土压平衡盾构机密封舱压力控制机理模型及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构机在掘进过程中,由刀盘切割破碎的渣土从刀盘开口进入刀盘后面与隔板之间的密封压力舱,然后经改性后由螺旋输送机排出密封舱内的改性渣土。螺旋输送机的转速和排土率由盾构机操作工或者计算机软件控制,以使得螺旋输送机排出的土体与从刀盘进入的土体相平衡,其目的是控制掘进工作面的土压力,进而有效控制盾构机掘进过程中的地表变形。在盾构机掘进过程中,掘进工作面的稳定性是通过密封舱的支护压力得以实现的,掘进工作面支护压力过大会造成地表隆起,而压力过小,容易导致地表沉陷甚至坍塌。目前,盾构机密封舱压力控制参考值大多凭经验人为设定,控制方法大多由操作者手工实时调整螺旋输送机转速控制密封舱压力,盾构机隧道掘进过程中普遍遇到的关键问题包括:1)密封舱压力优化设置问题:2)盾构机合理推力优化问题;3)盾构机密封舱压力分布数值模拟问题;4)盾构机密封舱压力控制机理模型问题;5)控制机理模型参数实时辨识问题;6)优化控制策略和自动控制问题。针对这些亟待解决的问题,论文开展了以下几个方面的研究工作:
     1)基于土力学的主动土压力和被动土压力理论,分析了掘进工作面稳定性机理,采用解析方法研究了盾构机与土体之间的相互作用,确定了合理的掘进工作面压力范围,提出了优化盾构机推力的方法。经过与现场的观测数据相对比,验证了所提出的优化盾构机推力方法的有效性。研究了刀盘开口率变化对密封舱压力传递系数的影响,建立了压力传递系数与刀盘开口率之间的映射关系。密封舱可观测压力与掘进工作面土压力之间关系的确定为优化设置密封舱压力提供了理论依据。根据优化确定的掘进工作面土压力以及渣土的Duncan-Chang非线性本构模型和反演的模型参数,数值模拟了盾构机密封舱土压力分布特性,数值模拟结果与现场观测的密封舱隔板压力分布进行对比,数值模拟值与观测值基本一致。
     2)为了模拟盾构机密封舱内的压力分布特性,需要反演确定改性后渣土的力学模型和模型参数。参数识别反问题通过对定义的目标函数进行极小化求解。参数反演的目标函数定义为观测的应变矢量与模型计算的应变矢量残差平方和,而模型计算的应变矢量是被估计参数的函数。常规的基于梯度搜索的优化方法包括单纯性法、阻尼最小二乘法和高斯一牛顿法等,但遗憾的是,基于梯度搜索的优化方法存在的固有缺陷在于容易陷入局部极小值;而研究表明,由于观测误差和模型误差的存在,参数识别反问题存在多个极小值。为了解决这个问题,建立了基于浮点编码遗传算法的参数反演方法,该方法将简单遗传算法与梯度搜索优化算法相结合,用以提高反演精度和速度。将从沈阳某地铁隧道施工现场采集土样加工成三轴压缩试验试件,实验得到不同维压条件下的应力一应变曲线,为本构模型参数反演提供实验数据。根据参数反演得到的渣土本构模型参数,预测三轴压缩试验变形曲线。研究结果表明,预测值与观测值吻合较好,所提出的参数反演方法的有效性和精度得到了验证。
     3)以密封舱渣土的Duncan-Chang非线性弹性本构模型为基础,建立了盾构机密封舱土压力与盾构机推进速度和螺旋输送机转数的映射关系,提出了单独调整螺旋输送机转速的盾构机密封舱土压力优化控制模型。将密封舱隔板压力的变化分解为两部分,即密封舱渣土质量改变和掘进工作面土压力改变引起的密封舱隔板压力变化。建立了密封舱渣土质量改变与盾构机的推进速度和螺旋输送机转速之间的关系、以及掘进工作面土压力改变与盾构机推力之间的关系。考虑到盾构机与土体之间的耦合作用,建立了新的密封舱压力控制机理模型,该模型可以通过同时控制螺旋输送机转速、盾构机推进速度和推力,快速实现密封舱压力平衡和自动控制。
     4)基于系统辨识原理,建立了密封舱压力控制模型参数在线辨识方法。这些需要辨识的参数很难在实验室或者通过其他方法在现场直接确定,参数包括改性后渣土的变形模量、螺旋输送机的排土效率和土体的松散系数等。根据盾构机掘进过程中的观测信息,基于观测到动力系统的输入(螺旋输送机转速)和输出(密封舱观测点压力),采用优化方法识别出动力系统中模型的参数。考虑到观测噪音的存在,随机模拟了带有观测噪音的系统参数辨识问题。提出了基于BP神经网络的盾构机密封舱压力非线性和时变系统的辨识模型和方法,该方法能够实时对盾构机密封舱压力系统进行在线辨识,具有较高的辨识精度。数值模拟结果表明,即使存在随机观测噪音,辨识方法仍然能够比较准确辨识出控制模型的参数。
     5)将非线性动力系统模型参数辨识与优化控制集合为一体,建立了基于神经网络的盾构机密封舱压力控制策略和方法。建立基于实时观测信息的密封舱压力控制模型中参数辨识方法,解决盾构机密封舱压力控制的非线性、随机性、时滞性和时变性等问题,提高了控制系统的精确性、抗干扰性和鲁棒性。数值仿真结果表明,该方法对于盾构机密封舱压力时变性和非线性系统控制,具有良好的稳定性和控制效率,所提出新控制模型的有效性和精确性通过数值仿真进行了验证。
     6)盾构机实验平台验证了盾构机密封舱压力控制模型、控制模型参数在线辨识方法和密封舱压力自动控制策略的有效性。实验平台可以观测的数据包括,盾构机密封舱压力、螺旋输送机的转速和盾构机的推力等。根据实验台观测的盾构机密封舱压力和螺旋输送机转速,首先辨识出控制机理模型参数。然后,根据辨识出的模型参数和预先设定的密封舱压力,实现了密封舱压力自动和实时控制。
Earth pressure balance (EPB) shield tunnelling has successfully been adopted for urban tunnelling in recent years in very different ground conditions and at present it can be considered the most commonly used mechanized tunnelling technology, even challenging the role of the Slurry Shield both as far as machine size and the geomechanical fields of applicability are concerned. The screw conveyor's speed and discharge rate is controlled by the operator or computer software and is used to control the pressure at the working face and match the muck discharge rate to the advance rate of the EPBM, and effectively control ground deformation induced from shield tunneling. The control of face support is a major issue in EPB shield tunneling. Continuous support of the tunneling face must be provided by the excavated soil itself, which should completely fill the working chamber. The required support pressure at the tunneling face will be achieved through shoving the shield forward and regulation of the screw conveyor's rotation rate. The support pressure has to balance the earth pressure and the water pressure. The supporting pressure on tunneling face must be carefully determined and avoid both the collapse (active failure) and the blow-out (passive failure) of the soil mass near the tunnel face. The collapse and the blow-out are induced from smaller and bigger supporting pressure, respectively. Nowadays, the reference pressure on pressure bulkhead is commonly determined by operator experiences. The operator continually adjusts screw conveyor's speed to control earth pressure on tunneling face. The main problems occurred in shield tunneling include:1) How to optimally choose earth pressure on chamber bulkhead; 2) How to determine shield thrust force; 3) How to simulate earth pressure distribution in shield chamber; 4) Propose mechanism model of controlling earth pressure on chamber bulkhead; 5) How to estimate model parameters of control model; and 6) Present optimization and automatic control strategy for controlling earth pressure on chamber bulkhead. In order to deal with these problems, some investigations are performed:
     1) Based on Duncan-Chang nonlinear elastic constitutive model, the earth pressures on head chamber of shield machine are simulated. Model parameters of conditioned soils in head chamber of shield machine are determined based on tri-axial compression tests in laboratory. The loads acting on tunneling face are estimated according to static earth pressure principle. The soil-structure interaction in shield tunneling is investigated by analytical solution. The mechanism of working face stability is analyzed and the reasonable face earth pressure for EPB shield is deduced according to the active and passive earth pressure principles. The optimal thrust fore for EPB shield is proposed in different soil parameter and shield size cases. The comparison of the practical thrust forces of EPB shields with computed ones shows that the proposed computing procedure for optimal thrust fore for EPB shield can agree well with practical engineering examples. The effectiveness of the proposed computing procedure is validated. The variation of earth pressure on different section in head chamber of shield machine is depicted. Relationship between pressure transportation factor and openings rotating cutterhead of shield machine is proposed by using aggression analysis.
     2) The inverse problem of parameter identification is solved by minimizing an objective function of the least-squares type that contains the difference between observed and calculated strains. The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil. The calculated strains are determined by linear approach simplification. The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm. The numerical and experimental results for conditioned soil are compared. The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones. The effectiveness and accuracy of proposed parameter estimation approach are validated.
     3) Based on numerical simulation using finite element method, the reference model is proposed for controlling earth pressure of head chamber. The relationship between the strain and the accumulating amount of earth is proposed based on Duncan and Chang's model. The relationship between the increment of earth pressure and the angular velocity of screw conveyor is presented. Based on nonlinear constitutive model of soil and mass conservation law, the differential equation of nonlinear discrete system is deduced by solely adjusting conveyor rotating speed. The earth pressure change in the chamber comes mainly from two parts, which conclude the change of mass quantity of conditioned soil in chamber and change of earth pressure in working face. The relationship between the change of mass quantity of conditioned soil in chamber and shield tunneling rate and conveyor rotating speed is proposed. The relationship between the change of earth pressure in chamber and shield thrust force is presented. Taking account of coupled reaction between shield machine and soils, a new control mechanism model for controlling earth pressure acting on headchamber is presented. The new control mechanism model can rapidly perform pressure balance for shield chamber and automatically control earth pressure according to preset reference pressure.
     4) Some parameters of control model should be determined by using system identification because these parameters can not be easily estimated in laboratory or in situ in shield tunneling. The main parameters of control model include deformation modulus of conditioned soils, conveyor discharge efficiency and loosing coefficient of soils. An estimation approach using least squares method is presented for identification of model parameters of pressure control in shield tunneling according to observed system input and output. The randomly observed noise is numerically simulated and mixed to simulated observation values of system responses. The numerical simulation shows that the state equation of pressure control system for shield tunneling is reasonable and proposed estimation approach is effectiveness even if the random observation noise exits. The identification procedure for nonlinear control system of shield machine tunneling is proposed by using neural network. Bp neural network is applied for an identifier to estimate model parameters of time varying control system. The numerical simulation shows that the identification procedure is effective for nonlinear and time varying control system in shield machine tunneling.
     5) By combining system identification with optimal control as an integral body, the control strategy and algorithm in shield tunneling are proposed, which are based on neural network identifier and controller. The identifier and controller can effectively perform these functions to nonlinear, random and time-varying dynamic system. The optimal procure is developed for controlling earth pressure acting on headchamber. The effectiveness and preciseness of the new model proposed are verified by numerical simulation results. The numerical simulation shows that the proposed control model is effective and stable for controlling earth pressure of shield machine by adjusting controlled variable.
     6) In order to validate the effectiveness of control mechanism model, parameter identification procedure and optimal control strategy, the model tests in laboratory are performed. The observed test data include earth pressure on chamber bulkhead, conveyor rotating speed, shield tunneling rate and thrust force. Based on observing data in test bed, control model parameters are first estimated. And then the earth pressure on chamber bulkhead is automatically controlled during next tunneling process based on preset reference pressure.
引文
[1]周文波编著,盾构法隧道施工技术及应用[M],北京:中国建筑工业出版社,2004.
    [2]Koyama, Y. Present status and technology of shield tunneling method in Japan[J]. Tunneling and Underground Space Technology,2003,18 (2-3):145-159.
    [3]Sterling, R. C., Developments in excavation technology, a comparison of Japan, the US and Europe[J]. Tunneling and Underground Space Technology,1992,7 (3):221-235.
    [4]陈馈,洪荣开,吴学松主编,盾构施工技术[M],北京:人民交通出版社,2009.
    [5]汪玉生,杨志勇,蔡永立著,盾构/TBM隧道施工实时管理信息系统[M],北京:人民交通出版社,2007.
    [6]Takimoto Kunihiko, Yanachi Kenichi, The State of Affairs of Large Diameter Shield Tunnel Method for Subway and the Recent Trend of Shield Technology in Japan[S], International Symposium on Underground Excavation and Tunnelling,2-4 February 2006, Bangkok, Thailand.
    [7]Bob Chow, Double-0-tube shield tunneling technology in the Shanghai Rail Transit Project[J], Tunnelling and Underground Space Technology,2006,21:594-601.
    [8]钱七虎,李朝甫,傅德明.隧道掘进机在中国地下工程中应用现状及前景展望[J].地下空间,2002,22(1):1-11.
    [9]张镜剑,傅冰骏.隧道掘进机在我国应用的进展[J].岩石力学与工程学报,2007,26(2):226-238
    [10]傅德明.我国隧道掘进机技术的发展现状[J].岩土工程界,1999,5(2):19-26.
    [11]许成顺,栾茂田,郭莹,考虑初始各向异性的砂土弹塑性本构模型及试验验证[J],岩土工程学报,2009,31(4):546-551.
    [12]栾茂田,许成顺,何杨,主应力方向对饱和松砂不排水单调剪切特性影响的试验研究[J],岩土工程学报,2006,28(9):1085-1089
    [13]郭莹,栾茂田,史旦达, 初始应力条件对松砂动力变形特性影响的试验研究[J],岩土力学,2005,26(8):1195-1200.
    [14]Manuel J. Melis Maynar, Luis E. Medina Rodriguez. Discrete numerical model for analysis of earth pressure balance tunnel excavation[J]. Journal of Geotechnical and environmental Engineering,2005,131(10):1234-1243.
    [15]Kiwamu Arikawa, Kouji Satake, Fumio Kobayashi, Analysis of Soil Behavior in Earth Pressure Balanced Shield machine, Mitsubishi Heavy Industries, Ltd, Technical Review, 1996,33(1):35-39.
    [16]Yongfu Xu, De'an Sun, Jun Sun, Soil disturbance of Shanghai silty clay during EPB tunneling, Tunnelling and Underground Space Technology 18 (2003) 537-545.
    [17]Shao-Ming Liao, Jian-Hang Liu, Ru-Lu Wang, Shield tunneling and environment protection in Shanghai soft ground, Tunnelling and Underground Space Technology 24 (2009) 454-465.
    [18]Mio, H., Shimosaka, A., Shirakawa, Y. Program optimization for large-scale DEM and its effects of processor and compiler on the calculation speed[J]. Journal of the Society of Powder Technology,2007,44:206-211.
    [19]Erfan G Nezami, Youssef M A Hashash, Dawei Zhao. Simulation of front end loader bucket-soil interaction[J]. International journal for numerical and analytical methods in geomechanics,2007,31:1147-1162.
    [20]Franco Y, Rubinstein D. Shmulevich I. Prediction of soil-bulldozer blade interaction using discrete element method[J]. Transactions of the ASABE,2007,50(2):345-353.
    [21]Kim, S. H. Theoretical Approach for ground behaviour during tunneling in soils[J]. Tunnelling Technology,2003,5(4):301-312.
    [22]Yang Huayong, Shi Hu, Gong Guofang. Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction,2009,18:950-956.
    [23]Manfred Morari, Jay H. Lee. Model predictive control:past, present and future [J]. Computers and Chemical Engineering,1999,23,667-682.
    [24]Xuemei Zhu. State feedback controller design of networked control systems with time delay in the plant [J]. International Journal of Innovative Computing, Information and Control,2008,4(2):283-290.
    [25]Radhakant Padhi, Prashant Prabhat and S. N. Balakrishnan. Reduced order optimal control synthesis of a class of nonlinear distributed parameter systems using single network adaptive critic design[J]. International Journal of Innovative Computing, Information and Control,2008,4(2):457-469.
    [26]Sang-Hwan Kim, Gyeong-Hwan Jeong, Inn-Joon Park. Evaluation of Shield Tunnel Face Stability in Soft Ground[C]. International Symposium on Underground Excavation and Tunnelling, Bangkok, Thailand,2006.
    [27]现代隧道技术编辑部.葡萄牙波尔图地铁工程的经验-EPB施工跟踪[J].现代隧道技术,2004(增1):8-11.
    [28]Babendererde, S, Hoek, E., Marinos, P. and Cardoso, A. S. Characterization of Granite and the Underground Construction in Metro do Porto, Portugal. Proc[C]. International Conference on Site Characterization, Porto, Portugal:2004.
    [29]V. Marchionni, V. Guglielmetti. EPB-Tunnelling control and monitoring in a urban environment:the experience of the "Nodo di Bologna" construction (Italian High Speed Railway system)[C]. London:Taylor & Francis Group,2007.
    [30]Guido Kneib, Andreas Kassel & Klaus Lorenz. Automatic seismic prediction ahead of the tunnel boring machine[J]. First Break,2000,18(7):295-302.
    [31]Xiwen Zhou, Yimin Xia, and Jing Xue. Neural Network Strata Identification Based on Tunneling Parameters of Shield Machine[M]. Xie et al. (Eds.):2009.
    [32]胡国良,龚国芳,杨华勇.土压平衡式盾构机土压控制的模拟实验[J],液压与气动,2007.9:1-4.
    [33]陈立生,王洪新.土压平衡盾构平衡控制的新思路[J].上海建设科技,2008,5:18-21.
    [34]王洪新,傅德明.士乐平衡盾构掘进的数学物理模型及各参数间关系研究[J].土木工程学报,2006,39(9):86-90.
    [35]李笑,陈振环,陈烘陶.盾构土压平衡电液模拟系统的研究[J].机床与液压,2006,7:129-131.
    [36]魏建华,丁书福.土压平衡式盾构开挖面稳定机理与压力舱土压力控制[J].工程机械,2005,l:18-19.
    [37]张厚美,吴秀国,曾伟华.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩石力学与工程学报,2005,24(增2):5762-5766.
    [38]Aphichat Sramoon, Mitsutaka Sugimoto, Kouji Kayukawa. Theoretical Model of Shield Behavior During Excavation. II:Application[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128 (2):156-165.
    [39]Mitsutaka Sugimotoland Aphichat Sramoon. Theoretical Model of Shield Behavior During Excavation. I theory:Application[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128 (2):138-155.
    [40]Yukinori Koyama. Present status and technology of shield tunneling method in Japan[J]. Tunnelling and Underground Space Technology[J].2003,18:145-159.
    [41]Murady. Abu-Farsakh, and George z. Voyiadjis. Computational model for the simulation of the shield tunneling process in cohesive soils[J]. Int. J. Mumer. Anal. Meth. Geomech.,1999,23:23-44.
    [42]S. Bernat, B. Cambou. Soil-structure Interaction in Shield Tunnelling in Soft Soil [J]. Computers and Geotechnics,1998,22(3-4):221-242.
    [43]H. Mashimo, T. Ishimura. Evaluation of the load on shield tunnel lining in gravel [J]. Tunnelling and Underground Space Technology,2003,18:233-241.
    [44]G. Russo. Evaluating the required face-support pressure in EPBS advance mode[J]. Gallerie e grandi Opere Sotterranee,71:2003.
    [45]YANG HuaYong, SHI Hu, GONG GuoFang. Earth pressure balance control for EPB shield[J]. Science in China Series E,2009,52(10):2840-2848.
    [46]杨洪杰,傅德明,葛修润.盾构周围土压力的试验研究与数值模拟[J].岩石力学与工程学报,2006,25(8):1652-1657.
    [47]刘东亮.EPB盾构掘进的土压控制[J].铁道工程学报,2005,4:45-51.
    [48]徐前卫,朱合华,廖少明.软土地层土压平衡盾构法施工的模型试验研究[J].岩土工程学报,2007,29(12):1849-1857.
    [49]朱合华,徐前卫,廖少明.土压平衡盾构法施工参数的模型试验研究[J],岩土工程学报,2006,28(5):553-557.
    [50]胡新朋,孙谋,李建华.地铁EPB盾构不同地层土仓压力设置问题研究[J],地下空间与工程学报,2006,2(8):1413-1417.
    [51]王洪新,傅德明.土压盾构平衡控制理论及实验研究[J],土木工程学报,2007,40(5):61-68.
    [52]胡国良,龚国芳,杨华勇.盾构掘进机土压平衡的实现[J],浙江大学学报,2006,40(5):874-877.
    [53]施虎,龚国芳,杨华勇.盾构掘进土压平衡控制模型[J],煤炭学报,2008,33(3):343-346.
    [54]施虎,龚国芳,杨华勇.盾构掘进机推进系统非线性PID控制仿真分析[J].机床与液压,2008,36(7):76-79.
    [55]Xiao Li, Zhenhuan Chen. Fuzzy immune control for shield's earth-pressure-balance simulation system[C]. Fourth International Conference on Natural Computation, IEEE Computer Society 2008.
    [56]Xiao Li, Zhenhuan Chen. Modeling and simulation for Earth-Pressure-Balance simulated system of shield machine[C].2008 Asia Simulation Conference, IEEE Computer Society, 2008.
    [57]Yeh I-Cheng. Application of neural networks to automatic soil pressure balance control for shield tunnel ing[J]. Automation in Construction,1997,5(5):421-426.
    [58]A. S. Merritt, R. J. Mair. Mechanics of tunnelling machine screw conveyors:a theoretical model[J], Geotechnique,2008,58(2):79-94.
    [59]Paisan Kittisupakorn, Piyanuch Thitiyasook. M. A. Hussain, Neural network based model predictive control for a steel pickling process [J]. Journal of Process Control,2009, 19:579-590.
    [60]Bernt M. Akesson, Hannu T. Toivonen. A neural network model predictive controller[J], Journal of Process Control,2006,16:937-946.
    [61]D Q Mayne, S V Rakovic, R Findeisen.Robust output feedback model predictive control of constrained linear systems:Time varying case[J]. Automatica,2009,45:2082-2087.
    [62]Daniele Peila, Claudio Oggeri, Raffaele Vinai. Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations[J], Journal of Geotechnical and environmental Engineering,2007,133(12):1622-1625.
    [63]A. S. Merritt, R. J. Mair. Mechanics of tunnelling machine screw conveyors:model tests [J]. Geotechnique,2006,56(9):605-615.
    [64]Raffaele Vinai, Claudio Oggeri, Daniele Peila. Soil conditioning of sand for EPB applications:A laboratory research[J]. Tunnelling and Underground space Technology, 2008,23:308-317.
    [65]Li, Shouju, Liu Yingxi. Identification of vibration loads on hydro generator by using hybrid genetic algorithm[J]. ACTA MECHANICA SINICA,2006,22 (6):603-610.
    [66]李守巨,刘迎曦,孙伟著.智能计算与参数反演[M].科学出版社,2008.
    [67]何大阔,王福利.基于可进化性的快速遗传算法[J].东北大学学报,2002,23(7):628-631.
    [68]Marina Franulovic, Robert Basan, Ivan Prebil. Genetic algorithm in material model parameters'identification for low-cycle fatigue[J]. Computational Materials Science,2009,45:505-510.
    [69]B. M. Chaparro, S. Thuillier, L. F. Menezes, P. Y. Manach. Material parameters identification:Gradient-based, genetic and hybrid optimization algorithms[J]. Computational Materials Science,2008,44:339-346.
    [70j张强,毛君,田大丰.基于遗传算法掘进机截割头多目标模糊可靠性优化[J].煤炭学报,2008,33(12):1435-1437.
    [71]梁宁慧,瞿万波,曹学山.岩质边坡结构面参数反演的免疫遗传算法[J].煤炭学报,2008,33(9):977-983.
    [72]陈昆,石国祯.浮点数编码遗传算法变异概率的选取[J].武汉理工大学学报,2001,25(4):496-499.
    [73]Wei-Der Chang. An improved real-coded genetic algorithm for parameters estimation of nonlinear systems[J]. Mechanical Systems and Signal Processing,2006,20:236-246.
    [74]M. J. Perry, C. G. Koh, Y. S. Choo. Modified genetic algorithm strategy for structural identification[J]. Computers and Structures,2006,84:529-540.
    [75]Shun-Fa Hwang, Jen-Chih Wu, Rong-Song He. Identification of effective elastic constants of composite plates based on a hybrid genetic algorithm[J].Composite Structures,2009,90:217-224.
    [76]Shun-Fa Hwang, Rong-Song He. Improving real-parameter genetic algorithm with simulated annealing for engineering problems[J], Advances in Engineering Software,2006,37: 406-418.
    [77]Nedim Tutkun. Parameter estimation in mathematical models using the real coded genetic algorithms[J]. Expert Systems with Applications,2009,36:3342-3345.
    [78]Mostafa A. Khalik, M. Sherif, S. Saraya. Parameter identification problem:Real-coded GA approach[J]. Applied Mathematics and Computation,2007,187:1495-1501.
    [79]冯卫星,常绍东,胡万毅.北京细砂土邓肯—张模型参数试验研究[J].岩石力学与工程学报,1999,18(3):327-330.
    [80]胡应德,叶枫,陈志坚.土体邓肯—张非线性弹性模型参数反演分析[J],土木工程学报,2004,37(2):54-58.
    [81]刘小生,刘启旺,王钟宁.联合室内和现场试验确定土体本构模型参数方法研究[J],中国水利水电科学研究院学报,2006,4(3):220-223.
    [82]刘增荣,崔伟华,王鑫.一种土的非线性弹性本构模型参数的反演方法[J].工程地质学报,2008,16(3):338-341.
    [83]Yeh, W. W.-G. Review of parameter identification procedures in groundwater hydrology: the inverse problem[J]. Water Resour. Res.,1986,22:95-108.
    [84]Choo Par Tan, Yahya H. Zweiri, Kaspar Althoefer. Online Soil Parameter Estimation Scheme Based on Newton-Raphson Method for Autonomous Excavation [J]. IEEE/ASME Transactions on Mechatronics,2005,10(4):221-230.
    [85]Ronaldo I. Borja, Kossi M. Sama, Pablo F. Sanz. On the numerical integration of three-invariant elastoplastic constitutive models[J]. Comput. Methods Appl. Mech. Engrg.2003,192:1227-1258.
    [86]Jose E. Andrade, Kirk C. Ellison. Evaluation of a Predictive Constitutive Model for Sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(12): 1825-1828.
    [87]王涛,宗长龙,李春林.土的本构模型研究现状与发展的讨论[J].山西建筑,2007,33(4):100-101.
    [88]郑颖人,沈珠江。龚晓南著,岩土塑性力学原理[M],中国建筑工业出版社,2002.
    [89]ROSCOE K H, SCHOFIELD A N, WORTH C P. On the yielding of soils[J]. Geotechnique,1958, 8 (1):22-53.
    [90]ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical [J]. Geotechnique,1963,13 (3):211-240.
    [91]DRUCKER D C, PRAGER W, GREENBERG HJ. Extended limit design theorems for continuous media [J]. Quarterly of Applied Mathematics,1952,9 (4):381-391.
    [92]DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis of limited design[J]. Quarterly of Applied Mathematics,1952,10 (2):157-165.
    [93]VALANIS K C. Irreversility and existence of entropy[J]. Int. J. Nonlinear Mech.,1971, 337-360.
    [94]杨林德,张向霞.岩土本构模型研究的回顾和讨论[J].河北建筑科技学院学报,2005,22(12):26-31.
    [95]Kondner RL. Hyperbolic stress-strain response:cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, Proceedings of ASCE,1963,89:115-143.
    [96]DRUCKER D C. Coulomb friction, plasticity, and limit loads (CA) [A]. American Society of Mechanical Engineers [C].1953:53-57.
    [97]DRUCKER D C. Definition of stable inelastic material [J]. American Society of Mechanical Engineers Transactions, Journal of Applied Mechanics,1959,26 (1):101-06.
    [98]LADE P V, DUNCAN J M. Cubical triaxial tests on cohesionless soil[J]. J. Soil Mech. Found. Div., ASCE,1973,99 (SM10):793-812.
    [99]LADE P V, DUNCANJ M. Elastoplastic stress-strain theory for cohesionless soil[J]. J. Geotech. Eng. Div., ASCE,1975,102(GT10):1037-1053.
    [100]LADE P V, DUNCAN J M. Stress-path dependent behavior of cohesionless soil[J]. J. Geotech. Eng. Div., ASCE,1976,102 (GT1):51-68.
    [101]沈珠江软土工程特性和软土地基设计[J],岩土工程学报,1998,20(1):100-110.
    [102]沈珠江,土的三重屈服面应力应变模型[J],固体力学学报,1984,2:51-57.
    [103]沈珠江.粘土的双硬化模型[J].岩土力学,1995,16(1):1-8.
    [104]沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报,1980,2(2):11-19.
    [105]王金昌,陈页开.ABAQUS在土木工程中的应用[M].浙江大学出版社,2006.
    [106]庄茁,张帆,芩松.ABAQUS非线性有限元分析与实例[M].科学出版社,2005.
    [107]Duncan JM, Chang C. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, Proceedings of ASCE,1970,96:1629-1653.
    [108]何大阔,王福利.一种提高遗传算法全局收敛性的方法[J].东北大学学报,2003,24(6):511-514.
    [109]李广信,土的清华弹塑性模型及其发展,岩土工程学报,2006,28(1):1-10
    [110]李广信,司韦,张其光,非饱和土的清华弹塑性模型,岩土力学2008,29(8):2033-2037
    [111]郭瑞平,李广信.以塑性功函数为硬化参数的弹塑性模型[J].清华大学学报, 2000,40(5):125-127.
    [112]李广信,武世峰.土的卸载体缩的试验研究及其机理探讨[J].岩土工程学报,2002,24(1):47-55.
    [113]李广信,黄永男,张其光.土体平面应变方向上的主应力[J].岩土工程学报,2001,23(3):358-361.
    [114]张国胜,李以农,李松森.一种改进的浮点数编码遗传算法及其应用[J].重庆大学学报,2005,28(5):5-7.
    [115]S. J. Li, Y. X. Liu, Inverse Determination of Model Parameters of Nonlinear Heat Conduction Problem Using Hybrid Genetic Algorithm[J], Nonlinear Dynamics and Systems Theory,2007,7:23-34.
    [116]C. Rechea, S. Levasseur, R. Finno, Inverse analysis techniques for parameter identification in simulation of excavation support systems[J], Computers and Geotechnics,2008,35:331-345.
    [117]V. Galdi, L. Ippolito, A. Piccolo, A. Vaccaro, Parameter identification of power transformers thermal model via genetic algorithms [J], Electric Power Systems Research, 2001,60:107-113.
    [118]Nedim Tutkun, Parameter estimation in mathematical models using the real coded genetic algorithms[J], Expert Systems with Applications,2009,36:3342-3345.
    [119]黄正荣,朱伟,梁精华.浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J].岩土工程学报,2006,28(11):2005-2009.
    [120]黄正荣,朱伟,梁精华.盾构法隧道开挖面极限支护压力研究[J].土木工程学报,2006,39(10):112-116.
    [121]朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8):897-912.
    [122]王忠昶,栾茂田,杨庆,关于非线性非局部应变梯度模型的探讨[J],大连理工大学学报,2007,47(1):68-52.
    [123]栾茂田,崔春义,杨庆,考虑流变与固结效应的桩筏基础一地基共同作用分析[J],岩土力学,2008,29(2):289-296.
    [124]栾茂田,王忠昶,杨庆,考虑损伤效应的岩石类材料局部化特性分析[J],岩土力学,2007,28(1): 1-6.
    [125]Aphichat Sramoon, Mitsutaka Sugimoto, Kouji Kayukawa. Theoretical Model of Shield Behavior During Excavation. II:Application[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(2):156-165.
    [126]S.H. Kim, G. H. Jeong, J. S. Kim. Predicted and measured tunnel face behaviour during shield tunneling in soft ground [J]. Tunnelling and Underground Space Technology,2006, 21(3-4):264.
    [127]DRUCKER D C, GIBSON R F, HENKEL D J. Soil mechanics and work-harding theories of plasticity[J].Proc. ASCE Tran,1957,122:338-346.
    [128]ROSCOE K H, BURLAND J B. On the generalized stress-strain behaviour of wet clay[M]. London:Cambridge Univ. Press,1968.
    [129]沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运科学研究,1985,4:12-17.
    [130]谢定义.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35-41.
    [131]陈丽红.基于三剪屈服准则的材料弹塑性统一本构方程[J].陕西理工学院学报,2008,24(2):64-66.
    [132]韦良文,张庆贺,邓忠义.大型泥水盾构隧道开挖面稳定机理与应用研究[J].地下空间与工程学报,2007,3(1):87-91.
    [133]裴洪军,孙树林,吴绍明.隧道盾构法施工开挖面稳定性研究方法评析[J].地下空间与工程学报,2005,1(1):117-119.
    [134]Pierre Chambon, Jean-Francis Corte. Shallow tunnels in cohesionless soil:Stability of tunnel face[J]. Journal of Geotechnical Engineering,1994,120:1148-1165.
    [135]Anagnostou G., Kovari K. Face stability conditions with earth-pressure-balances shield[J]. Tunneling and Underground Space Technology,1996,11 (2):165-173.
    [136]Leca E., Dormieux L. Upper and lower bound solutions for the face stability of shallow circular tunnel in frictional material[J]. Geotechnique,1990,40(4):581-606.
    [137]LI Mingfei, Atsushi Nakamura, CAI Fei, Keizo Ugai, Application of FEM Analysis to Braced Excavation[J]. Tsinghua Science and Technology,2008,13(S1):40-45.
    [138]Bernat, S. and B. Cambou Soil-structure Interaction in Shield Tunnelling in Soft Soil[J], Computers and Geotechnics,1998,22(3-4),221-242.
    [139]Woodward, P. K. Earth pressure coefficients based on the Lade-Duncan failure[J], Engineering Structures,1997,19(9),733-737.
    [140]Mashimo, H. and T. Ishimura, Evaluation of the load on shield tunnel lining in gravel[J], Tunnelling and Underground Space Technology,2003,18(1),233-241.
    [141]Anagnostou, G. and K. Kovari, Face stability conditions with earth-pressure-balanced shields[J], Tunnelling and Underground Space Technology,1996,11(2),165-173.
    [142]Benmebarek, S., Khelifa, T. and R. Kastner, Numerical evaluation of 3D passive earth pressure coefficients for retaining wall subjected to translation[J], Computers and Geotechnics,2008,35(1),47-60.
    [143]Craig, R. F. Soil Mechanics[M], New York, Van Nostrand Reinhold Company.1978
    [144]Marcus, M. and P. E. Truit, Soil Mechanics Technology[M], New Jersey, Prentice-Hall, Inc.1978
    [145]Sugimoto Mitsutaka, Sramoon A, Konishi Shinji, Shied behavior simulation by kinematic load model on shield,2002,33(4):311-317.
    [146]Mitsutaka Sugimoto, Aphichat Sramoon, Shinji Konishi, utaka Sato. Simulation of Shield Tunneling Behavior along a Curved Alignment in a Multilayered Ground [J]. Journal of Geotechnical and Geoenvironmental Engineering.2007,133(6):684-694.
    [147]C. Gonzalez and C. Sagaseta, Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro, Computers and Geotechnics,2001,28(6-7):445-468.
    [148]CHUNG-JUNG LEE, BING-RU WU, AND SHEAN-YAU CHIOU, Soil Movements Around a Tunnel in
    Soft Soils, Proc. Natl. Sci. Counc. ROC (A),1999,23(2):235-247.
    [149]潘登,郑应平.基于模型参考和内模原理的线性系统鲁棒控制设计[J].控制理论与应用,2007,24(4):51-56.
    [150]周德云,李兆强,曲艺海.离散模型参考变结构控制算法[J].系统仿真学报,2009,21(13):4053-4056.
    [151]刘成,赵福宇,侯素霞.一种新的多变量参考模型解耦控制的方法[J],控制工程,2009,16(1) :12-16.
    [152]Li, Shouju, Liu Yingxi. An improved approach to nonlinear dynamical system identification using PID neural networks[J]. International Journal Of Nonlinear Sciences And Numerical Simulation,2006,7 (2):177-182.
    [153]Xuemei Zh. State feedback controller design of networked control systems with time delay in the plant[J]. International Journal of Innovative Computing, Informat-ion and Control,2008,4(2):283-290.
    [154]周奇才,冯双昌,李君.盾构智能辅助分析系统中推力研究[J].科技导报,2006,28(21):57-60.
    [155]刘晓华,杨园华.基于观测器的不确定广义时滞系统鲁棒预测控制[J],控制与决策,2009,24(4):606-610.
    [156]戴文战,娄海川,杨爱萍.非线性系统神经网络预测控制研究进展[J].控制理论与应用,2009,26(5):521-530.
    [157]Radhakant Padhi, Prashant Prabhat and S. N. Balakrishnan. Reduced order optimal control synthesis of a class of nonlinear distributed parameter systems using single network adaptive critic design [J]. International Journal of Innovative Computing, Information and Control,2008,4(2):457-469.
    [158]H. J. Xu, and P. Ioannou. Robust adaptive control of linearizable single input systems with guaranteed error bounds[J]. Automatic,2004,40(11):1905-1991.
    [159]Paisan Kittisupakorn, Piyanuch Thitiyasook, M. A. Hussain. Neural network based model predictive control for a steel pickling process[J]. Journal of Process Control,2009,19:579-590.
    [160]Mircea Lazar, Octavian Pastravanu. A neural predictive controller for non-linear systems [J]. Mathematics and Computers in Simulation,2002,60:315-324.
    [161]D. Q Mayne, S V Rakovic, R Findeisen. Robust output feedback model predictive control of constrained linear systems[J]. Time varying case, Automatica,2009, 45:2082-2087.
    [162]Huang C. S. A neural network approach for structural identification and diagnosis of a building from seismic response data[J]. Earthquake Engineering and Structural Dynamics,32(2) (2003)187-206.
    [163]Gupta P. An improved approach for nonlinear system identification using neural networks[J]. Journal of the Franklin Institute,336(4) (1999)721-734.
    [164]Ni X F. A new method for identification and control of nonlinear dynamic systems[J]. Engng. Applic. Artif. Intell,9(3)(1996)231-243.
    [165]He, J. H. A review on some new recently developed nonlinear analytical techniques[J]. International Journal of Nonlinear Sciences & Numerical Simulation,1(1) (2000)51-70.
    [166]Atiya A. Identification of nonlinear dynamics using a general spatio-temporal network[J]. Mathl. Comput. Modeling,21(1-2) (1995)53-71.
    [167]Lightbody G. Multi-layer perceptron based modeling of nonlinear systems[J]. Fuzzy Sets and System,79(1) (1996)93-112.
    [168]Oh S K. Parameter estimation of fuzzy controller and its application to inverted pendulum[J]. Engineering Applications of Artificial Intelligence,17(1) (2004)37-60.
    [169]Denton J. W. A comparison of nonlinear optimization methods for supervised learning in multilayer feedforward neural networks[J]. European Journal of Operational Research,93(2) (1996) 358-368.
    [170]Ali T A, Kenne G, Lagarrigue F L. Identification of nonlinear systems with time-varying parameters using a sliding-neural network observer[J]. Neurocomputing,2009,72(7-9):1611-1620.
    [171]Bao C X, Hao H, Li Z X. Time-varying system identification using a newly improved HHT algorithm [J]. Computers and Structures,2009,87 (23):1611-1623.
    [172]Lee J. W., Oh J. H. Time delay control of nonlinear systems with neural network modeling[J]. Mechatronics,1997,7(7):613-640.
    [173]Li S J, Liu Y X. Identification of vibration loads on hydro generator by using hybrid genetic algorithm[J]. ACTA MECHANICA SINICA,2006,22(6):603-610.
    [174]Li X, Chen Z H. Modeling and simulation for Earth-Pressure-Balance simulated system of shield machine[J]. Asia Simulation Conference. IEEE Computer Society, 2008,732-735.
    [175]Nazin S A., Polyak B T. Interval parameter estimation under model uncertainty [J]. Mathematical and Computer Modeling of Dynamical Systems,2005,11 (2):225-237.
    [176]Niedzwiecki M. Optimal and suboptimal smoothing algorithms for identification of time-varying systems with randomly drifting parameters [J]. Automatica,2008, 44 (7),1718-1727.
    [177]Peng J H, Tang J S, Chen Z L. Parameter identification of weakly nonlinear vibration system in frequency domain[J]. Shock and Vibration 2004,11 (5-6): 685-692.
    [178]Poulimenos A G., Fassois S D. Output-only stochastic identification of a time-varying structure via functional series TARMA models[J]. Mechanical Systems and Signal Processing,2009,23(4):1180-1204.
    [179]Ungarala S, Tomas B.C. Time-varying system identification using modulating functions and spline models with application to bio-processes[J]. Computers and Chemical Engineering,2000,24 (12):2739-2753.
    [180]Wu X L, Zhang J H, Zhu Q M. A generalized procedure in designing recurrent neural network identification and control of time-varying-delayed nonlinear dynamic systems[J]. Neurocomputing,2010,73(7-9):1376-1383.
    [181]Yang H Y, Shi H, Gong G F. Earth pressure balance control for EPB shield[J]. Science in China Series E:Technological Sciences,2009,52:(10),2840-2848.
    [182]Zhou Q G, Willianm R. C. Recursive Identification of Time-varying Systems via Incremental Estimation [J]. Automatica,1996,32 (10):1427-1431.
    [183]于开平,庞世伟,赵婕.时变线性、非线性结构参数识别及系统辨识方法研究进展[J].科学通报,2009,54(20):3147-3156.
    [184]徐丽娜.神经网络控制.电子工业出版社[M],2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700