用户名: 密码: 验证码:
模拟月壤力学特性及软着陆足垫动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月球是距离地球最近的星球,具有丰富的矿物资源,开展月球探测对人类发展具有十分重要的意义。围绕“绕、落、回”的三阶段探月目标,我国探月事业正在轰轰烈烈开展。目前,我国探月一期工程已经圆满完成,探月二期正在实施。着陆探测器的安全平稳月面软着陆是探月二期主要任务之一、是探月工程三期目标实现的首要条件。着陆缓冲机构的足垫首先与月面接触,产生相互作用力和相对运动,然后依靠缓冲器吸能缓冲,实现着陆器在月面的安全平稳着陆。月壤在足垫冲击荷载作用下的力学特性以及着陆过程中月壤与足垫界面特性是影响着陆缓冲的关键因素。
     本文从模拟月壤TJ-1的颗粒特性统计出发,采用室内试验研究了模拟月壤的静力特性、动力特性和足垫与模拟月壤接触面特性,并获得了模拟月壤的主要力学参数和接触面参数;根据着陆冲击过程中各阶段的特点研发了竖向冲击模型试验和水平拖曳模型试验装置,并开展了大量模型试验;根据模型试验结果,结合土力学等理论,建立了竖向冲击力学模型和水平拖曳力学模型,最后采用运动轨迹理论将两个力学模型结合得到了描述着陆冲击过程的足垫与模拟月壤相互作用数学力学模型。具体如下
     (1)通过对模拟月壤颗粒进行体视显微镜扫描,采用数字图像处理软件和计算机辅助程序,构建模拟月壤颗粒形状参数,对模拟月壤颗粒的形状指标进行量化分析。研究表明,模拟月壤颗粒与月壤颗粒形状相似,颗粒孔洞蜂窝结构明显,有多棱角、锯齿、沟槽结构。与砂土相比,模拟月壤颗粒表面更粗糙、更狭长。
     (2)通过室内试验测定了模拟月壤的压缩模量、压缩指数、弹性模量、抗剪强度指标等,利用压电陶瓷弯曲元测定了模拟月壤的剪切波速和压缩波速,计算得到了模拟月壤的小应变剪切模量和泊松比。
     (3)通过系统的动力三轴试验,获得了不同条件下模拟月壤的动强度、动剪切模量和阻尼比等,建立了模拟月壤的骨干曲线模型与阻尼比计算模型,为动力过程的模拟提供了理论依据和计算参数。
     (4)对模拟月壤与足垫材料的光滑接触面进行了系统的直剪试验,得到了接触面剪应力-剪切位移的关系曲线。研究了模拟月壤相对密度、法向压力、剪切速率等因素对接触面变形及强度参数的影响,建立了不同密实度下模拟月壤-足垫材料接触面模型。
     (5)根据软着陆过程中冲击阶段的性质和影响因素,设计研发了竖向冲击模型试验装置,针对冲击质量、冲击速度以及模拟月壤密实状态等因素,开展了大量模型试验。基于竖向冲击模型试验及数值模拟结果,修正了NASA提出的竖向冲击模型,考虑动力冲击过程中剪切破坏区渐进发展的特点,建立了两自由动力微分方程的足垫竖向冲击简化力学模型,提出了基于模拟月壤力学特性的模型参数确定方法。
     (6)研制了模拟足垫水平滑移过程的水平拖曳模型试验装置,针对拖曳速率、足垫姿态、刺入深度以及模拟月壤密实状态等因素,开展了大量模型试验,基于模型试验成果,采用滑移线理论和能量守恒原理建立了分析足垫水平滑移过程的力学模型,通过与试验成果对比分析,提出了力学模型参数的确定方法。
     (7)介绍了NASA软着陆斜冲击模型,并对模型进行了简单的探讨。采用运动轨迹理论将本文提出的竖向冲击力学模型和水平拖曳力学模型结合,得到了描述着陆冲击过程中足垫与模拟月壤相互作用力学模型。
The Moon, the satellite of the earth, is full of abundant mineral resources. Lunar exploration is of great significance for human development. In China, lunar exploration program has been being vigorously carried out in terms of three-stage exploration objectives, including "orbiting","landing" and "returning". At present, the first stage has been successfully completed and the second is being considered. It is the safe and stable lunar soft landing of the lander that is one of the major tasks in second stage and the primary requirement of the third-stage objective. The footpad, as the landing buffer mechanism would contact with the lunar surface first, as well as the interaction force and relative motion being generated. After that the buffer would be used to absorb the energy for safe and stable lunar landing. In addition to the interface behavior between lunar soil and footpad in landing process, the mechanical behavior of lunar soil subjected to impact loading, would be the critical factors for landing buffer.
     The static, dynamic and interface behavior of lunar soil stimulant TJ-1were studied by means of particle characteristics statistics and laboratory tests, and then the major mechanical and interface properties were obtained. The vertical impact and horizontal dragging test equipment were developed based on the various stages of the landing impact process. A large number of model tests were also investigated. According to the test results and soil mechanics theory, the vertical impact and horizontal dragging models were proposed, which were combined together using trajectory theory to describe the mathematical and mechanical interaction model between footpad and lunar soil stimulant in impact process. The details are shown as:
     1) The shape parameters of lunar soil stimulant particles were studied and their shape indices were quantitatively analyzed on the basis of stereomicroscope scanning of the particles, digital image processing software and computer aided program. The results are shown that the particles of lunar soil stimulant have the same shape as the ones of real lunar soils. Besides the multi-angular, serrated, and grooved structure, there is apparent honeycomb structure in particle holes of lunar soil stimulant. Compared to sand particles, its particle surface is rougher, longer and narrower.
     2) A series of mechanical parameters, associated with lunar soil stimulant such as compression modulus and index, elastic modulus, shear strength indices and so on, were obtained by laboratory tests. In addition, its shear and compression wave velocity of were measured by piezoelectric ceramic bending element. At last, its small strain shear modulus and poisson's ratio were calculated.
     3) The dynamic properties including dynamic strength, dynamic shear modulus, damping ratio and so on were obtained under various conditions of cyclic triaxial tests. The backbone curve and damping ratio calculation models were proposed, which provide the theoretical basis and calculation parameters for simulating the dynamic process.
     4) The systematic direct shear tests associated with smooth contact surface of lunar soil stimulant and footpad materials, were carried out to get the shear stress-displacement curves of contact surface. The various effects of factors such as relative density, normal stress and shear rate, on contact surface deformation and strength parameters were studied and a contact model of lunar soil stimulant and footpad materials were proposed based on different densities.
     5) According to impact stage characters and influencing factor in soft landing, a vertical impact test equipment were developed and lots of model tests were investigated in terms of impact mass, impact velocity and dense state of lunar soil stimulant. Besides, based on the laboratory and numerical simulation results, the vertical impact model proposed by NASA was revised. Considering the progressive development of shear failure zone in impact process, a simplified vertical impact model of footpad related to two freedom dynamic differential equation was also set up. Finally, the determination of model parameters associated with the mechanical behavior of lunar soil stimulant was proposed.
     6) A horizontal dragging test equipment was established to simulate the footpad horizontal slip process and a large number of model tests were investigated in terms of drag rate, footpad attitude, piercing depth, dense state of simulated lunar soil and so on. In addition, based on the results, a mechanical model to analyze the horizontal slip process of footpad was proposed by means of slip line theory and reciprocal theorem of work. By comparing the test results, a method to measure the model properties was finally put forward.
     7) The oblique impact model of soft landing proposed by NASA was introduced and a simple discussion was made in the thesis. At last, combining the vertical impact model with the horizontal dragging model proposed in the thesis based on trajectory theory, a mechanical model was obtained to describe the interaction between footpad and lunar soil stimulant in landing impact process.
引文
[1]欧阳自远.月球科学概论[M].北京:中国宇航出版社,2005:10-196.
    [2]李东,陈闽慷,果琳丽等.月球探测的初步设想[J].导弹与航天运载技术,2002,5:20-29.
    [3]郑永春,张锋,付晓辉等.月球上的水:探测历程与新的证据[J].地质学报,2011,85(7):1069-1078.
    [4]郑永春,王世杰,刘春茹等.月球水冰探测进展[J].地学前缘,2004,11(2):573-578.
    [5]张熇,柳忠尧,饶伟.月面软着陆探测器地面力学试验方法研究[J].航天器工程,2007,16(6):33-38.
    [6]吴晓君.合成月壤与足垫相互作用模型试验研究[D].浙江大学硕士学位论文,2011.
    [7]朱汪,杨建中.月球探测器软着陆机构着陆腿模型与仿真分析[J].宇航学报,2008,29(6)1723-1728.
    [8]朱汪,杨建中.月球着陆器软着陆机构着陆稳定性仿真[J].宇航学报,2009,30(5):1792-1796.
    [9]曾福明,杨建中,朱汪等.月球着陆器着陆缓冲性能研究[J].航天器工程,1010,19(5):4349.
    [10]MCKAY D S, HEIKEN G H, BASU A, et al. The lunar regolith[C]//Lunar Source Book. Cambridge: Cambridge University Press,1991:285-356.
    [11]SOMR1T C, NAKAGAWA M. Simulation of agglutinates formation[J]. Earth and Space, 2006,188(35):1-7.
    [12]OKEEFE J D, AHRENS T J. Impact-induced energy partitioning, melting, and vaporization on terrestrial planets [C]//Proceedings of the 8th Lunar Science Conference. New York:Pergamon Press, 1977:3367-3374.
    [13]李雄耀,王世杰,陈丰等.月壤厚度的研究方法与进展[J].矿物学报,2007,27(1):64-67.
    [14]CARRIER W D, OLHOEFT G R, MENDELL W. Physical properties of the lunar surfacefG]//Lunar Source Book. Cambridge:Cambridge University Press,1991:475-594.
    [15]STURE S. A review of geotechnical properties of lunar regolith simulants [C]//Earth & Space 2006: Enginee-ring, Construction, and Operations in Challenging Environment. Houston:ASCE,2006:1-6.
    [16]SCHULTZ R A. Cam Cap Models for Lunar Soil:A First Look [C]//Earth & Space 2006:Engineering, Cons-truction, and Operations in Challenging Environment. Houston:ASCE,2006:1-7.
    [17]COSTES N C, MITCHELL J K. Apollo 11 soil mechanics investigation [C]//Proceedings of Apollo 11 Lunar Science Conference. New York:Pergamon Press,1970:2025-2044.
    [18]MITCHEL J K, HOUSTON W N, SCOTTR F. Mechanical properties of lunar soil:Density, porosity, cohesion and angle of internal friction [C]//Proceedings of the Lunar Science Conference 3rd. Houston:MIT Press,1972:3235-3253.
    [19]DAVID M, JAMES C, WALTER B et al. JSC-1:a new lunar soil simulant[C]//Engineering, Construction and Operations in Space IV American Society of Civil Engineers,1994:875-866.
    [20]TRYANA V G, MASAMI N. Modeling of Agglutinates and its Mechanical Properties[C]//Earth and Space 2008:Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach:ASCE,2008:1-8.
    [21]MANMOOD A, MITCHELL K, CARRIER D. Grain orientation in lunar soil [A]. In:Lunar and Planetary Science Conference 5[C],1974,2347-2354.
    [22]CADEHEAD A, BROWN G, RICE K et al. Some surface area and porosity characterizations of lunar soils[A]. In:Lunar and Planetary Science Conference 8[C],1977,1291-1303.
    [23]CARRIER W, MITCHELL J K, MAHMOOD A. The nature of lunar soil [J]. Journal of the Soil Mechanics and Foundations Division,1973,99(10):813-832.
    [24]JOHN M, LARRY M, JEFFREY D. Effect of particle shape on the strength and deformation mechanisms of ellipse shaped granular assemblages[J]. Engineering Computations,1995(12):99-108.
    [25]SANTAMARINA J, Cho G. Soil behaviour:the role of particle shape[J]. Particle Shape,2004:1-14.
    [26]张翀,舒赣平.颗粒形状对颗粒流模拟双轴压缩试验的影响研究[J].岩土工程学报,2009,31(8):1281-1285.
    [27]陈海洋,汪稔,李建国等.钙质砂颗粒的形状分析[J].岩土力学,2005,26(9):1289-1293.
    [28]王者超,李术才.高应力下颗粒材料一维力学特性研究(Ⅰ):压缩性质[J]:2010,31(10):3051-3059.
    [29]秦建敏,张洪武.颗粒材料的微观临界状态理论模型[J].岩土力学,2010,31(12):3697-3714.
    [30]KUNIO S,MIKIHIRO O,BORIS G. Effect of particle shape on angle of internal friction by triaxial compression test[J]. Powder Technology,2000,107:131-136.
    [31]JOSEPH A, MATTHEW K. Influence of particle shape on granular contact signatures and shear strength:new insights from simulations[J]. International Journal of Solids and Structures, 2004,41:5863-5870.
    [32]李丽华,唐辉明,刘数华.月壤及模拟月壤微观结构的研究[J].岩土力学,2012,33(1):31-34.
    [33]孙吉主,汪稔.钙质砂的颗粒破碎和剪胀特性的围压效应[J].岩石力学与工程学报,2004,23(4):641-646.
    [34]FRIDRUN P, YASMIN M. The influence of particle size and shape on the angle of internal friction and the flow factor of unlubricated and lubricated powders[J].International Journal of Pharmaceutics,1996,144:187-194.
    [35]曾远,周健.砂土的细观参数对宏观特性的影响研究[J].地下空间与工程学报,2008,4(3):500-504.
    [36]史旦达,周健,刘文白等.砂土单调剪切特性的非圆颗粒模拟[J].岩土工程学报,2008,30(9):1361-1366.
    [37]孔亮,彭仁.颗粒形状对类砂土力学性质影响的颗粒流模拟[J].岩石力学与工程学报,2011,30(10):2112-2119.
    [38]GYE C, JAKE D, CARLOS S. Particle shape effects on parking density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental engineering 2006,132(5):591-602.
    [39]郑永春,欧阳自远,王世杰等.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19.
    [40]TAYLOR L, HILL E, LIU Y et al. Microwave processing Apollo soil:products for a lunar base[J]. Earth and Space,ASCE,2006,
    [41]HEYWOOD H. Particle size and shape distribution for lunar fines sample 12057,72[A].In:Proc 2nd lunar science conf[C]. MIT Press,1971,1:989-200.
    [42]KARAFIATH L. Friction between solids and simulated lunar soils in ultrahigh vacuum and its significance for the design of lunar roving vehicles [J]. Nbs Space Simulation.1970:225-244
    [43]CARRIER D, LESLIE G. BROMWELL R, et al. Behavior of Returned Lunar Soil in Vacuum [J]. Journal of the Soil Mechanics and Foundations Division,1973,99(11):979-996.
    [44]LEONOVICHAK, GROMOVVV, SEMYONOV P S,et al. Luna 16 and 20 investigations of the physical and mechanical properties of lunar soil [J]. Space Research,1975.XV:607-616.
    [45]SASAKI S, KUBOTA T, OKADA T et al. Scientific exploration of lunar surface using a rover in Japanese future lunar mission[J]. Advance Space Research,2002,30(8):1921-1926.
    [46]OKADA T, SASAKI S, SUGIHARA T et al. Lander and rover exploration on the lunar surface:A study for SELENE-B mission[J]. Advances in Space Research,2006,37:88-92.
    [47]CARRIER W D, BROMWELL III. Strength and compressibility of returned lunar soil [C]// Proceedings of the Lunar Science Conference, [s.1.]:MIT Press,1972,3:3223-3234.
    [48]ZHAO D, NEZAMI E, HASH ASH Y M. Discrete Element Modeling of Polyhedral Representation of Granular Materials [C]//Earth & Space 2006:Engineering, Construction, and Operations in Challenging Environ ment. Houston:ASCE,2006:1-9.
    [49]邹猛,李建桥,贾阳.月壤静力特性的离散元模拟[J].吉林大学学报,2008,38(2):383-387.
    [50]殷杰.土结构性对天然软黏土压缩特性的影响[J].岩土力学,2012,33(1):48-52.
    [51]王立忠,丁利,陈云敏等.结构性软土压缩特性研究[J].土木工程学报,2004,37(4):46-55.
    [52]刘恩龙,沈珠江.结构性土压缩曲线的数学模拟[J].岩土力学,2006,27(4):615-620.
    [53]MELZER K J. Methods for investigating the strength characteristics of a lunar soil stimulant [J]. Geotechnique,1974,24:13-20.
    [54]ANTONIO J, MONICA P, RODRIGO S. Shear strength and stiffness of sands containing plastic or nonplastic fines [J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,9:1167-1178.
    [55]PERKO H A, NELSON J D, SADEH W Z. Surface Cleanliness Effect on Lunar Soil Shear Strength [J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(4):371-383
    [56]HICHER P Y, CHANG C S. A Constitutive Model for Lunar Soil [C]//Earth and Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach:ASCE, 2008:1-8.
    [57]CARRIER WD. Particle size distribution of lunar soil [J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(10):956-959.
    [58]HAMMOND E C, BERRY F D, MITCHELL F, et.al. Microcratering within the lunar regolith-a theory and observation [J]. Journal of Scanning Microscopies,2000,22(l):16-23.
    [59]KOBAYASHI T, OCHIAI H, FUKAGAWA R, et al. A proposal for estimating strength parameters of lunar surface from soil cutting resistances [C]//Earth & Space 2006:Engineering, Construction, and Operations in Challenging Environ ment. Houston:ASCE,2006:1-8.
    [60]COSTES N, COHRON G, MOSS D. Cone penetration resistance test-an approach to evaluating in-place strength and packing characteristics of lunar soils[C]//Proceeding of the 2sec Lunar Science Conference,[s.1.]:MIT Press,1971,3:1973-1987.
    [61]MITCHELL F, ELLIS W. Surveyor III:bacterium isolated from lunar-retrieved TV Camera[C]// Proceeding of the 2sec Lunar Science Conference,[s.1.]:MIT Press,1971,3:2721-2733.
    [62]WILLMAM B M, BOLES W W, MCKAY S, et al. Properties of lunar soil stimulant JSC-1 [J]. Journal of Aerospace Engineering,1994,8(2):77-87.
    [63]KLOSKY J L, STURE S, KO H Y. Geotechnical Behavior of JSC-1 Lunar Soil Simulant [J]. Journal of Aerospace Engineering,2000,13(4):133-138.
    [64]KLOSKY J L, STURE S, KO H Y, et al. Mechanical Properties of JSC-1 Lunar Regolith Simulant [C]//Procee-dings of the Fifth International Conference on Space'96 Albuquerque. New York: ASCE,1996:680-688.
    [65]ZENG X W, HE C M, ORAVEC H et.al. Geotechnical properties of JSC-1A lunar soil simulant[J]. Journal of Aerospace Engineering,2010,23(2):111-116.
    [66]KHALID A A, HASAN A. Strength Properties of JSC-1A lunar regolith stimulant [J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(5):673-679.
    [67]CHANDRA S D, HAMID S, KIRSTEN G. Development and mechanical properties of structural materials from lunar simulants[C]. NASA Space Engineering Research Center for Utilization of Local Planetary Resources,1991,4:16-25.
    [68]PERKINS S W, MADSON C R. Mechanical and Load-Settlement Characteristics of Two Lunar Soil Simulants [J]. Journal of Aerospace Engineering,1996,9(1):1-9.
    [69]李建桥,邹猛,贾阳等.用于月面车辆力学试验的模拟月壤研究[J].岩土力学,2008,29(6):1557-1561.
    [70]邹猛,李建桥,刘国敏等.模拟月壤地面力学性质试验研究[J].岩土力学,2011,32(4):1057-1061.
    [71]ZHENG Y C, WANG S J, OUYANG Z Y, et al. CAS-1 lunar soil stimulant [J]. Advance in Space Research.2009,43(3):448-454.
    [72]郑永春,王世杰,冯俊明等.CAS-1模拟月壤[J].矿物学报,2007,27(3/4):571-578.
    [73]蒋明镜,李立青.TJ-1模拟月壤的研制[J].岩土工程学报,2011,33(2):209-214.
    [74]PERKINS S W. Bearing capacity of highly frictional material [J]. Geotechnical Testing Journal,1991, 18(4):450-462.
    [75]KLOSKY J L, STURE S, KO H Y, et al. Vibratory excavation and anchoring tools for the lunar surface [C]//Proceedings of the 5th International Conference on Space'96. Albuquerque:ASCE, 1996:903-911.
    [76]CHANG C S, HICHER P Y. Model for granular materials with surface energy forces [J]. Journal of Aerospace Engineering,2009,22 (1):43-52.
    [77]汤大明,曾纪全,胡应德等.关于泊松比的试验和取值讨论[J1.岩石力学与工程学报,2001,20(增):1772-1775.
    [78]孙益振,邵龙潭,范志强等.非粘性土泊松比试验研究[J].岩土力学,2009,30(8):63-68.
    [79]邵显智,邵敏华,毕玉峰等.沥青混合料泊松比的测试方法[J].同济大学学报,2006,34(11):1470-1474.
    [80]刘斌.不同围压下孔隙度不同的干燥及水饱和岩样中的纵横波速度及衰减[J].地球物理学报,1998,41(4):537-536.
    [81]刘小燕,席道瑛,张程远.低围压和疲劳荷载下砂岩的波速、模量及疲劳损伤(Ⅰ):岩石的声学特性 [J].岩石力学与工程学报,2004,23(13):2164-2167.
    [82]NILO C, LUIZMAR S,PEDRO D. Variables controlling stiffness and strength of lime stabilized soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,10
    [83]SAHAPHOL T, MIURA S. Shear moduli of volcanic soils[J]. Soil Dynamics and Earthquake Engineering,2005,25:157-165.
    [84]ZHOU Yan-guo, CHEN Yun-min, DING Hao-jiang. Analytical modeling of sandwich beam for piezoelectric bender elements[J].Applied Mathematics and Mechanics,2007,28(12):1581-1586.
    [85]JONG P, WON M.Constitutive relations for piezoelectric benders under various boundary conditions[J].Sensors and Actuators A,2005,117:159-167.
    [86]ZHOU Yan-guo, CHEN Yun-min. Influence of seismic cyclic loading history on small strain shear modulus of saturated sands[J]. Soil Dynamics and Earthquake Engineering,2005,25:341-353.
    [87]CAROL M, LUC T, BERNARDO C. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models[J], Journal of Applied Geophysics,2009,68:135-145.
    [88]ROBERT D, JEAN B. Unified mechanical approach to piezoelectric bender modeling[J]. Sensors and Actuators A,2007,134:436-446.
    [89]黄博,殷建华,陈云敏等.压电陶瓷弯曲元法测试土样弹性剪切模量[J].振动工程学报,2001,14(2):155-160.
    [90]周燕国,陈云敏,丁皓江.压电弯曲元的夹层梁解析模型[J].应用数学和力学,2007,28(12):1411-1416.
    [91]张泉芳,陈佩杭,姬美秀等.一种压电陶瓷弯曲元剪切波速测试装置的开发[J].试验技术与管理,2008,25(8):
    [92]陈云敏,周燕国,黄博.利用弯曲元测试砂土剪切模量的国际平行试验[J].岩土工程学报,2006,28(7):874-880.
    [93]周健,李晓博,贾敏才.利用弯曲元测试水泥土强度方法的研究[J].材料与装备,2,10(12):78-80.
    [94]COLE D. Laboratory observations of stiffness and friction of normal and sliding contacts[J]. Earth and Space, ASCE,2008:1-9.
    [95]刘小生,汪闻韶,赵冬.饱和原状砂土的静、动力强度特性试验研究[J].水利学报,1991,11:41-46.
    [96]刘汉龙,林永亮,凌华等.加筋堆石料的动残余变形特性试验研究[J].岩土工程学报,2010,32(9):1418-1421.
    [97]刘小生,刘启旺,王钟宁等.一种饱和风化砂的静、动强度和动力变形特性[J].水力发电学 报,2000,68(1):43-53.
    [98]凌华,傅华,蔡正银等.坝料动力变形特性试验研究[J].岩土工程学报,2009,31(12):1920-1924.
    [99]廖红建,俞茂宏,外崎明等,黄土状土和火山灰粘性土的动剪强度研究[J].西安交通大学学报,1998,32(10):70-74.
    [100]李鹏琳,刘保健,林法力.灰土的动力特性研究[J].探讨与分析,2005,8(11):43-46.
    [101]凌华,傅华,韩华强等.颗粒破碎对堆石料静动力特性影响的试验研究[J].水利与建筑工程学报,2010,8(4):44-47.
    [102]何晓民,陈志强,张婷.武汉砂土动剪切模量与阻尼比的试验研究[J].世界地震工程,2010,26(增):41-45.
    [103]MATSUSHIM T, KATAGIRI J, UESUGI K, et. al. Image-based modeling of lunar soil simulant for 3-D DEM simulations [C]//Earth & Space 2006:Engineering, Construction, and Operations in Challenging Environ ment. Houston:ASCE,2006:1-8.
    [104]BOURDEAU P L.Stochastic modeling of load-induced settlement in loose granular materials [J]. Journal of Aerospace Engineering,2009,22(1):33-42.
    [105]PERKINS S W, MADSON C R. Scale effects of shallow foundations on lunar regolith [C]// Proceedings of the Fifth International Conference on Space. New York:ASCE,1996:963-972.
    [106]杨湘杰,刘焕焕,王文林.月球探测器的软着陆技术[J].机电产品开发与创新,2008,21(3):27-29.
    [107]胡亚冰,孙毅.月球探测器软着陆机构[J].上海航天,2010,1:43-50.
    [108]熊盛青,闫柏琨,甘甫平等.月球软着陆点的选择与几个预选点的初步对比分析[J].国土资源遥感,2009,82(4):8-13.
    [109]刘志全,黄传平.月球探测器软着陆机构发展综述[J].中国空间科学技术,2006,2(1):33-39.
    [110]SPERLING F B. The Surveyor Shock Absorber [C]//Proceedings of the Aerospace Mechanisms Series, [s.1.]:A1AA,1970:211-217.
    [111]田浩,白争锋,赵阳.月球软着陆动力建模研究[J].中国空间科学技术,2009,12(6):32-39.
    [112]江磊,郭建娟,陈传海.基于相似理论的月球车牵引性能模拟试验[J].中国机械工程,2009,20(23):2828-2831.
    [113]李建桥,邹猛,贾阳等.月球车轮与月壤相互作用动力模拟[J].农业机械学报,2008,39(4):1-5.
    [114]邓宗全,丁亮,高海波等.月壤特性对月球车轮地相互作用力的影响[J].哈尔滨工业大学学报,2010,42(11):1724-1729.
    [115]WANG Da-yi, HUANG Xiang-yu, GUAN Yi-feng. GNC system scheme for lunar soft landing spacecraft[J]. Advances in Space Research,2008,42:379-385.
    [116]YOSHIDA K, WATANABE T, MIZUNO N, ISHIGAMI G. Slip, traction control, and navigation of a lunar rover[C]//Proceeding of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space:i-SAIRAS 2003, NARA, Japan,2003:19-23.
    [117]黄传平,刘志全.软着陆机构展开过程的运动学分析[J].航天器工程,2005,14(4):26-30.
    [118]陈金宝,聂宏,赵金才等.月球探测器软着陆缓冲机构着陆性能分析[J].宇航学报,2008,29(6):1729-1732.
    [119]王少纯,邓宗全,杨涤等.月球着陆器新结构的ADAMS仿真研究[J].2007,39(9):1392-1394.
    [120]王春洁,郭永.着陆器软着陆机构的动力分析[J].北京航空航天大学学报,2009,35(2):183-187.
    [121]钟世英,凌道盛,吴晓君等.月壤岩土工程问题研究进展[J].浙江大学学报,2012,22(6):741-743.
    [122]BEND S. Lunar module/LM/soil mechanics [M]. [S.1.]:Analytical Mechanics,1968:1-91.
    [123]SCOTT R, PEARCE R. Soil compaction by dynamic[J].Geotechnique,1975,25(1):1-19.
    [124]钱家欢,钱学德,赵维炳等.动力固结的理论与实践[J].岩土工程学报,1986,8(6):1-17.
    [125]THILAKASIRI H, GUNARATNE G, MULLINS P. Investigation of impact stress induced in laboratory dynamic compaction of soft soils[J]. International journal for numerical and analytical methods in geomechanics,1996,20:753-767.
    [126]孔令伟,袁建新.强夯的边界接触应力与沉降特性研究[J].岩土工程学报,1998,20(2):86-92.
    [127]水伟厚,王铁宏,王亚凌.对湿陷性黄土在强夯作用下冲击应力的分析[J].建筑科学,2003,19(1):33-37.
    [128]牛志荣,杨桂通.强夯作用下土体动力特性研究[J].工程力学,2006,23(3):118-125.
    [129]贾敏才,王磊,周健.砂性土宏细观强夯加固机制的试验研究[J].岩石力学与工程学报,2009,28(1):3282-3290.
    [130]高有斌,刘汉龙,张敏霞等.强夯加固地基的土体竖向位移计算方法研究[J].岩土力学,2010,31(8):2671-2675.
    [131]吴晓君,钟世英,凌道盛等.着陆器足垫垂直冲击模型试验研究[J].岩土力学,2012,22(4):12-20.
    [132]龙铝波,卿启湘,文桂林等.基于ADAMS的着陆器软着陆稳定性仿真分析[J].工程设计学报,2010,17(5):334-338.
    [133]林轻,聂宏,陈金宝等.月球着陆器软着陆冲击仿真[J].中国空间科学技术,2011,10(5):70-76.
    [134]蒋万松,黄伟,沈祖炜等.月球探测器软着陆动力仿真[J].宇航学报,2011,32(3):462-469.
    [135]李立云,杜修力,李亮.土与结构界面接触问题研究进展评述[J].力学进展,2009,39(5):588-587.
    [136]MORIMICH U, HIDEAKI K, YUICHIRO U. Friction between dry sand and concrete under monotonic and repeated loading[J]. Soils and Foundations,1990,30(1):115-128.
    [137]KAZEM F, ERMAN E. Elasto-plastic modeling of stress-path-dependent behaviour of interfaces[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2000,24:183-199.
    [138]MORIMICHI U, HIDEAKI K. Influence factors of friction between steel and dry sands[J]. Soil and Founditions,1986,26(2):33-46.
    [139]MORIMICHI U, HIDEAKI K, YASUNORI T. Behavior of sand particles in sand-steel friction[J]. Soil and Founditions,1988,28(1):107-118.
    [140]CLOUGH G W, DUNCAN J M. Finite element analysis of retaining wall behavior [J]. Journal of the Soil Mechanics and Foundations Division,1971,97(12):1657-1672.
    [141]殷宗泽,朱泓,徐国华.土与结构材料接触面的变形及其数学模拟[J].岩土工程学报,1994,16(3):14-22.
    [142]张嘎,张建民.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报,2004,26(1):21-27.
    [143]吴梦喜,楼志刚.钙质砂与钢板接触面力学特性试验研究[J].岩土力学,2003,24(3):369-371.
    [144]袁运涛,施建勇.土与结构界面位移特性静动力单剪试验研究[J].岩土力学,2011,32(6):1707-1712.
    [145]龚辉,赵春风,陶帼雄等.应力历史对黏土-混凝土界面剪切特性的影响研究[J].岩石力学与工程学报,2011,30(8):1712-1719.
    [146]朱俊高,Shakir R,杨有莲等.土-混凝土接触面特性环剪单剪试验比较研究[J].岩土力学,2011,32(3):692-696.
    [147]ANUBHAV B. Modeling of soil-woven geotextile interface behavior from direct shear test results[J]. Geotextiles and Geomembranes,2010,28:403-408.
    [148]刘文白,周健.土工格栅与界面作用特性试验研究[J].岩土力学,2009,30(4):965-970.
    [149]高俊丽,张孟喜,张文杰.加肋土工膜与砂土界面特性研究[J].岩土力学,2011,32(11):3225-3230.
    [150]胡黎明,濮家骝.土与结构接触面物理力学特性试验研究[J].岩土工程学报,2001,23(4):431-436.
    [151]KARAFIATH L. Plasticity theory and the stress distribution beneath wheels [J]. Journal of Terramecha-nics,1971,8(2):49-60.
    [152]BRAIN M, WALTER W. BOLES. Soil-tool interaction theories as they apply to lunar soil simulation [J]. Journal of Aerospace Engineering,1995,8(2):88-99.
    [153]GU K F, WEI Y Z, WANG H G, et al. Dynamic Modeling and Sliding Mode Driving Control for Lunar Rover Slip [C]//Proceedings of the International Confe-rence on Integration Technology. Shenzhen:IEEE,200736-41.
    [154]谷侃锋,王洪光,赵明扬.滑移率对月球车车轮驱动力特性的影响分析[J].2008,25(6):25-29.
    [155]孙鹏,高峰,姚圣卓等.月球车车轮与模拟月壤相互作用试验[J].北京航空航天大学学报,2010,36(7):757-761.
    [156]陶建国,胡明,高海波等.月球车刚性车轮与土壤相互作用的力学模型与测试[J].空间科学学报,2008,28(4):340-344.
    [157]WEIBLEN W, KOCKELMANN H, BURKARD H. Evaluation of different designs of wheel force transducers (part III) [J]. SAE Transactions,1999,108(2):1901-1912.
    [158]NAKASHIMA H, AOKI S, KANAMORI H, et.al. Concept of Virtual Soil Bin by DEM for Lunar Locomotion Studies [C]//Earth & Space 2006:Engineering, Construction, and Operations in Challenging Environ ment. Houston:ASCE,2006:1-8.
    [159]赵其国.中国的火山灰土[J].土壤学报,1988,24(4):323-330.
    [160]徐德兵,白志达,张秉良等.吉林龙岗火山群火山碎屑基浪堆积特征与成因机理[J].沉积学报,2005,23(1):61-66.
    [161]单新建,叶洪,陈国光.利用ERS-2 SAR图像纹理分析方法揭示长白山天池火山近代喷发物空间分布特征[J].第四纪研究,2002,22(2):123-130.
    [162]陈勇,周瑶琪.岩浆脱气动力研究进展[J].石油大学学报,2002,26(2):115-120.
    [163]于红梅,许建东,林传勇等.吉林省龙岗火山群南龙湾第四纪火山碎屑颗粒特征研究[J].岩石学报,2008,24(11):2621-2630.
    [164]蒋明镜,郑敏,刘芳等.颗粒级配对火山灰力学特性影响的试验研究[J].扬州大学学报,2010,13(1):57-62.
    [165]刘强,魏海泉,许建东等.吉林龙岗四海火山碎屑物粒度分析与地质意义[J].地震地质,2009,31(1):112-121.
    [166]刘清秉,项伟,B M Lehane等.颗粒形状对砂土抗剪强度及桩端阻力影响机制试验研究[J].岩石力学与工程学报,2011,30(2):400-410.
    [168]涂新斌,王思敬.图像分析的颗粒形状参数描述[J].岩土工程学报,2004,26(5):659-662.
    [167]宋玉丹,容幸福,秦志钰.利用ImageJ提取目标物平面图像外轮廓的方法[J].中国高新技术企业,2008,1:104-105.
    [169]刘清秉,项伟,M Budhu等.砂土颗粒形状量化及其对力学指标的影响[J].岩土力学,2011,32(增1):190-197.
    [170]周杰,周国庆,赵光思等.高应力下剪切速率对砂土抗剪强度影响研究[J].岩土力学,2010,31(9):2805-2810
    [171]谢定义.土动力[M].北京:高等教育出版社,2011.
    [172]周健.土动力理论与计算[M].北京:中国建筑工业出版社,2001.
    [173]钟万勰.结构动力方程的精细时程积分[J].大连理工大学学报,1994,34(4):131-136.
    [174]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700