用户名: 密码: 验证码:
油茶根际功能菌株的组合优化及菌肥研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶(Camellia oleifera)是我国重要的木本油料树种。由于油茶生长周期长,必须维持土壤肥力才能达到持续、高产的目的。微生物肥料可以改良土壤理化性质,调节植物生长,增加作物产量,且对生态环境友好。推广和应用微生物肥料是推动我国油茶产业升级的重要措施。
     本实验对油茶根际固氮菌、溶磷菌、解钾菌的生态分布进行了研究,筛选出高效菌株;对这些菌株进行组合、优化发酵条件,以及肥效及微生态效应进行了研究。研究结果如下:
     (1)油茶根际功能菌株的生态分布及分离筛选。对油茶根际及非根际土壤中的固氮、溶磷及解钾菌的分布进行了研究,结果发现:解钾菌呈现明显的根际效应(R/S=9.4),溶磷菌次之(R/S=2.75),固氮菌的根际效应最小(R/S=1.75);分离纯化油茶根际的固氮、溶磷及解钾菌,并进行活力测定,结果表明:36株固氮菌中,菌株N11固氮活性最强(39.09mg/kg),其次是菌株N19(37.19mg/kg);15株溶磷菌,P1菌株活性最强(9.56mg/kg);73株解钾细菌中,菌株K50的活性最强(121.71 mg/kg),菌株K56(106.54 mg/kg)次之。
     (2)功能菌株的组合及优化。对固氮细菌N11和N19、溶磷细菌P1、解钾细菌K50和K56,进行平板划线及液体混合培养发现两两间无拮抗作用;将五株功能菌株进行组合并测定活性,结果表明:N11+P1+K50+K56是一组固氮、溶磷、解钾活力较高的菌群组合。在阿须贝氏培养基的基础上,用蔗糖8g、葡萄糖10g、硝酸铵0.25g、NaCl0.3g,代替碳、氮源及NaCl,以接种量6%,装液量50mL(250mL三角瓶),30℃,140r/min,初始pH7.5的发酵工艺,最适宜固氮活性的发挥;在解无机磷培养基的基础上,用蔗糖12g、硝酸铵0.5g、酵母粉0.4g、NaC10.2g,代替碳源、氮源及NaCl,以接种量4%,装液量50mL(250mL三角瓶),30°C,140r/min初始pH7.0的发酵工艺,最适宜溶磷活性的发挥;在解钾细菌培养基的基础上,用葡萄糖8g、甘露醇5g、硝酸铵1.5g,牛肉膏0.5g,代替碳、氮源,以接种量4%,装液量50mL (250mL三角瓶),35℃,160r/min,初始pH7.5的发酵工艺,最适宜解钾活性的发挥。
     (3)功能菌复合菌肥研制及其肥效研究。组合菌群按照不同活性要求在最佳条件下发酵1:1:1混合后,按照1:10吸附比例吸附于灭菌150min的膨润土和草炭(1:1)混合载体,初步制成功能菌复合菌肥。功能菌复合菌肥和化学肥料的不同的配比对油茶生长的影响,结果表明:功能菌复合菌肥(40%)+化学肥料(60%)混合施肥对油茶生长影响明显,苗高增幅45.4%,地径增幅19.1%,新生根数增幅27.4%。功能菌复合菌肥使油茶苗根际微生物数量平均提高了49.73%,土壤有机质平均提高了10.53%,土壤速效氮平均提高了8.68%,土壤速效磷平均提高了13.29%,土壤速效钾含量提高了11.56%。
Camellia oleifera is an important woody oil plant in China. Because of the long growth periods of Camellia, it is necessary to maintain the soil fertility for the purpose of sustainable and high yield. The microbial fertilizer, which is friendly to the ecological environment, can improve soil physical and chemical properties, regulate plants growth and increase the yield. Promotion and application of microbial fertilizer is an important measure to upgrade Camellia oleifera production in China.
     In this study, we analyzed the ecological distribution of camellia rhizosphere nitrogen-fixing bacteria, phosphate-solubilizing bacteria and potassium-releasing bacteria and screened high-efficiency strains; meanwhile combined and optimized fermentation condition of the selected ones, analyzed the fertilizer efficiency and micro-ecological effects of the bacterial manure as well. The results as follow:
     (1) Ecological distribution and selection of the functional bacterial strain from camellia rhizosphere. We analyzed the distribution of nitrogen-fixing bacteria, phosphate-solubilizing bacteria and potassium-dissoluting bacteria from rhizosphere and non-rhizosphere of camellia, the results showed that the potassium-releasing bacteria (R/S=9.4)> phosphate-solubilizing bacteria (R/S=2.75)> nitrogen-fixing bacteria (R/S=1.75). we separated and screened the former three kind of strains from the rhizosphere of Camellia, the results of activity test showed that the strain N11 has the strongest activity(39.09 mg/kg) among the 36 nitrogen-fixing strains, and the strain N19 (37.19 mg/kg) was secondary in activity; the strain P1 has the strongest activity (9.56 mg/kg) among the 15 phosphate-solubilizing strains; the strain K50 with activity (121.71 mg/kg) was the strongest among the 73 potassium-dissoluting strains, and strain K56 comes second with the activity (106.54mg/kg).
     (2) Combination and optimization of these functional strains. There are no antagonistic reactions among the functional strains by streak cultivation and liquid mixed culture. Combined the 5strains functional bacteria and test the activity, we found that N11+P1+K50+K56 was a set of flora combination with higher nitrogen fixation, phosphorus dissolving and potassium releasing activity. On the base of Ashby culture medium, we took the cane sugar 8g, glucose 10g, ammonium nitrates 0.25g, NaCl 0.3g to replace carbon, nitrogen source and NaCl and cultured with inoculum concentration 6%, medium volume 50mL (250mL flask), temperature 30℃,140 r/min and pH7.5 to obtain the stronger nitrogen fixation activity;on the base of Pikovaskaia's culture medium, we took the sugar 12g, ammonium nitrates 0.5g, yeast powder 0.4g, NaCl 0.2g to replace the carbon, nitrogen source and NaCl, and cultured with inoculum concentration 4%, medium volume 50mL (250mL flask), temperature 30℃,140 r/min and pH7.0 to obtain the stronger phosphorus dissolving activity; on the base of the potassium bacteria releasing medium, we took the glucose 8g, mannitols5g, ammonium nitrates 1.5g, beef extract 0.5g to replace the carbon and nitrogen source, and cultured with inoculum concentration 4%, medium volume 50mL (250mL flask), temperature 35℃,160 r/min, and pH7.5 to obtain the higher potassium releasing activity.
     (3) Study on development and effects of compound bacterial manure. The method of how we develop compound bacterial fertilizer is to mix the fermentation broth (1:1:1), which was fermented under optimal fermentation condition of each functional strain, was adsorbed with 1:10 adsorption proportion by the carrier which was the mixture of the bentonite and peat that sterilized in 150mins. Different ratio of compound bacterial manure and chemical fertilizer affect the growth of Camellia differently, we fertilized the camellia with the proportion that bacterial manure 40% and chemical fertilizer 60%, then the results showed that:the height of seedling increased 45.4%, stem base raise up 19,1%, and the quality of new root increased 27.4%. By using compound bacterial manure, the increment of rhizosphere microorganisms was 49.73%; the soil organic matter increased 10.53%, the nitrogen availability in soil increased 8.68%, the phosphorus availability raised up 13.29% and the increment of potassium availability in soil was 11.56%.
引文
[1]何方,何柏.油茶栽培分布于立地分类的研究[J].林业科学,2002,38(5):65-72.
    [2]康志雄,王芷虔,邹达明.影响油茶产量气象因子的灰色关联分析[J].经济林研究,1993,11(1):24-26.
    [3]丁声俊.勇于创新,促进我国油茶产业大发展[J].中国油脂,2009,34(3):1-5.
    [4]刘幼丽.我国油茶文献研究分析[J].农业图书情报学刊,2007,19(4):166-169.
    [5]Marshall, B.J.et al. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration [J].Lancet,1984,1:1311-1315.
    [6]Blasar M.J.et al. Helicobacter pylori and the pathogenesis of gas-troduodenal inflame mation [J]. Infect Dis,1990,61:626-633.
    [7]Nomura A.et al. Helicobacter pylori and gastric carcinoma among Japanese Americans in Hawaii [J].N.Engl.Med,1991,325:1132-1136.
    [8]洪坚平.农业微生物资源的开发与利用[M].北京:中国林业出版社,2000,106-137.
    [9]朱英,朱国胜,刘作易.微生物肥料的研究进展[J].贵州农业科学,百年院庆专刊,2005,33(增刊):89-91.
    [10]刘晓云,陈文新,张斌.β-根瘤菌及特殊α-根瘤菌的研究概况[J].微生物学报,2008,48(10):1408-1412.
    [11]Sy A, Giraud E, Jourand P,et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. Journal of Bacteriology, 2001,183:214-220.
    [12]Moulin L,Munive A,Dreyfus B,et al.Nodulation of legumes by members of the β-subclass of Proteobacteria.Nature,2001,411:948-950.
    [13]Rivas R, Willems A, Subba-Rao NS,et al.Description of Devosia neptuniae sp.nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol,2003,26:47-53.
    [14]Valverde A,Vela'zquez E,Gutie'rrez C,et al.Herbaspirillum lusitanum sp.nov.,a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris.Int J Syst Evol Microbiol,2003,53:1979-1983.
    [15]Van Berkum P, Eardly BD.The Aquatic Budding Bacterium Blastobacter denitrificans is a Nitrogen-Fixing Symbiont of Aeschynomene indica.Appl Environ Microbiol,2002,68(3):1132-1136.
    [16]Trujillo ME, Willems A, Abril A,et al.Nodulation of Lupinusalbus by strains of Ochrobactrum lupini sp.nov.Appl EnvironMicrobiol,2005,71:1318-1327.
    [17]Valverde A, Vela'zquez E, Ferna'ndez-Santos, F.et al.Phyllobacterium trifolii sp.nov.,nodulating Trifolium and Lupinus in Spanishsoils.International Journal of Systematic and Evolutionary Microbiology,2005,55:1985-1989.
    [18]孟瑶,徐凤花,孟庆有,等.中国微生物肥料研究机应用进展[J].土壤肥料科学,2008,24(6):266-283.
    [19]高峰,张颖.微生物肥料产业化发展需要解决的几个问题[J].安徽农业科学,2007,35(12):3615.
    [20]袁业琴,张富萍.浅谈微生物肥料在绿色食品生产上的作用[J].农业与技术,2007,27(2):80-81.
    [21]郐士鹏.我国微生物肥料的现状及其发展趋势[J].现代农业,2005,(11):15-17.
    [22]张丽梅,方萍,朱日清.禾本科植物联合固氮菌研究及应用现状展望[J].应用生态学报,2004,15(9):1650-1654.
    [23]Baldani J I,Caruso L,Baldani V L D.Recent advances in BNF with nonleguminous plant[J].Soil Biochem,1997,29:911-922.
    [24]Vande Brock A, Bander Leyden J.The genetics of the Azospirillum plant root association [J].Crit Rev Plant,1995,14:445-446.
    [25]Hegazi N A, Fayez M, Monib M.Nitrogen Fixation with Non-legumes[J].Can J Microbioc,1994,40:43-52.
    [26]Boddey R M, Dobereiner J.Nitrogen fixation associated with grasses and cereals: Recent results and perspectives for future research [J].Plant Soil,1988,108:53-65.
    [27]Reis V M,Olivares F L,Oliveira A L M,et al.Technical approaches to inoculate micropropagated sugarcane plants were Acetobacter diazotrophicus[J]. Plant Soil,1999,210:205-211.
    [28]朱华,陈万仁,王光龙.生物固氮的研究与发展[J].郑州工业大学学报,1997,18(3):90-92.
    [29]刘健,李俊,葛诚.微生物肥料作用机理的研究新进展[J].微生物学杂志,2001,21(1),33-46.
    [30]尹瑞龄.我国旱地土壤的溶磷微生物[J].土壤,1988,20(5):243-246.
    [31]林启美,赵小蓉,孙焱鑫.等.四种不同生态环境中解磷细菌的数量及种群分布[J].土壤与环境,2000,9(1):34-37.
    [32]Paul N B, Sundara Rao,W V B.Phosphate2dissolving bacteria in the rhizosphere of some cultivated legumes. Plant and Soil,1971,35:127-132.
    [33]W V B, Sundara Raoand and MK Sinha. Phosphate dissolving microorganisms in the rhizosphere and soil.India J Agric Sci,1963,33(4):272-278.
    [34]Sperber J I.The incidence of apatite solubilizing organism s in the rhizosphere and soil.Aust J Agric Res,1958,(9):778-781.
    [35]宋建利,石伟勇.磷细菌肥料的研究和应用现状概述[J].化肥工业,2005,32(4):18-20.
    [36]何琳燕,殷永娴,黄为一.一株硅酸盐细菌的鉴定及其系统发育学分析[J].微生物学报,2003,43(2):162-167.
    [37]廖延雄,傅筱冲,蔡汝林,等.一株硅酸盐细菌的表型特征[J].江西科学,2000,18(3):149-153.
    [38]Mel'nikova E O, Avakyan Z A and Karavaiko G I, et al.Microbiological destruction of silicate minerals containing beryllium[J].Mikrobiologiya,1990,59 (1):63-69.
    [39]Erygin G D, Pchelkina V V.Influence of nutritional medium treatment of microoraganisms by a magnetic field on growth and development Prikl. Biokhim [J].Mikrobiol,1995,24(2):257-263.
    [40]Krinarii G A.Effect of bacillus intermedius Rnase on the growth and development of Bacillus mucilaginosus [J].Microbiology,1995,64(1):18-22.
    [41]殷永娴,李冬梅.一株钾细菌性状与功能的研究[J].南京农业大学学报,1995,18(增刊):62-67.
    [42]Grudev S.Use of heterotrophic microorganisms in mineral biotechnology [J].Acta Biotechnol,1987,7(4):299-306.
    [43]Karavaiko G I.Role of microoganisms and some physico2chemical factors of the medium in quartz destruction [J].Mikrobiologiya,1984,53(6):976-981.
    [44]Malinovskaya I M.A method for the determinnation of the ability of bacterial polysaccharides to sorb silicic acid ions [J].Mikrobiologicheskii Zhurnal,1988,57 (6):84-86.
    [45]Malinoskaya I M.The role of Bacillus mucilaginosus polysaccharide in the destruction of silicate minerals [J].Mikrobiologiya,1990,59(l):70-78.
    [46]Glukhova A A.Physiloogical and biological characteristics of growth of Bacillus mucilaginosus [J].Mikrobiol,1993,29(6):862-868.
    [47]盛下放,黄为一,殷永娴.硅酸盐菌剂的应用效果及其解钾作用的初步研究[J].南京农业大学学报,2000,23(1):43-46.
    [48]钟冬梅,马光庭.硅酸盐细菌在农业中应用的研究动态[J].广西农学报,2006,23(3):32-35.
    [49]Wang FM, Zhang Y, Wu H Q. Study of dissolve phosphorus and nitrogen fixation bacterial manure as well as the effect of increase production for wheat [J]. Biotechnology,1994,4 (4):15-18.
    [50]Holguin G, Bashan Y, et al. Nitrogen fixing by Azospirillum brasilense Cd is provided when co-culture with a mangrove rhizosphere bacteria [J].Soil Biol.Biochem, 1996,28 (12):1651-1660.
    [51]姚拓,张德罡.高寒地区燕麦根际联合固氮菌研究Ⅱ.固氮菌的溶磷性和分泌植物生长素特性测定[J].草业学报,2004,13(3):85-90.
    [52]李阜棣.土壤微生物学[M].北京:中国农业出版社.1996.
    [53]阎淑珍,杨启银,陈育如.复合微生物肥对植物土传病原真菌的抑制作用[J].中国生物防治,2004,20(1):49-52.
    [54]宋志伟,陈世昌,王小琳,等.复合微生物制剂对重茬草莓生长及产量品质的影响研究[J].土壤通报,2006,37(3):560-562.
    [55]王明友,杨秀凤,郑宪和,等.复合微生物菌剂对番茄的光合特性及产量品质的影响[J].土壤肥料,2004,(4):37-39.
    [56]张敏,王正银.生物有机肥料与农业可持续发展[J].磷肥与复肥,2006,21(2):58-59.
    [57]Zahera Abbass,Yaacor Okon. Plant growth promotion by Azotobacter paspali in the rhizosphere [J].Soil Biol Biochem,1993,25(8):1075-1083.
    [58]Young, et al. PGPR:Is there a relationship between plant growth regulations and stimulation of plant growth or biologicalactivity [J].Bulletin SROP,1991,14 (8): 182-186.
    [59]Nieto K F, Frankenbirger WTJr. Biosynthesis of cytokinius produced by Azotobacter chroococcum [J].Soil Biol Biochem,1989,21:967-972.
    [60]杨承栋,余进,焦如,等.细菌肥料的研究与应用[J].世界林业研究,2008,21(6):4144.
    [61]Berezova E F. The effictiveness of bacterial fertilizers[J]. Microbiologiya (USSR), 1963,32:358-361.
    [62]曹凤明,李立,葛诚.日本及一些国家对微生物肥料产品的管理[J].土壤肥料,1998(2):42-44.
    [63]Roughley R J. Production and quality control of legume seed inoculants in Australia[C]//Proceedings of Workshop on Rhizobium Legume Inoculants, Porto Alegre,Brazil,l 985:37-42.
    [64]刘健,李俊,葛诚.微生物肥料作用机理的研究新进展[J].微生物学杂志,2001,21(1),33-46.
    [65]Palacios R, Castillo M. Dynamics of the Rhizobium genom e[C]//Proceedings of the 10th International Congress on Nitrogen Fixation, st. Petersburg, Russia, May 28-June 3,1995.
    [66]焦如珍,杨承栋,孙启武.细菌肥料菌株对无效磷的转化作用[J].林业科学,2005,41(4),194-198.
    [67]谢明杰,程爱华,曹文伟.我国微生物肥料的研究进展及发展趋势[J].微生物杂志,2000,20(4),42-45.
    [68]杨承株,焦如珍,孙启武.关于细菌肥料促进尾叶桉生长效用的研究[M].北京:中国科学技术出版社,2002.
    [69]唐菁,杨承栋.细菌肥料提高杨树生长量的效应及其作用机理[M].北京:科学出版社,2008.
    [70]赵秀云,韩素芬.杨树根际固氮菌的分离、筛选和鉴定[J].南京林业大学学报,2000,24(3),17-20.
    [71]康丽华.桉树与联合固氮菌相互作用的研究[J].微生物学报,2002,29(4):14-18.
    [72]王守宗,杨承栋,谢应先,等.细菌肥料对杨树生长效应的研究[J].林业科学研究,1996,6:654-657.
    [73]杨绍斌,肖利萍,钟显亮.微生物肥料若干基本问题的探讨[J].辽宁工程技术大学学报(自然科学版),2002,21(2):252-254.
    [74]钟剑飞,郭晓敏,刘苑秋,等.油茶平衡施肥经济效益研究[J].林业实用技术,2009,9:3-6.
    [75]唐光旭,张永生,唐丽湘,等.油茶丰产栽培肥力模式的研究[J].江西林业科技,1997,3:11-17.
    [76]吴春武.天然有机肥对油茶林的改土作用[J].安徽农学通报,2009,15(13):130-131.
    [77]黄闽东.生态油茶园营建技术探讨[J].林业勘察设计,2009,2:58-60.
    [78]Nieto K F, Frankenbirger WTJr. Biosynthesis of cytokinius produced by Azotobacter chroococcum [J].Soil Biol Biochem,1989,21:967-972.
    [79]Lynch JM.The Rhizosphere[M]. John wiley chichester,1990.
    [80]娄成后.微生物在土壤养分转化中的作用[M].北京:科学出版社,1962.
    [81]周国英,陈小艳,李倩茹,等.油茶林土壤微生物生态分布及土壤酶活性的研究[J].经济林研究,2001,19(1):9-12.
    [82]郝艳,刘君昂,周国英,等.不同抚育措施对油茶林土壤养分微生物及酶活性的影响[J].林业资源管理,2008,6:97-101.
    [83]周国英,唐大武,陈晓艳,等.几种木本植物联合固氮细菌的研究——联合固细菌的分离鉴定及固氮活性.中南林学院学报,2002,22(1):23-26.
    [84]赵斌,何绍红.微生物学实验指导[M].北京:科学出版社,2002:254-255.
    [85]沈萍,范秀容,李光武.微生物学实验[M].第3版.北京:高等教育出版社,1999.
    [86]林启美,王华,赵小蓉,等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学通报,2001,28(2):26-30.
    [87]顾小平,吴晓丽.毛竹及浙江淡竹根际联合固氮菌的研究[J].林业科学研究,1994,7(6):618-623.
    [88]郭春景.微生物肥料及其微生态效应研究[D].
    [89]LY-T 1229-1999森林土壤水解性氮的测定.
    [90]LY-T 1233-1999森林土壤有效磷的测定.
    [91]LY-T 1236-1999森林土壤速效钾的测定.
    [92]黄懿梅,安韶山,曲东,等.两种测定土壤微生物量氮方法的比较初探[J].植物营养与肥料学报,2005,11(6):830-835.
    [93]冯瑞章,冯月红,姚拓,等.春小麦和苜蓿根际溶磷菌筛选及其溶磷能力测定[J].甘肃农业大学学报,2005,40(5):604-608.
    [94]张红娟,张朝阳,聂刚.钾细菌对土壤养分活化作用的研究[J].杨凌职业技术学院学报,2005,4(3):4-6.
    [95]王永歧,沈阿林,王守刚,等.兼具固氮、解磷功能菌株固氮特性的研究[J].中国生态农业学报,2004,12(2):128-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700