 应用酸性磷酸酶进行番茄磷素诊断[J]. 华北农学报,1991,6(2):78~83
    [56] 高俊凤. 植物生理学试验技术[M]. 西安:世界图书出版西安公司,2000:101~103
    [57] 李生秀. 植物营养与肥料学科的现状与展望[J]. 植物营养与肥料学报,1999,5(3):193~205
    [58] Gahoonia T S, Nielsen N E. Root traits as tools for creating phosphorus efficient crop varieties [J]. Plant and Soil,2004,260:47~57.
    [59] 鲁如坤. 土壤磷素水平和水体环境保护[J]. 磷肥与复肥,2003 ,18(1): 4~7.
    [60] 陈 磊,郝明德,张少民,等. 黄土高原旱地长期施肥对小麦养分吸收和土壤肥力的影响[J].植物营养与肥料学报,2007,13(2):230~235
    [61] 刘建玲,杨福存,李仁岗. 长期肥料定位试验栗钙土中磷肥在筱麦上的产量效应及行为研究[J].植物营养与肥料学报,2006,12(2):201~207
    [62] 李生秀,李世清. 小麦、毛苕和豌豆对磷肥的反应[J]. 西北农业大学学报,1992,20(S):74~78
    [63] 刘向生,陈范骏,春 亮,等. 玉米自交系耐低磷胁迫的自交系差异[J]. 玉米科学,2003(11):23~27
    [64] 刘存辉,张可炜,张举仁,等. 低磷胁迫下磷高效玉米单交种的形态生理特性[J]. 植物营养与肥料学报,2006,12(3):327~333
    [65] 邱慧珍,张福锁. 活化钙镁磷肥对不同磷效率基因型冬小麦生长及磷效率的影响[J]. 土壤通报,2002,33(4):295~299
    [66] 李慧明,高志强,张永清,等. 不同基因型春小麦根系对低磷胁迫的生物学相应[J]. 山西农业大学学报,2006,26(2):138~140
    [67] 张丽梅,贺立源,龚阳敏,等. 不同耐低磷玉米自交系生长发育特征研究[J]. 植物营养与肥料学报,2006,12(1):56~62
    [68] 王荣萍,王 艳,黄建国. 低磷胁迫对不同基因型玉米产量性状的影响[J]. 西南农业大学学报:自然科学版,2004,26(3):715~722
    [69] 何念祖,孟赐福. 植物营养原理[M]. 上海:上海科学技术出版社,1987:125~159
    [70] 邱化蛟,许秀美,冷寿慈,等. 植物磷素利用效率[J]. 莱阳农学院学报,2001,18(2):116~120
    [71] 王艳,孙杰,王荣萍. 玉米自交系苗期生物学性状与磷效率的相关性[J]. 山西农业大学学报,2003,23(1):28~31
    [72] 何文寿. 宁夏春小麦磷素利用效率的基因型差异研究[J]. 干旱地区农业研究,2003,21(2):1~6
    [73] 高聚林,刘克礼,张永平. 春小麦磷素吸收、积累与分配规律的研究[J]. 麦类作物学报,2003,23(3):107~112
    [74] Baker D E, Jarrell A E, Marshall L E, et al. Phosphorus uptake from soils by corn hybrids selected for high and low phosphorus accumulation [J]. Agron J, 1970,62:103~106
    [75] Silva A E D, Gabelman W H. Screening maize inbred lines for tolerance to low-P stress condition [J]. Plant and Soil, 1992, 146:181~187
    [76] 王艳,李晓林. 不同基因型植物低磷胁迫适应机理的研究进展[J]. 生态农业研究,2000,8(4):34~36
    [77] Chapin F S,vitousek P M,Van Cleve K. Plant response to multiple environmental factors [J]. Bioscience,1987,37:49~57
    [78] 张睿. 半湿润农田生态系统不同施肥处理对小麦籽粒中氮、磷、钾含量和累积量的效应[J]. 西北植物学报,2005,25(1):0150~0154
    [79] Genty B E, Briantais M J and Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemical Biophysical Acta, 1989, 990:87~92
    [80] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol, 1991, 42:313~349
    [81] Schreiber U, Bilger W, Neubauer G. Cholorphyll fluorescence:New instruments for special application. In Schulze E D, Caldwell M Meds. Ecophysiology of photosynthesis. Berlin Springer-Verlag, 1994, 147~150
    [82] Hak R, Rinderle-Zimmer U, Lichtenthaler HK. Chlorophyll a fluorescence signatures of nitrogen deficient barley leaves. Photosynthetica, 1993,28:151~159
    [83] 李宾兴,肖凯,李雁鸣. 低磷胁迫条件下小麦光合特性的基因型差异[J]. 河北农业大学学报,2002,25(1):5~9
    [84] 张可炜,王贤丽,李坤朋,等. 低磷胁迫对耐低磷玉米自交系幼苗光合特性的影响[J]. 山东大学学报(理学版),2007,42(3):89~94
    [85] 张建恒,李宾兴,王斌,等. 低磷条件下不同磷效率小麦品种及其杂种 F1 光合碳同化特性研究[J]. 植物营养与肥料学报,2006,12(2):169~176
    [86] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报,1999,16(4):444~448
    [87] 李志博,魏亦农,张荣华,等. 棉花不同叶位叶绿素荧光特性初探[J]. 棉花学报,2005,17(3),189~190
    [88] 郭天财,方保停, 王晨阳,等. 水分调控对小麦旗叶叶绿素荧光动力学参数及其产量的影响[J].干旱地区农业研究, 2005, 23(2): 6~10
    [89] 许大全,张玉忠,张荣铣. 植物光合作用的光抑制[J]. 植物生理学通讯,1992,28(4):237~243
    [90] Gao S J, Chen S S, Li M Q. Effects of phosphorus nutrition on photosynthesis and photorespiration in tobacco leaves [J]. Acta photophysiologica Sinica,1989,15(3):281~287
    [91] 李志刚,谢甫绨,张玉铃,等. 磷胁迫对大豆不同磷素基因型光合作用的影响[J]. 内蒙古民族大学学报(自然科学版),2004,19(3):297~299
    [92] 吴克宁,赵彦锋,吕巧灵,等. 潮土区灌浆水和施磷对冬小麦光合作用和产量的影响[J]. 植物营养与肥料学报,2002,8(4),428~434
    [93] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Ann Rev Plant Physiol, 1982, 33: 317~345
    [94] BJ ORKMAN O, DEMM IG B. Photon yield of O2 evolution and chlorophyll fluorescence at 77k among vascular plants of diverse origins [J]. Planta,1987,170:489~504
    [95] Johnson G N, Young A J, Scholes J D, et al. The dissipation of excess excitation energy in British plant species [J]. Plant, Cell and Environment,1993,16:673~679
    [96] 王庆仁,李继云,李振声. 植物利用土壤难溶态磷研究动态及展望[J]. 植物营养与肥料学报,1998,4 (2):107~116
    [97] 张福锁,曹一平. 根际动态营养与植物营养[J]. 土壤学报,1992,29(3):239~250
    [98] 李锋,潘晓华. 植物适应缺磷胁迫的根系形态及生理特征研究进展[J]. 中国农学通报,2002,18(5):65~69
    [99] 孙海国,张福锁. 缺磷胁迫下的小麦根系形态特征研究[J]. 应用生态学报, 2002,13 (3):295~299
    [100] 王艳,李晓林,张福锁. 不同基因型植物低磷胁迫适应机理的研究进展[J]. 生态农业研究,2000,12 (5):34~36
    [101] 翟丙年,孙春梅,王俊儒,等. 氮素亏缺对小麦根系生长发育的影响[J]. 作物学报,2003,29 (6):913~918
    [102] Anghinoni I, Barber S A. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply [J]. Agron. J.,2001,72:685~688
    [103] Mollier A, Pellerin S. Maize root system growth and development as influenced by phosphorus deficiency [J]. J. Exp. Bot.,1999,50:487~497
    [104] 粱银丽. 土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J]. 生态学报,1996,16(3):258~264
    [105] 张吉海,高世斌,潘光堂. 玉米苗期耐低磷基因型的筛选与鉴定[J]. 玉米科学,2006,14(5):20~25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700