MTRR基因A66G多态性及血浆同型半胱氨酸水平与心肌梗死的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的冠心病是当今国内外的多发病,尤其是经济发达欧美国家,是严重威胁人类健康的主要疾病之一。随着改革开放和人民生活水平的提高,我国的冠心病的患病率和死亡率呈上升的趋势。研究冠心病的发病机制是当今医学研究的重要课题之一。冠心病的传统危险因素包括:性别,年龄,高血压,糖尿病,高胆固醇血症,吸烟和冠心病家族史等,但临床上部分患者不具备上述的危险因素,因此,寻找并研究其他冠心病的危险因素,并采取切实有效的措施降低这些危险因素,以延缓冠心病的发生和减轻冠心病的临床症状,是冠心病防治中一项长期任务。近年的基础和临床研究表明,高同型半胱氨酸也是冠心病的独立危险因素之一。大量流行病学调查证实,高同型半胱氨酸与冠心病的发病明显相关。本研究为了探讨MTRR多态性及血浆同型半胱氨酸(Hcy)水平与心肌梗死的关系。方法运用聚合酶链反应-限制性片段长度多态性技术检测180例心肌梗死患者及180例冠状动脉正常的人MTRR基因多态性,用高效液相色谱仪和荧光检测仪测定血浆总Hcy水平。
     结果MTRR有3种基因型,即纯合子突变型(GG),杂合子突变型(AG)及正常野生型(AA)。心肌梗死组GG型频率为35.4%,AG型频率为53.8%,AA型频率为10.8%,G等位基因频率为62.3%,A等位基因频率为37.7%。正常组中GG型频率为20.1%,AG型频率为55.8%,AA型频率为24.1%,G等位基因频率为32.1%,A等位基因频率为67.9%,且心梗死组GG型频率高于正常组(P<0.01)。正常人群中GG基因型者血浆总Hcy水平明显高于(AA+AG)基因型者(P<0.01)。心肌梗死患者血浆总Hcy水平显著高于正常组(P<0.01)。多因素分析显示,MTRR基因突变型GG可能是心肌梗死发病的一个危险因素。
     结论MTRR GG基因型突变可能升高个体血浆总Hcy水平;MTRR可能是心肌梗死的易感基因之一;MTRR基因突变型及高Hcy血症可能是心肌梗死发病的一个危险因素。
Background and Objective Coronary heart disease(CHD) is one of the main disease to threaten human’s health for the time being. In many countries,especially in the developed countries like America and some west European countries,its morbidity rates and mortality rates are increasing quickly. In our country,coronary artery disease has also been taking on obvious ascending trend and has become the leading cause of death in many cities and regions. It was already found that many risk factors countributed to the development of coronary artery disease, such as diabetes mellitus, hypertension,hypercholesterolemia,smoking,gender,age and etc.There are quite a number of“normal”persons with coronary artery disease,who are withlow scores of risk factors of CAD.Besides,there are still many difficulties in correcting or killing the risk factors.Recent studies have showed that hyerhomocysteinemia was also closely related with the development of coronary artery disease.There has been a wealth of epidemiological evidence that there are association between hyperhomocysteinemia and coronary artery disease.This study was designed to investigate the relationship of polymorphisms of methionine synthase reductase (MTRR) gene and plasma homcysteine(Hcy) levels with myocardial infarction.
     Methods 180 myocaedial infarction patients and 180 coronary artery normal subjects were included in the study. The polymorphisms of their MTRR gene were analyzed using PCR-RFLP and their plasma total Hcy levels were measured using high-performance liquid chromatography and fluorescence detection methods. Results There were three kinds of genotype:GG(homozygous mytation), AG(heterozygous mutation) and AA(wild-type).The frequencies of the three genotypes were as follows:GG, 35.4%;AG, 53.8% and AA, 10.8% in mypcardial indarction patients. Meanwhile, GG, 20.1%;AG,55.8%;AA, 24.1% in coronary artery normal subjects, tespectively. The frequency of G alleles was significantly higher in myocardial infarction patients than in normal controls (62.3% and 32.1%,respectively) (P<0.01). Mean total plasma homoctsteine concentrations were significantly higher in myocardial infarction patients than in the normal subjects(P<0.01). Conclusion These results suggest that polymotphisms of MTRR gene and/or hyperhomocysteinemia may be an independent risk factor for myocardial infarction.
引文
1.张宝慧.心脏康复研究的最新进展.中国临床康复, 2003, 7(1): 4.
    2. Girelli D, Friso S, Trabetti E, et al. Methylenetetrahy drofolate reductase C677T mutation, plasma homocysteine, and folate in subjects from Northern Italy with or without angiographically documemted severe coronary atheroeslerotic disease: evidence for an important genetic environmental interaction. Blood, 1998, 91(11): 4158-63.
    3. Stampfer MJ, Malinow MR, Willett WC, et al. A prospective study of plasma homocysteine and risk of myocardial infaction in US physicians. JAMA, 1992, 268(7): 877-81.
    4. Boushey CJ, Beresford SA, Omenn GS, et al. A quantitative assessment of plasma homocysteine as a risk for vascular disease. JAMA, 1995, 274(13): 1049-57.
    5. Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA, 1997, 277(22): 1775-81.
    6.李恒斌,尚士芹.同型半胱氨酸水平与冠心病患者冠状动脉病变程度相关性研究.中国实验诊断学,2009, 13(9): 1258-9.
    7. Joseph J, Joseph L. Hyperhomocysteinemia and cardiovascular disease: new mechanisms beyond atherosclerosis. Metab Syndr Relat Disor, 2003, 1(2): 97-104.
    8. Dalton ML, Gadson RF Jr, Wrenn RW, et al. Homocysteine signal cascade: production of phospholipids, activation of protein kinase C, and the induction of c-fos and c-myb in smooth muscle cells. FASEB J, 1997, 11(8): 703-11.
    9. Kluijtmans LA, Kastelein JJ, Lindemans J, et al. Thermolabile methylenetetrahydrofolate reductase in coronary artery disease. Circulation, 1997, 96(8): 2573-7.
    10. Soriente L, Coppola A, Madonna P, et al. Homozygous C677T mutationof the 5,10 methylenetetrahydrofolate reductase gene and hyperhomocysteinemia in Italian patients with a history of early-onset ischemic stroke. Stroke, 1998, 29(4):869-71.
    11. Lent SR, Sadler JE. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine. J Clin Invest, 1991, 88(6):1906-14.
    12. Di Minno G, Davi G, Margaglione M, et al. Abnormally high thromboxane biosynthesis in homozygous homocystinuria. Evidence for platelet involvement and probucol-sensitive mechanism. J Clin Invest, 1993, 92(3):1400-6.
    13. Liao JK, Shin WS, Lee WY, et al. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem, 1995, 270(1):319-24.
    14. Koch HG ,Goebeler M, Marquardt T, et al .The redox status of aminothiols as a clue to homocysteine-induced vascular damage? Eur J Pediatr, 1998, 157[suppl 2]:S102-6.
    15. Hajjar KA . Homocysteine-induced modulation of tissue plasminogen activator binding to its eadothelial cell membrane receptor. J Clin Invest 1993, 9(6):2873-9.
    16. Tsai JC, Perrella MA .Yoshizumi M, et al. Promotion of vascular smooth muscle cell growth by homocysteine:a link to atherosclerosis. Pro Natl Acad Sci USA, 1994, 91(14):6369-72.
    17. Halvorsen B, Brude I, Drevon CA, et al. Effect of homocysteine on copperion-catalyzed, azo compound-initiated, and mononuclear cell-mediated oxidative modification of low density lipoprotein. J Lipid Res, 1996, 37(7):1591-600.
    18. Guba SC, Fink LM, Fonseca V. Hyperhomocysteinemia and premature vascular occlusive disease. Am J Med Sci, 1998, 315(4): 279-85.
    19. Ventura P, Panini R, Verlato C, et al. Peroxidation indices and total antioxidant capacity in plasma during hperhomocysteine induced by methionine by oralloading. Metabolism, 2000, 49(2): 225-8.
    20. Ungrari Z, Csiszar A, Edwards J G, et al. In creased superoxide production in coronary arteries in hyperhomocysteinemia:role of tumor necrosis factor-aplpha,NAD(P)Hoxidase,and inducible nitric oxide synthase. Arterioscler Thromb Vasc Bio, 2003, 23(3): 418-23.
    21. Yamamoto M, Hara H, Adachi T. Effect of homocysteine on the binding of extracellular-superoxide dismutase to the endothelial cell surface. FEBS Lett, 2000, 486(2): 159-62.
    22. Jakubowski H. Protein N-homocysteinlation: implications for atherosclerosis. Biomed Pharmacother, 2001, 55(8): 443-7.
    23. Zhang R, Ma J, Xia M, et al. Mild hyperhomocyteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. J Nutr, 2004, 134(4): 825-30.
    24. Ridker PM, Shih J, Cook TJ, et al. Plasma homocysteine concentration, stain therapy, and the risk of first acute coronary events. Circulation, 2002, 105(15): 1776-9.
    25. Stühinger MC, Tsao PS, Her JH, et al. Homocysteine impairs the nitric oxide synthase pathway:role of asymmetric dimethylarginine. Circulation, 2001, 104(21): 2569-75.
    26. Speidl WS, Nikfardjam M, Niessner A, et al. Mild hyperhomocysteinemia is associated with a decreased fibrinolytic activity in patients after ST-elevation myocardial infaraction. Thromb Res, 2007, 119(3): 331-6.
    27. Brown CA,McKinney KQ,Kaufman JS,et a1.A Common polymorphism in methionine synthase reductase increases risk of premature coronary artery disease.J Cardiovasc Risk,2000, 7(3):197-200.
    28. Thygesen K, Alpert JS, White HD. Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. J Am Coll Cardiol, 2007, 50: 2173-95.
    29. O'Leary VB, Mills JL, Pangilinan F, et al. Analysis of methionine synthasereductase polymorphisms for neural tube defects risk association. Mol Genet Metab, 2005, 85(3): 220–7.
    30. Undas A, Brozek J, Szczeklik A. Homocysteine and thrombosis: from basic science to clinical evidence. Thromb Haemost, 2005, 94(5): 907-15.
    31. Hirche F, Schroder A, Knoth B, et al. Effect of dietary methionine on plasma and liver cholesterol concentrations in rats and expression of hepatic genes involved in cholesterol metabolism. Br J Nutr, 2006, 95(5): 879-88.
    32. Liao D, Tan H, Hui R,et al. Hyperhomocy steinemia decreases circulating high-density Lipoprotein by inhibiting apolipoprotein A-I protein synthesis and enhancing HDL cholesterol clearance. Circ Res, 2006, 99(6): 598-606.
    33. Wilson KM, McCaw RB, Leo L, et al. Prothrombotic effects of hyperhomocysteinemia and hypercholesterolemia in APOE-deficient mice. Arterioscler Thromb Vasc Biol, 2007, 27(1): 233-40.
    34. Finkelstein JD. The metabolism of homocysteine:Pathways and regulation. Eur J Pediatr, 1998, 157[Suppl 20]: S40-4.
    35. Selhub J. Homocysteine metabolism. Annu Rev Nutr, 1999, 19: 217-46.
    36. Ueland PM, Refsum H, Stabler SP, et al. Total homocysteine in plasma of serum:methods and clinical applications. Clin Chem, 1993, 39(9): 1764-79.
    37. De Vriese AS, Langlois M, Bernard D, et al. Effect of dialyser membrane poresize on plasma homocysteine levels in haemodialysis patients. Nephrol Dial Transp lant, 2003 Dec, 18 (12): 2596 - 600.
    38. Gaughan DJ, Kluijtmans LA, Barbaux S, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of Plasma homocysteine concentrations. Atherosclerosis, 2001 Aug, 157 (2): 451-6.
    1. Glueck CJ, Shaw P, Lang JE, et al. Evidence that homocysteine is an independent risk factor of atherosclerosis in hperlipidemic patients. Am J Cardiol, 1995, 75(2): 132-6.
    2. Zhang R, Ma J, Xia M, et al. Mild hyperhomocyteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes.J Nutr, 2004, 134(4): 825-30.
    3. Finkelstein JD. The metabolism of homocysteine:Pathways and regulation. Eur J Pediatr, 1998, 157[Suppl 20]: S40-4.
    4. Selhub J. Homocysteine metabolism. Annu Rev Nutr, 1999, 19: 217-46.
    5. Ueland PM, Refsum H, Stabler SP, et al. Total homocysteine in plasma of serum: methods and clinical applications. Clin Chem, 1993, 39(9): 1764-69.
    6. Kluijtmans LAJ,Van den Heuvel LPWJ,Boers GHJ,et al.Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methyleneterahydrofolate reductase gene is a genetic risk factor for cardiovascular disease.Am J Hum Genet 1996,58:35-41.
    7. Kraus JP.Biochemistry and molecular genetics of cystathionineβ-synthase deficiency.Eur J Pediatr,1998,157[suppl 2]:S50-S53.
    8. Kluijtmans LA, Kastelein JJ, Lindemans J, et al. Thermolabile methylenetetrahydrofolate reductase in coronary artery disease. Circulation, 1997, 96(8): 2573-7.
    9. Malinow MR, Duell PB, Hess DL,et al.Reduction of plasma homocysteine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease.N Engl J Med,1998,338(15) :1009-15.
    10. Brattstr?m L, Israelsson B, Lindg?rde F, et al.Higher total plasma homocysteine in vitamin B12 deficiency than in heterozygosity for homocysteinuria due to cystathionineβ-synthase deficiency.Metabolism,1988,37(2):175-8.
    11. Kang SS, Wong PW, Susmano A, et al. Thermolabile methylenetetrahydrofolatereductase: an inherited risk factor for coronary artery disease.Am J Hum Genet 1991,48(3):536-45.
    12. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease:a common mutation in methyleneterahydrofolate reductase.Nat Genet 1995,10(1):111-3.
    13. Engbersen AM, Franken DG, Boers GH, et al. Blom HJ.Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am J Hum Genet 1995, 56(1): 142-50.
    14. Jacques PF, Bostom AG, Williams RR, et al. Relation between folate status, a common mutation in methyleneterahydrofolate reductase,and plasma homocysteine concentrations. Circulation 1996, 93(1): 7-9.
    15. Christensen B, Frosst P, Lussier-Cacan S, et al. Correlation of a common mutation in the methyleneterahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease. Arterioscler Thromb Vasc Biol 1997, 17(3): 569-73.
    16. Piacentini L, Wainwright CL, Parratt JR. The antiarrhythmic effect of ischemic preconditioning in isolated rat heart involves a pertussis toxin sensitive mechanism. Cardiovas Res, 1993, 27(4): 674-80.
    17. Liu Y, Ytrehus K, Downey JM. Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium. J Mol Cell Cardiol, 1994, 26(5): 661-8.
    18. Miyawaki H, Ashraf M. Ca2+ as a mediator of ischemic preconditioning. Circ Res. 1997, 80(6): 790-9.
    19. Tsuchida A, Liu Y, Liu GS, et al. alpha 1-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res, 1994, 75(3): 576-85.
    20. Ma J, Stampfer MJ, Hennekens CH, et al. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction inUS physicians.Circulation. 1996, 94(10): 2410-6.
    21. Gallagher PM, Meleady R, Shields DC, et al. Homocysteine and risk of premature coronary heart disease. Evidence for a common gene mutation. Circulation. 1996, 94(9): 2154-8.
    22. Schmitz C, Lindpaintner K, Verhoef P, et al. Genetic polymorphism of methylenetetrahydrofolate reductase and myocardial infarction. A case-control study.Circulation, 1996, 94(8): 1812-4.
    23. Van Bockxmeer FM, Mamotte CD, Vasikaran SD, et al. Methylenetetrahydrofolate reductase gene and coronary artery disease.Circulation. 1997, 95(1): 21-3.
    24. Kluijtmans LA, Kastelein JJ, Lindemans J, et al. Thermolabile methylenetetrahydrofolate reductase in coronary artery disease.Circulation. 1997 , 96(8): 2573-7.
    25. Reinhardt D, Sigusch HH, Vogt SF, et al. Absence of association between a common mutation in the methylenetetrahydrofolate reductase gene and the risk of coronary artery disease. Eur J Clin Invest, 1998, 28(1): 20-3.
    26. Brattstrom L, Wilcken DE, Ohrvik J, et al. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis.Circulation. 1998, 98(23): 2520-6.
    27. Kraus JP. Biochemistry and molecular genetics of cystathionine beta-synthase deficiency. Eur J Pediatr, 1998,157 (Suppl 2):S50-3.
    28. Gaughan DJ, Kluijtmans LA, Barbaux S, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis, 2001, 157(2): 451-6.
    29. Nygard O, Vollset SE, Rersum H, Stensvold I, et al. Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA. 1995, 274(19): 1526-33.
    30. Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite.Ann N Y Acad Sci, 1993, 686:12-27; discussion 27-8.
    31. Jacob RA, Wu MM, Henning SM, et al. Homocysteine increases as folate decreases in plasma of healthy men during short-term dietary folate and methyl group restriction. J Nutr, 1994, 124(7): 1072-80.
    32. Perna AF, Castaldo P, Ingrosso D, et al. Homocysteine, a new cardiovascular risk factor, is also a powerful uremic toxin. J Nephrol, 1999, 12(4): 230-40.
    33. Selhub J, Jacques PF, Wilson PW, et al. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA, 1993, 270(22): 2693-8.
    34. Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol, 1996, 27(3): 517-27.
    35. McCully KS. Homocystinuria, arteriosclerosis, methylmalonic aciduria, and methyltransferase deficiency: a key case revisited. Nutr Rev, 1992, 50(1): 7-12.
    36. Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest, 1996, 98(1): 5-7.
    37. Diekman MJ, Van der Put NM, Blom HJ, et al. Determinants of changes in plasma homocysteine in hyperthyroidism and hypothyroidism. Clin Endocrinol (Oxf), 2001,54(2): 197-204.
    38. Yeromenko Y, Lavie L, Levy Y. Homocysteine and cardiovascular risk in patients with diabetes mellitus. Nutr Metab Cardiovasc Dis, 2001, 11(2): 108-16.
    39. Postuma RB, Lang AE. .Homocysteine and levodopa: should Parkinson disease patients receive preventative therapy? Neurology, 2004, 63(5): 886-91.
    40. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis.Am J Pathol, 1969, 56(1): 111-28.
    41. Boushey CJ, Beresford SA, Omenn GS, et al. A quantitative assessment ofplasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA, 1995, 274(13): 1049-57.
    42. Matetzky S, Freimark D, Ben-Ami s, et al. Association of elevated homocysteine levels with a higher risk of recurrent coronary events and mortality in patients with acute myocardial infarction. Arch Intern Med, 2003, 163(16): 1933-7.
    43. Marcucci R, Brogi D, Sofi F, et al. PAI-1 and homocysteine, but not lipoprotein (a) and thrombophilic polymorphisms, are independently associated with the occurrence of major adverse cardiac events after successful coronary stenting. Heart, 2006, 92(3): 377-81.
    44. Tanne D, Haim M, Goldbourt U, et al. Prospective study of serum homocysteine and risk of ischemic stroke among patients with preexisting coronary heart disease. Stroke, 2003, 34(3): 632.
    45. Kanani PM, Sinkey CA, Browing RL, et al. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation, 1999, 100(11): 1161-8.
    46. Woo KS, Chook P, Lolin YI, et al. Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in humans. Circulation, 2000, 101(12): E116.
    47. Fryer RH, Wilson BD, Gubler DB, et al. Homocysteine, a risk factor for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells. Arterioscler Thromb, 1993, 13(9): 1327-33.
    48. Stamler JS, Osborne JA, Jaraki O, et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest, 1993, 91(1): 308-18.
    49. Daltun ML, Gadaon PF Jr, Wrenn RW, et al. Homocysteine signal cascade: production of phospholipids, activation of protein kinase C, and the induction of c-fos and c-myb in smooth muscle cells. FASEB J, 1997, 11(8): 703-11.
    50. Hajjar KA..Homocysteine-induced modulation of tissue plasminogen activatorbinding to its endothelial cell membrane receptor. J Clin Invest, 1993, 91(6): 2873-9.
    51. Liao JK, Shin WS, Lee WY, et al. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem, 1995, 270(1): 319-24.
    52. Halvorsen B, Brude I, Drevon CA, et al. Effect of homocysteine on copper ion-catalyzed, azo compound-initiated, and mononuclear cell-mediated oxidative modification of low density lipoprotein. J Lipid Res, 1996, 37(7): 1591-600.
    53. Rasmussen LM, Hansen PR, Ledet T, et al. Homocysteine and the production of collagens, proliferation and apoptosis in human arterial smooth muscle cells. APMIS, 2004, 112(9): 598-604.
    54. Ling Q, Hajjar KA. Inhibition of endothelial cell thromboresistance by homocysteine. J Nutr, 2000, 130(2S Suppl): 373S-376S.
    55. Biasucci LM, Vitelli A, Liuzzo G, et al. Elevated levels of interleukin-6 in unstable angina. Circulation, 1996,94(5): 874-7.
    56.朱建华,张力.同型半胱氨酸对血管平滑肌细胞白介素-6表达和核转录因子-κB活性的影响.中华心血管病杂志, 2002, 30(9):554-8.
    57.汪迎辉,张步延,黄文增.同型半胱氨酸促THP-1巨噬细胞表达单核细胞趋化蛋白和他汀药的拮抗作用.临床心血管病杂志, 2003,19(2):109-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700